Abstract

New trends and emerging requirements have driven the development of extensions to the path computation element (PCE) architecture beyond the computation of a set of constrained routes and associated resources between endpoints, given a network topology. Such extensions involve the use of a PCE for the control of network services, in which deploying a PCE as a centralized network controller facilitates the adoption of software-defined networking (SDN) principles while allowing a progressive migration of already existing deployments. A key requirement for the adoption of centralized control solutions is the ability to deploy a resilient, secure, dynamically configurable, adaptive, and highly available (virtualized) infrastructure supporting end-to-end services, including critical and vertical ones. Part of this infrastructure is the control plane functional elements (e.g., controllers), and the use of network function virtualization (NFV) is a enabler for the high availability of such elements while additionally reducing OPEX and CAPEX. NFV provides a feature-complete framework for the replication of software components that is a straightforward and commonly adopted approach to address the aforementioned requirement, but it implies the need for timely synchronization of databases between replicas. In this paper we present, implement, and validate an architecture for PCE and SDN control high availability, combining the virtualization of the control function by means of dynamic replication and the timely synchronization of their internal state using the PCEP and BGP-LS protocols. We experimentally validate the approach with a testbed, including a GMPLS/PCE control plane, and a replica management system implemented following the ETSI NFV framework, using the OpenStack cloud management software.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
SDN Orchestration of OpenFlow and GMPLS Flexi-Grid Networks With a Stateful Hierarchical PCE [Invited]

Ramon Casellas, Raül Muñoz, Ricardo Martínez, Ricard Vilalta, Lei Liu, Takehiro Tsuritani, Itsuro Morita, Víctor López, Oscar González de Dios, and Juan Pedro Fernández-Palacios
J. Opt. Commun. Netw. 7(1) A106-A117 (2015)

Control and Management of Flexi-grid Optical Networks With an Integrated Stateful Path Computation Element and OpenFlow Controller [Invited]

Ramon Casellas, Ricardo Martínez, Raül Muñoz, Ricard Vilalta, Lei Liu, Takehiro Tsuritani, and Itsuro Morita
J. Opt. Commun. Netw. 5(10) A57-A65 (2013)

Applications and Status of Path Computation Elements [Invited]

Ramon Casellas, Raül Muñoz, Ricardo Martínez, and Ricard Vilalta
J. Opt. Commun. Netw. 5(10) A192-A203 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Farrel, J.-P. Vasseur, and J. Ash, “A path computation element (PCE)-based architecture,” , Aug.2006 [Online]. Available: http://www.ietf.org/rfc/rfc4655.txt .
  2. J. Vasseur and J. L. Roux, “Path computation element (PCE) communication protocol (PCEP),” , Mar.2009 [Online]. Available: http://www.ietf.org/rfc/rfc5440.txt .
  3. J. Vasseur, R. Zhang, N. Bitar, and J. L. Roux, “A backward-recursive PCE-based computation (BRPC) procedure to compute shortest constrained inter-domain traffic engineering label switched paths,” , Apr.2009 [Online]. Available: http://www.ietf.org/rfc/rfc5441.txt .
  4. D. King and A. Farrel, “A PCE-based architecture for application-based network operations,” , 2015.
  5. E. Crabbe, I. Minei, S. Sivabalan, and R. Varga, “PCEP extensions for PCE-initiated LSP setup in a stateful PCE model,” IETF Internet Draft, Oct.2015.
  6. S. Sivabalan, J. Medved, C. Filsfils, R. Raszuk, V. Lopez, J. Tantsura, W. Henderickx, and J. Hardwick, “PCEP extensions for segment routing,” IETF Internet Draft, Mar.2016.
  7. Q. Zhao, R. Li, K. Ke, L. Fang, C. Zhou, and B. Zhang, “Use cases for using PCE as the central controller (PCECC) of LSPs,” IETF Internet Draft, Mar.2017.
  8. ETSI Group Specification, “Network function virtualization (NFV): Architectural framework,” , 2013.
  9. R. Vilalta, R. Munoz, R. Casellas, R. Martinez, V. Lopez, and D. Lopez, “Transport PCE network function virtualization,” in European Conf. on Optical Communication (ECOC), Cannes, France, Sept.2014.
  10. R. Munoz, R. Vilalta, R. Casellas, R. Martinez, T. Szyrkowiec, A. Autenrieth, V. Lopez, and D. Lopez, “Integrated SDN/NFV management and orchestration architecture for dynamic deployment of virtual SDN control instances for virtual tenant networks,” J. Opt. Commun. Netw., vol. 7, no. 11, pp. B62–B70, 2015.
    [Crossref]
  11. H. Gredler, J. Medved, S. Previdi, A. Farrel, and S. Ray, “North-bound distribution of link-state and TE information using BGP,” , May2014.
  12. R. Casellas, R. Vilalta, R. Martinez, and R. Muñoz, “Active stateful PCE high-availability for the control of flexigrid networks with network function virtualization enabled replication,” in Optical Fiber Communication Conf. and Expo. (OFC), Anaheim, CA, Mar.2016.
  13. ETSI Group Specification, “Network functions virtualisation (NFV); infrastructure overview,” , 2015.
  14. Open Networking Foundation (ONF), “OpenFlow switch specification,” version 1.4 (Wire protocol 0 × 5), Oct.2013 [Online]. Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf .
  15. R. Casellas, R. Martínez, R. Muñoz, R. Vilalta, L. Liu, T. Tsuritani, and I. Morita, “Control and management of flexi-grid optical networks with an integrated stateful PCE and OpenFlow controller,” J. Opt. Commun. Netw., vol. 5, no. 10, pp. A57–A65, 2013.
    [Crossref]
  16. T. Bates, E. Chen, and R. Chandra, “BGP route reflection—An alternative to full mesh IBGP,” , Apr.2006 [Online]. Available: http://www.ietf.org/rfc/rfc4456.txt .
  17. O. González de Dios, R. Casellas, R. Morro, F. Paolucci, V. López, R. Martínez, R. Muñoz, R. Vilalta, and P. Castoldi, “Multipartner demonstration of BGP-LS-enabled multidomain EON control and instantiation with H-PCE [Invited],” J. Opt. Commun. Netw., vol. 7, no. 12, pp. B153–B162, 2015.
    [Crossref]
  18. O. González de Dios, R. Casellas, F. Paolucci, A. Napoli, L. Gifre, A. Dupas, E. Hugues-Salas, R. Morro, S. Belotti, G. Meloni, T. Rahman, V. López, R. Martínez, F. Fresi, M. Bohn, S. Yan, L. Velasco, P. Layec, and J.-P. Fernández Palacios, “Experimental demonstration of multivendor and multidomain EON with data and control interoperability over a Pan-European test bed,” J. Lightwave Technol., vol. 34, no. 7, pp. 1610–1617, 2016.
    [Crossref]
  19. R. Martínez, R. Casellas, R. Vilalta, and R. Muñoz, “GMPLS/PCE-controlled multi-flow optical transponders in elastic optical networks,” J. Opt. Commun. Netw., vol. 7, no. 11, pp. B71–B80, 2015.
    [Crossref]

2016 (1)

2015 (3)

2013 (1)

Ash, J.

A. Farrel, J.-P. Vasseur, and J. Ash, “A path computation element (PCE)-based architecture,” , Aug.2006 [Online]. Available: http://www.ietf.org/rfc/rfc4655.txt .

Autenrieth, A.

Bates, T.

T. Bates, E. Chen, and R. Chandra, “BGP route reflection—An alternative to full mesh IBGP,” , Apr.2006 [Online]. Available: http://www.ietf.org/rfc/rfc4456.txt .

Belotti, S.

Bitar, N.

J. Vasseur, R. Zhang, N. Bitar, and J. L. Roux, “A backward-recursive PCE-based computation (BRPC) procedure to compute shortest constrained inter-domain traffic engineering label switched paths,” , Apr.2009 [Online]. Available: http://www.ietf.org/rfc/rfc5441.txt .

Bohn, M.

Casellas, R.

O. González de Dios, R. Casellas, F. Paolucci, A. Napoli, L. Gifre, A. Dupas, E. Hugues-Salas, R. Morro, S. Belotti, G. Meloni, T. Rahman, V. López, R. Martínez, F. Fresi, M. Bohn, S. Yan, L. Velasco, P. Layec, and J.-P. Fernández Palacios, “Experimental demonstration of multivendor and multidomain EON with data and control interoperability over a Pan-European test bed,” J. Lightwave Technol., vol. 34, no. 7, pp. 1610–1617, 2016.
[Crossref]

R. Martínez, R. Casellas, R. Vilalta, and R. Muñoz, “GMPLS/PCE-controlled multi-flow optical transponders in elastic optical networks,” J. Opt. Commun. Netw., vol. 7, no. 11, pp. B71–B80, 2015.
[Crossref]

O. González de Dios, R. Casellas, R. Morro, F. Paolucci, V. López, R. Martínez, R. Muñoz, R. Vilalta, and P. Castoldi, “Multipartner demonstration of BGP-LS-enabled multidomain EON control and instantiation with H-PCE [Invited],” J. Opt. Commun. Netw., vol. 7, no. 12, pp. B153–B162, 2015.
[Crossref]

R. Munoz, R. Vilalta, R. Casellas, R. Martinez, T. Szyrkowiec, A. Autenrieth, V. Lopez, and D. Lopez, “Integrated SDN/NFV management and orchestration architecture for dynamic deployment of virtual SDN control instances for virtual tenant networks,” J. Opt. Commun. Netw., vol. 7, no. 11, pp. B62–B70, 2015.
[Crossref]

R. Casellas, R. Martínez, R. Muñoz, R. Vilalta, L. Liu, T. Tsuritani, and I. Morita, “Control and management of flexi-grid optical networks with an integrated stateful PCE and OpenFlow controller,” J. Opt. Commun. Netw., vol. 5, no. 10, pp. A57–A65, 2013.
[Crossref]

R. Casellas, R. Vilalta, R. Martinez, and R. Muñoz, “Active stateful PCE high-availability for the control of flexigrid networks with network function virtualization enabled replication,” in Optical Fiber Communication Conf. and Expo. (OFC), Anaheim, CA, Mar.2016.

R. Vilalta, R. Munoz, R. Casellas, R. Martinez, V. Lopez, and D. Lopez, “Transport PCE network function virtualization,” in European Conf. on Optical Communication (ECOC), Cannes, France, Sept.2014.

Castoldi, P.

Chandra, R.

T. Bates, E. Chen, and R. Chandra, “BGP route reflection—An alternative to full mesh IBGP,” , Apr.2006 [Online]. Available: http://www.ietf.org/rfc/rfc4456.txt .

Chen, E.

T. Bates, E. Chen, and R. Chandra, “BGP route reflection—An alternative to full mesh IBGP,” , Apr.2006 [Online]. Available: http://www.ietf.org/rfc/rfc4456.txt .

Crabbe, E.

E. Crabbe, I. Minei, S. Sivabalan, and R. Varga, “PCEP extensions for PCE-initiated LSP setup in a stateful PCE model,” IETF Internet Draft, Oct.2015.

Dupas, A.

Fang, L.

Q. Zhao, R. Li, K. Ke, L. Fang, C. Zhou, and B. Zhang, “Use cases for using PCE as the central controller (PCECC) of LSPs,” IETF Internet Draft, Mar.2017.

Farrel, A.

D. King and A. Farrel, “A PCE-based architecture for application-based network operations,” , 2015.

A. Farrel, J.-P. Vasseur, and J. Ash, “A path computation element (PCE)-based architecture,” , Aug.2006 [Online]. Available: http://www.ietf.org/rfc/rfc4655.txt .

H. Gredler, J. Medved, S. Previdi, A. Farrel, and S. Ray, “North-bound distribution of link-state and TE information using BGP,” , May2014.

Fernández Palacios, J.-P.

Filsfils, C.

S. Sivabalan, J. Medved, C. Filsfils, R. Raszuk, V. Lopez, J. Tantsura, W. Henderickx, and J. Hardwick, “PCEP extensions for segment routing,” IETF Internet Draft, Mar.2016.

Fresi, F.

Gifre, L.

González de Dios, O.

Gredler, H.

H. Gredler, J. Medved, S. Previdi, A. Farrel, and S. Ray, “North-bound distribution of link-state and TE information using BGP,” , May2014.

Hardwick, J.

S. Sivabalan, J. Medved, C. Filsfils, R. Raszuk, V. Lopez, J. Tantsura, W. Henderickx, and J. Hardwick, “PCEP extensions for segment routing,” IETF Internet Draft, Mar.2016.

Henderickx, W.

S. Sivabalan, J. Medved, C. Filsfils, R. Raszuk, V. Lopez, J. Tantsura, W. Henderickx, and J. Hardwick, “PCEP extensions for segment routing,” IETF Internet Draft, Mar.2016.

Hugues-Salas, E.

Ke, K.

Q. Zhao, R. Li, K. Ke, L. Fang, C. Zhou, and B. Zhang, “Use cases for using PCE as the central controller (PCECC) of LSPs,” IETF Internet Draft, Mar.2017.

King, D.

D. King and A. Farrel, “A PCE-based architecture for application-based network operations,” , 2015.

Layec, P.

Li, R.

Q. Zhao, R. Li, K. Ke, L. Fang, C. Zhou, and B. Zhang, “Use cases for using PCE as the central controller (PCECC) of LSPs,” IETF Internet Draft, Mar.2017.

Liu, L.

Lopez, D.

Lopez, V.

R. Munoz, R. Vilalta, R. Casellas, R. Martinez, T. Szyrkowiec, A. Autenrieth, V. Lopez, and D. Lopez, “Integrated SDN/NFV management and orchestration architecture for dynamic deployment of virtual SDN control instances for virtual tenant networks,” J. Opt. Commun. Netw., vol. 7, no. 11, pp. B62–B70, 2015.
[Crossref]

R. Vilalta, R. Munoz, R. Casellas, R. Martinez, V. Lopez, and D. Lopez, “Transport PCE network function virtualization,” in European Conf. on Optical Communication (ECOC), Cannes, France, Sept.2014.

S. Sivabalan, J. Medved, C. Filsfils, R. Raszuk, V. Lopez, J. Tantsura, W. Henderickx, and J. Hardwick, “PCEP extensions for segment routing,” IETF Internet Draft, Mar.2016.

López, V.

Martinez, R.

R. Munoz, R. Vilalta, R. Casellas, R. Martinez, T. Szyrkowiec, A. Autenrieth, V. Lopez, and D. Lopez, “Integrated SDN/NFV management and orchestration architecture for dynamic deployment of virtual SDN control instances for virtual tenant networks,” J. Opt. Commun. Netw., vol. 7, no. 11, pp. B62–B70, 2015.
[Crossref]

R. Casellas, R. Vilalta, R. Martinez, and R. Muñoz, “Active stateful PCE high-availability for the control of flexigrid networks with network function virtualization enabled replication,” in Optical Fiber Communication Conf. and Expo. (OFC), Anaheim, CA, Mar.2016.

R. Vilalta, R. Munoz, R. Casellas, R. Martinez, V. Lopez, and D. Lopez, “Transport PCE network function virtualization,” in European Conf. on Optical Communication (ECOC), Cannes, France, Sept.2014.

Martínez, R.

Medved, J.

H. Gredler, J. Medved, S. Previdi, A. Farrel, and S. Ray, “North-bound distribution of link-state and TE information using BGP,” , May2014.

S. Sivabalan, J. Medved, C. Filsfils, R. Raszuk, V. Lopez, J. Tantsura, W. Henderickx, and J. Hardwick, “PCEP extensions for segment routing,” IETF Internet Draft, Mar.2016.

Meloni, G.

Minei, I.

E. Crabbe, I. Minei, S. Sivabalan, and R. Varga, “PCEP extensions for PCE-initiated LSP setup in a stateful PCE model,” IETF Internet Draft, Oct.2015.

Morita, I.

Morro, R.

Munoz, R.

Muñoz, R.

Napoli, A.

Paolucci, F.

Previdi, S.

H. Gredler, J. Medved, S. Previdi, A. Farrel, and S. Ray, “North-bound distribution of link-state and TE information using BGP,” , May2014.

Rahman, T.

Raszuk, R.

S. Sivabalan, J. Medved, C. Filsfils, R. Raszuk, V. Lopez, J. Tantsura, W. Henderickx, and J. Hardwick, “PCEP extensions for segment routing,” IETF Internet Draft, Mar.2016.

Ray, S.

H. Gredler, J. Medved, S. Previdi, A. Farrel, and S. Ray, “North-bound distribution of link-state and TE information using BGP,” , May2014.

Roux, J. L.

J. Vasseur, R. Zhang, N. Bitar, and J. L. Roux, “A backward-recursive PCE-based computation (BRPC) procedure to compute shortest constrained inter-domain traffic engineering label switched paths,” , Apr.2009 [Online]. Available: http://www.ietf.org/rfc/rfc5441.txt .

J. Vasseur and J. L. Roux, “Path computation element (PCE) communication protocol (PCEP),” , Mar.2009 [Online]. Available: http://www.ietf.org/rfc/rfc5440.txt .

Sivabalan, S.

E. Crabbe, I. Minei, S. Sivabalan, and R. Varga, “PCEP extensions for PCE-initiated LSP setup in a stateful PCE model,” IETF Internet Draft, Oct.2015.

S. Sivabalan, J. Medved, C. Filsfils, R. Raszuk, V. Lopez, J. Tantsura, W. Henderickx, and J. Hardwick, “PCEP extensions for segment routing,” IETF Internet Draft, Mar.2016.

Szyrkowiec, T.

Tantsura, J.

S. Sivabalan, J. Medved, C. Filsfils, R. Raszuk, V. Lopez, J. Tantsura, W. Henderickx, and J. Hardwick, “PCEP extensions for segment routing,” IETF Internet Draft, Mar.2016.

Tsuritani, T.

Varga, R.

E. Crabbe, I. Minei, S. Sivabalan, and R. Varga, “PCEP extensions for PCE-initiated LSP setup in a stateful PCE model,” IETF Internet Draft, Oct.2015.

Vasseur, J.

J. Vasseur, R. Zhang, N. Bitar, and J. L. Roux, “A backward-recursive PCE-based computation (BRPC) procedure to compute shortest constrained inter-domain traffic engineering label switched paths,” , Apr.2009 [Online]. Available: http://www.ietf.org/rfc/rfc5441.txt .

J. Vasseur and J. L. Roux, “Path computation element (PCE) communication protocol (PCEP),” , Mar.2009 [Online]. Available: http://www.ietf.org/rfc/rfc5440.txt .

Vasseur, J.-P.

A. Farrel, J.-P. Vasseur, and J. Ash, “A path computation element (PCE)-based architecture,” , Aug.2006 [Online]. Available: http://www.ietf.org/rfc/rfc4655.txt .

Velasco, L.

Vilalta, R.

R. Martínez, R. Casellas, R. Vilalta, and R. Muñoz, “GMPLS/PCE-controlled multi-flow optical transponders in elastic optical networks,” J. Opt. Commun. Netw., vol. 7, no. 11, pp. B71–B80, 2015.
[Crossref]

O. González de Dios, R. Casellas, R. Morro, F. Paolucci, V. López, R. Martínez, R. Muñoz, R. Vilalta, and P. Castoldi, “Multipartner demonstration of BGP-LS-enabled multidomain EON control and instantiation with H-PCE [Invited],” J. Opt. Commun. Netw., vol. 7, no. 12, pp. B153–B162, 2015.
[Crossref]

R. Munoz, R. Vilalta, R. Casellas, R. Martinez, T. Szyrkowiec, A. Autenrieth, V. Lopez, and D. Lopez, “Integrated SDN/NFV management and orchestration architecture for dynamic deployment of virtual SDN control instances for virtual tenant networks,” J. Opt. Commun. Netw., vol. 7, no. 11, pp. B62–B70, 2015.
[Crossref]

R. Casellas, R. Martínez, R. Muñoz, R. Vilalta, L. Liu, T. Tsuritani, and I. Morita, “Control and management of flexi-grid optical networks with an integrated stateful PCE and OpenFlow controller,” J. Opt. Commun. Netw., vol. 5, no. 10, pp. A57–A65, 2013.
[Crossref]

R. Casellas, R. Vilalta, R. Martinez, and R. Muñoz, “Active stateful PCE high-availability for the control of flexigrid networks with network function virtualization enabled replication,” in Optical Fiber Communication Conf. and Expo. (OFC), Anaheim, CA, Mar.2016.

R. Vilalta, R. Munoz, R. Casellas, R. Martinez, V. Lopez, and D. Lopez, “Transport PCE network function virtualization,” in European Conf. on Optical Communication (ECOC), Cannes, France, Sept.2014.

Yan, S.

Zhang, B.

Q. Zhao, R. Li, K. Ke, L. Fang, C. Zhou, and B. Zhang, “Use cases for using PCE as the central controller (PCECC) of LSPs,” IETF Internet Draft, Mar.2017.

Zhang, R.

J. Vasseur, R. Zhang, N. Bitar, and J. L. Roux, “A backward-recursive PCE-based computation (BRPC) procedure to compute shortest constrained inter-domain traffic engineering label switched paths,” , Apr.2009 [Online]. Available: http://www.ietf.org/rfc/rfc5441.txt .

Zhao, Q.

Q. Zhao, R. Li, K. Ke, L. Fang, C. Zhou, and B. Zhang, “Use cases for using PCE as the central controller (PCECC) of LSPs,” IETF Internet Draft, Mar.2017.

Zhou, C.

Q. Zhao, R. Li, K. Ke, L. Fang, C. Zhou, and B. Zhang, “Use cases for using PCE as the central controller (PCECC) of LSPs,” IETF Internet Draft, Mar.2017.

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (4)

Other (14)

H. Gredler, J. Medved, S. Previdi, A. Farrel, and S. Ray, “North-bound distribution of link-state and TE information using BGP,” , May2014.

R. Casellas, R. Vilalta, R. Martinez, and R. Muñoz, “Active stateful PCE high-availability for the control of flexigrid networks with network function virtualization enabled replication,” in Optical Fiber Communication Conf. and Expo. (OFC), Anaheim, CA, Mar.2016.

ETSI Group Specification, “Network functions virtualisation (NFV); infrastructure overview,” , 2015.

Open Networking Foundation (ONF), “OpenFlow switch specification,” version 1.4 (Wire protocol 0 × 5), Oct.2013 [Online]. Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf .

T. Bates, E. Chen, and R. Chandra, “BGP route reflection—An alternative to full mesh IBGP,” , Apr.2006 [Online]. Available: http://www.ietf.org/rfc/rfc4456.txt .

A. Farrel, J.-P. Vasseur, and J. Ash, “A path computation element (PCE)-based architecture,” , Aug.2006 [Online]. Available: http://www.ietf.org/rfc/rfc4655.txt .

J. Vasseur and J. L. Roux, “Path computation element (PCE) communication protocol (PCEP),” , Mar.2009 [Online]. Available: http://www.ietf.org/rfc/rfc5440.txt .

J. Vasseur, R. Zhang, N. Bitar, and J. L. Roux, “A backward-recursive PCE-based computation (BRPC) procedure to compute shortest constrained inter-domain traffic engineering label switched paths,” , Apr.2009 [Online]. Available: http://www.ietf.org/rfc/rfc5441.txt .

D. King and A. Farrel, “A PCE-based architecture for application-based network operations,” , 2015.

E. Crabbe, I. Minei, S. Sivabalan, and R. Varga, “PCEP extensions for PCE-initiated LSP setup in a stateful PCE model,” IETF Internet Draft, Oct.2015.

S. Sivabalan, J. Medved, C. Filsfils, R. Raszuk, V. Lopez, J. Tantsura, W. Henderickx, and J. Hardwick, “PCEP extensions for segment routing,” IETF Internet Draft, Mar.2016.

Q. Zhao, R. Li, K. Ke, L. Fang, C. Zhou, and B. Zhang, “Use cases for using PCE as the central controller (PCECC) of LSPs,” IETF Internet Draft, Mar.2017.

ETSI Group Specification, “Network function virtualization (NFV): Architectural framework,” , 2013.

R. Vilalta, R. Munoz, R. Casellas, R. Martinez, V. Lopez, and D. Lopez, “Transport PCE network function virtualization,” in European Conf. on Optical Communication (ECOC), Cannes, France, Sept.2014.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Simplified ETSI NFV architecture enabling the execution of virtualized PCE instances.
Fig. 2.
Fig. 2. Proposed control plane and database synchronization architecture and main components: PCE replicas as virtualized SDN controllers (VNFs); Replica manager as NFV-O; Replica reflector for synchronization; and GMPLS controlled flexi-grid network (with link resource manager, LRM; connection controller, CC; and routing controller, RC).
Fig. 3.
Fig. 3. Basic message flow procedure to synchronize states. LSPDB synchronization is done mainly by means of the PCRpt messages, which are forwarded after a PCInit-driven successful provisioning of an LSP. TED synchronization is done by forwarding BGP-LS update messages (mapping OSPF-TE-inspected link state advertisements, LSAs).
Fig. 4.
Fig. 4. Summary of the workflow and message exchange showing the NMS/App and the different architecture components.
Fig. 5.
Fig. 5. Deployed testbed overview for the performance evaluation of PCE replication.
Fig. 6.
Fig. 6. Replica manager GUI application showing the topology seen by the replica at 10.1.6.226.
Fig. 7.
Fig. 7. Spanish topology with 14 core nodes and 22 links (client nodes not drawn). Each link has 128 NCFs.
Fig. 8.
Fig. 8. Replica manager GUI embedding OpenStack Horizon interface showing the two instantiated PCE replicas in an OpenStack compute node. Replicas have IP addresses 10.1.6.226 (replica 1) and 10.1.6.227 (replica 2) and have been instantiated with small flavor (1 GB RAM, 20 GB HDD).
Fig. 9.
Fig. 9. Wireshark capture of the initial synchronization of the TED, showing the different BGP-LS update messages. Several update messages can be included in a single TCP segment, and the initial synchronization between the reflector and a replica takes 1.15, including the handshake.
Fig. 10.
Fig. 10. Capture of the LSPDB at a given time for replica at 10.1.6.226. For each LSP, we see the endpoints, explicit route object (including opaque transponder objects), and the allocated label (which conveys the frequency slot center frequency and width, n and m parameters).
Fig. 11.
Fig. 11. Packet I/O: Wireshark capture of transmitted IP packets as seen by the reflector at 10.1.6.101 for two replicas and stressing the system with a batch of 100 consecutive LSP requests.