Abstract

All-optical wavelength conversion (WC) of advanced modulation formats could have a significant role in the next generation of high-capacity optical networks. Four-wave mixing (FWM) occurring within a semiconductor optical amplifier is one of the most advantageous methods to implement all-optical WC. We demonstrate the WC of 16-quadrature amplitude modulation (16-QAM) using degenerate and nondegenerate FWM in a semiconductor optical amplifier. We pay particular attention to the phase noise transfer from the pump(s) to the converted signal. The class of laser that can be used as the pump source to implement the scheme is highlighted by the calculations of the required pump laser linewidths to achieve specific system bit error rate performance at the forward error correction threshold. Our results are consistent with theories of phase noise transfer between the pump and converted signals.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H.  Gnauck, R. W.  Tkach, A. R.  Chraplyvy, T.  Li, “High-capacity transmission systems,” J. Lightwave Technol., vol.  26, no. 9, pp. 1032–1045, May2008.
    [CrossRef]
  2. A. H.  Gnauck, P. J.  Winzer, S.  Chandrasekhar, X.  Liu, B.  Zhu, D. W.  Peckham, “Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol., vol.  29, no. 4, pp. 373–377, Feb.2011.
    [CrossRef]
  3. J. E.  Simsarian, J.  Gripp, A. H.  Gnauck, G.  Raybon, P. J.  Winzer, “Fast-tuning 224-Gb/s intradyne receiver for optical packet networks,” in Proc. Optical Fiber Communication Conf., 2010, paper PDPB5.
  4. S.  Shinada, H.  Furukawa, N.  Wada, “Huge capacity optical packet switching and buffering,” Opt. Express, vol.  19, no. 26, pp. B406–B414, 2011.
    [CrossRef]
  5. J. P.  Jue, V. M.  Vokkarane, Optical Burst Switched Networks. Springer, 2005.
  6. G. P.  Agrawal, “Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers,” J. Opt. Soc. Am. B, vol.  5, no. 1, pp. 147–159, 1988.
    [CrossRef]
  7. J.  Yu, P.  Jeppesen, “80-Gb/s wavelength conversion based on cross-phase modulation in high-nonlinearity dispersion-shifted fiber and optical filtering,” IEEE Photon. Technol. Lett., vol.  13, no. 8, pp. 863–865, 2001.
    [CrossRef]
  8. E.  Tangdiongga, Y.  Liu, H.  de Waardt, G. D.  Khoe, H. J. S.  Dorren, “Demultiplexing 160/320  Gb/s to 40  Gb/s using a single SOA assisted by an optical filter,” in Proc. Optical Fiber Communication Conf., Anaheim, CA, 2006, paper OTuB5.
  9. J.  Leuthold, D. M.  Marom, S.  Cabot, J. J.  Jaques, R.  Ryf, C. R.  Giles, “All-optical wavelength conversion using a pulse reformatting optical filter,” J. Lightwave Technol., vol.  22, no. 1, pp. 186–191, 2004.
  10. A. E.  Kelly, A. D.  Ellis, D.  Nesset, R.  Kashyap, “100 Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier,” Electron. Lett., vol.  34, no. 20, pp. 1955–1956, 1998.
    [CrossRef]
  11. R.  Hui, A.  Mecozzi, “Phase noise of four-wave mixing in semiconductor lasers,” Appl. Phys. Lett., vol.  60, pp. 2454–2456, 1992.
    [CrossRef]
  12. S. T.  Naimi, S. Ó.  Dúill, L. P.  Barry, “Simulations of the OSNR and laser linewidth limits for reliable wavelength conversion of DQPSK signals using four-wave mixing,” J. Opt. Commun., vol.  310, no. 1, pp. 150–155, Jan.2014.
    [CrossRef]
  13. S. P.  Ó Dúill, S. T.  Naimi, A. P.  Anthur, T. N.  Huynh, D.  Venkitesh, L. P.  Barry, “Simulations of an OSNR limited wavelength conversion scheme,” IEEE Photon. Technol. Lett., vol.  25, no. 23, pp. 2311–2314, 2013.
    [CrossRef]
  14. A.  Anthur, R.  Watts, J.  O’Carroll, D.  Venkitesh, L. P.  Barry, “Dual correlated pumping scheme for phase noise preservation in all-optical wavelength conversion,” Opt. Express, vol.  21, no. 13, pp. 15568–15579, 2013.
    [CrossRef]
  15. T.  Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron., vol.  12, no. 4, pp. 544–554, 2006.
    [CrossRef]
  16. M.  Morshed, L. B.  Du, B.  Foo, M. D.  Pelusi, B.  Corcoran, A. J.  Lowery, “Experimental demonstrations of dual polarization CO-OFDM using mid-span spectral inversion for nonlinearity compensation,” Opt. Express, vol.  22, no. 9, pp. 10455–10466, 2014.
    [CrossRef]
  17. J.  Zhou, N.  Park, J. W.  Dawson, K. J.  Vahala, M. A.  Newkirk, B. I.  Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett., vol.  63, pp. 1179–1181, 1993.
    [CrossRef]
  18. A.  Uskov, J.  Mørk, J.  Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron., vol.  30, pp. 1769–1781, 1994.
    [CrossRef]
  19. A.  Mecozzi, S.  Scotti, A.  D’Ottavi, E.  Iannone, P.  Spano, “Fourwave mixing in traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron., vol.  31, pp. 689–699, 1995.
    [CrossRef]
  20. I.  Koltchanov, S.  Kindt, K.  Petermann, S.  Diez, R.  Ludwig, R.  Schnabel, H. G.  Weber, “Gain dispersion and saturation effects in four-wave mixing in semiconductor laser amplifiers,” IEEE J. Quantum Electron., vol.  32, pp. 712–720, 1996.
    [CrossRef]
  21. K.  Kikuchi, M.  Amano, C. E.  Zah, T. P.  Lee, “Analysis of origin of nonlinear gain in 1.5  m semiconductor active layers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett., vol.  64, pp. 548–550, 1994.
    [CrossRef]
  22. A.  Mecozzi, J.  Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron, vol.  3, no. 5, pp. 1190–1207, Oct.1997.
    [CrossRef]
  23. D.  Cassioli, S.  Scotti, A.  Mecozzi, “A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,” IEEE J. Quantum Electron., vol.  36, no. 9, pp. 1072–1080, 2000.
    [CrossRef]
  24. D.  Marcuse, “Computer simulation of FSK laser spectra and of FSK-to-ASK conversion,” J. Lightwave Technol., vol.  8, no. 7, pp. 1110–1122, 1990.
  25. B.  Filion, W. C.  Ng, A. T.  Nguyen, L. A.  Rusch, S.  LaRochelle, “Wideband wavelength conversion of 16  Gbaud 16-QAM and 5  Gbaud 64-QAM signals in a semiconductor optical amplifier,” Opt. Express, vol.  21, no. 17, pp. 19825–19833, 2013.
    [CrossRef]
  26. S. J.  Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron., vol.  16, no. 5, pp. 1164–1179, 2010.
    [CrossRef]
  27. S. J.  Savory, G.  Gavioli, R. I.  Killey, P.  Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express, vol.  15, no. 5, pp. 2120–2126, 2007.
    [CrossRef]
  28. U.  Mengali, A. N.  D’Andrea, Synchronization Techniques for Digital Receivers. Plenum, 1997.
  29. S.  Haykin, Adaptive Filter Theory. Prentice Hall, 2001.
  30. Y.  Mori, C.  Zhang, K.  Igarashi, K.  Katoh, K.  Kikuchi, “Phase-noise tolerance of optical 16-QAM signals demodulated with decision-directed carrier-phase estimation,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OWG7.
  31. I.  Tomkos, I.  Zacharopoulos, D.  Syvridis, T.  Sphicopoulos, C.  Caroubalos, E.  Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett., vol.  72, no. 20, pp. 2499–2501, 1998.
    [CrossRef]
  32. T. N.  Huynh, F.  Smyth, L.  Nguyen, L. P.  Barry, “Effects of phase noise of monolithic tunable laser on coherent communication systems,” Opt. Express, vol.  20, no. 26, pp. B244–B249, 2012.
    [CrossRef]

2014 (2)

S. T.  Naimi, S. Ó.  Dúill, L. P.  Barry, “Simulations of the OSNR and laser linewidth limits for reliable wavelength conversion of DQPSK signals using four-wave mixing,” J. Opt. Commun., vol.  310, no. 1, pp. 150–155, Jan.2014.
[CrossRef]

M.  Morshed, L. B.  Du, B.  Foo, M. D.  Pelusi, B.  Corcoran, A. J.  Lowery, “Experimental demonstrations of dual polarization CO-OFDM using mid-span spectral inversion for nonlinearity compensation,” Opt. Express, vol.  22, no. 9, pp. 10455–10466, 2014.
[CrossRef]

2013 (3)

2012 (1)

2011 (2)

2010 (1)

S. J.  Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron., vol.  16, no. 5, pp. 1164–1179, 2010.
[CrossRef]

2008 (1)

2007 (1)

2006 (1)

T.  Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron., vol.  12, no. 4, pp. 544–554, 2006.
[CrossRef]

2004 (1)

2001 (1)

J.  Yu, P.  Jeppesen, “80-Gb/s wavelength conversion based on cross-phase modulation in high-nonlinearity dispersion-shifted fiber and optical filtering,” IEEE Photon. Technol. Lett., vol.  13, no. 8, pp. 863–865, 2001.
[CrossRef]

2000 (1)

D.  Cassioli, S.  Scotti, A.  Mecozzi, “A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,” IEEE J. Quantum Electron., vol.  36, no. 9, pp. 1072–1080, 2000.
[CrossRef]

1998 (2)

I.  Tomkos, I.  Zacharopoulos, D.  Syvridis, T.  Sphicopoulos, C.  Caroubalos, E.  Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett., vol.  72, no. 20, pp. 2499–2501, 1998.
[CrossRef]

A. E.  Kelly, A. D.  Ellis, D.  Nesset, R.  Kashyap, “100 Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier,” Electron. Lett., vol.  34, no. 20, pp. 1955–1956, 1998.
[CrossRef]

1997 (1)

A.  Mecozzi, J.  Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron, vol.  3, no. 5, pp. 1190–1207, Oct.1997.
[CrossRef]

1996 (1)

I.  Koltchanov, S.  Kindt, K.  Petermann, S.  Diez, R.  Ludwig, R.  Schnabel, H. G.  Weber, “Gain dispersion and saturation effects in four-wave mixing in semiconductor laser amplifiers,” IEEE J. Quantum Electron., vol.  32, pp. 712–720, 1996.
[CrossRef]

1995 (1)

A.  Mecozzi, S.  Scotti, A.  D’Ottavi, E.  Iannone, P.  Spano, “Fourwave mixing in traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron., vol.  31, pp. 689–699, 1995.
[CrossRef]

1994 (2)

A.  Uskov, J.  Mørk, J.  Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron., vol.  30, pp. 1769–1781, 1994.
[CrossRef]

K.  Kikuchi, M.  Amano, C. E.  Zah, T. P.  Lee, “Analysis of origin of nonlinear gain in 1.5  m semiconductor active layers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett., vol.  64, pp. 548–550, 1994.
[CrossRef]

1993 (1)

J.  Zhou, N.  Park, J. W.  Dawson, K. J.  Vahala, M. A.  Newkirk, B. I.  Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett., vol.  63, pp. 1179–1181, 1993.
[CrossRef]

1992 (1)

R.  Hui, A.  Mecozzi, “Phase noise of four-wave mixing in semiconductor lasers,” Appl. Phys. Lett., vol.  60, pp. 2454–2456, 1992.
[CrossRef]

1990 (1)

D.  Marcuse, “Computer simulation of FSK laser spectra and of FSK-to-ASK conversion,” J. Lightwave Technol., vol.  8, no. 7, pp. 1110–1122, 1990.

1988 (1)

Agrawal, G. P.

Amano, M.

K.  Kikuchi, M.  Amano, C. E.  Zah, T. P.  Lee, “Analysis of origin of nonlinear gain in 1.5  m semiconductor active layers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett., vol.  64, pp. 548–550, 1994.
[CrossRef]

Anthur, A.

Anthur, A. P.

S. P.  Ó Dúill, S. T.  Naimi, A. P.  Anthur, T. N.  Huynh, D.  Venkitesh, L. P.  Barry, “Simulations of an OSNR limited wavelength conversion scheme,” IEEE Photon. Technol. Lett., vol.  25, no. 23, pp. 2311–2314, 2013.
[CrossRef]

Barry, L. P.

S. T.  Naimi, S. Ó.  Dúill, L. P.  Barry, “Simulations of the OSNR and laser linewidth limits for reliable wavelength conversion of DQPSK signals using four-wave mixing,” J. Opt. Commun., vol.  310, no. 1, pp. 150–155, Jan.2014.
[CrossRef]

A.  Anthur, R.  Watts, J.  O’Carroll, D.  Venkitesh, L. P.  Barry, “Dual correlated pumping scheme for phase noise preservation in all-optical wavelength conversion,” Opt. Express, vol.  21, no. 13, pp. 15568–15579, 2013.
[CrossRef]

S. P.  Ó Dúill, S. T.  Naimi, A. P.  Anthur, T. N.  Huynh, D.  Venkitesh, L. P.  Barry, “Simulations of an OSNR limited wavelength conversion scheme,” IEEE Photon. Technol. Lett., vol.  25, no. 23, pp. 2311–2314, 2013.
[CrossRef]

T. N.  Huynh, F.  Smyth, L.  Nguyen, L. P.  Barry, “Effects of phase noise of monolithic tunable laser on coherent communication systems,” Opt. Express, vol.  20, no. 26, pp. B244–B249, 2012.
[CrossRef]

Bayvel, P.

Cabot, S.

Caroubalos, C.

I.  Tomkos, I.  Zacharopoulos, D.  Syvridis, T.  Sphicopoulos, C.  Caroubalos, E.  Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett., vol.  72, no. 20, pp. 2499–2501, 1998.
[CrossRef]

Cassioli, D.

D.  Cassioli, S.  Scotti, A.  Mecozzi, “A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,” IEEE J. Quantum Electron., vol.  36, no. 9, pp. 1072–1080, 2000.
[CrossRef]

Chandrasekhar, S.

Chraplyvy, A. R.

Corcoran, B.

D’Andrea, A. N.

U.  Mengali, A. N.  D’Andrea, Synchronization Techniques for Digital Receivers. Plenum, 1997.

D’Ottavi, A.

A.  Mecozzi, S.  Scotti, A.  D’Ottavi, E.  Iannone, P.  Spano, “Fourwave mixing in traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron., vol.  31, pp. 689–699, 1995.
[CrossRef]

Dawson, J. W.

J.  Zhou, N.  Park, J. W.  Dawson, K. J.  Vahala, M. A.  Newkirk, B. I.  Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett., vol.  63, pp. 1179–1181, 1993.
[CrossRef]

de Waardt, H.

E.  Tangdiongga, Y.  Liu, H.  de Waardt, G. D.  Khoe, H. J. S.  Dorren, “Demultiplexing 160/320  Gb/s to 40  Gb/s using a single SOA assisted by an optical filter,” in Proc. Optical Fiber Communication Conf., Anaheim, CA, 2006, paper OTuB5.

Diez, S.

I.  Koltchanov, S.  Kindt, K.  Petermann, S.  Diez, R.  Ludwig, R.  Schnabel, H. G.  Weber, “Gain dispersion and saturation effects in four-wave mixing in semiconductor laser amplifiers,” IEEE J. Quantum Electron., vol.  32, pp. 712–720, 1996.
[CrossRef]

Dorren, H. J. S.

E.  Tangdiongga, Y.  Liu, H.  de Waardt, G. D.  Khoe, H. J. S.  Dorren, “Demultiplexing 160/320  Gb/s to 40  Gb/s using a single SOA assisted by an optical filter,” in Proc. Optical Fiber Communication Conf., Anaheim, CA, 2006, paper OTuB5.

Du, L. B.

Dúill, S. Ó.

S. T.  Naimi, S. Ó.  Dúill, L. P.  Barry, “Simulations of the OSNR and laser linewidth limits for reliable wavelength conversion of DQPSK signals using four-wave mixing,” J. Opt. Commun., vol.  310, no. 1, pp. 150–155, Jan.2014.
[CrossRef]

Ellis, A. D.

A. E.  Kelly, A. D.  Ellis, D.  Nesset, R.  Kashyap, “100 Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier,” Electron. Lett., vol.  34, no. 20, pp. 1955–1956, 1998.
[CrossRef]

Filion, B.

Foo, B.

Furukawa, H.

Gavioli, G.

Giles, C. R.

Gnauck, A. H.

Gripp, J.

J. E.  Simsarian, J.  Gripp, A. H.  Gnauck, G.  Raybon, P. J.  Winzer, “Fast-tuning 224-Gb/s intradyne receiver for optical packet networks,” in Proc. Optical Fiber Communication Conf., 2010, paper PDPB5.

Haykin, S.

S.  Haykin, Adaptive Filter Theory. Prentice Hall, 2001.

Hui, R.

R.  Hui, A.  Mecozzi, “Phase noise of four-wave mixing in semiconductor lasers,” Appl. Phys. Lett., vol.  60, pp. 2454–2456, 1992.
[CrossRef]

Huynh, T. N.

S. P.  Ó Dúill, S. T.  Naimi, A. P.  Anthur, T. N.  Huynh, D.  Venkitesh, L. P.  Barry, “Simulations of an OSNR limited wavelength conversion scheme,” IEEE Photon. Technol. Lett., vol.  25, no. 23, pp. 2311–2314, 2013.
[CrossRef]

T. N.  Huynh, F.  Smyth, L.  Nguyen, L. P.  Barry, “Effects of phase noise of monolithic tunable laser on coherent communication systems,” Opt. Express, vol.  20, no. 26, pp. B244–B249, 2012.
[CrossRef]

Iannone, E.

A.  Mecozzi, S.  Scotti, A.  D’Ottavi, E.  Iannone, P.  Spano, “Fourwave mixing in traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron., vol.  31, pp. 689–699, 1995.
[CrossRef]

Igarashi, K.

Y.  Mori, C.  Zhang, K.  Igarashi, K.  Katoh, K.  Kikuchi, “Phase-noise tolerance of optical 16-QAM signals demodulated with decision-directed carrier-phase estimation,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OWG7.

Jaques, J. J.

Jeppesen, P.

J.  Yu, P.  Jeppesen, “80-Gb/s wavelength conversion based on cross-phase modulation in high-nonlinearity dispersion-shifted fiber and optical filtering,” IEEE Photon. Technol. Lett., vol.  13, no. 8, pp. 863–865, 2001.
[CrossRef]

Jue, J. P.

J. P.  Jue, V. M.  Vokkarane, Optical Burst Switched Networks. Springer, 2005.

Kashyap, R.

A. E.  Kelly, A. D.  Ellis, D.  Nesset, R.  Kashyap, “100 Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier,” Electron. Lett., vol.  34, no. 20, pp. 1955–1956, 1998.
[CrossRef]

Katoh, K.

Y.  Mori, C.  Zhang, K.  Igarashi, K.  Katoh, K.  Kikuchi, “Phase-noise tolerance of optical 16-QAM signals demodulated with decision-directed carrier-phase estimation,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OWG7.

Kelly, A. E.

A. E.  Kelly, A. D.  Ellis, D.  Nesset, R.  Kashyap, “100 Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier,” Electron. Lett., vol.  34, no. 20, pp. 1955–1956, 1998.
[CrossRef]

Khoe, G. D.

E.  Tangdiongga, Y.  Liu, H.  de Waardt, G. D.  Khoe, H. J. S.  Dorren, “Demultiplexing 160/320  Gb/s to 40  Gb/s using a single SOA assisted by an optical filter,” in Proc. Optical Fiber Communication Conf., Anaheim, CA, 2006, paper OTuB5.

Kikuchi, K.

K.  Kikuchi, M.  Amano, C. E.  Zah, T. P.  Lee, “Analysis of origin of nonlinear gain in 1.5  m semiconductor active layers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett., vol.  64, pp. 548–550, 1994.
[CrossRef]

Y.  Mori, C.  Zhang, K.  Igarashi, K.  Katoh, K.  Kikuchi, “Phase-noise tolerance of optical 16-QAM signals demodulated with decision-directed carrier-phase estimation,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OWG7.

Killey, R. I.

Kindt, S.

I.  Koltchanov, S.  Kindt, K.  Petermann, S.  Diez, R.  Ludwig, R.  Schnabel, H. G.  Weber, “Gain dispersion and saturation effects in four-wave mixing in semiconductor laser amplifiers,” IEEE J. Quantum Electron., vol.  32, pp. 712–720, 1996.
[CrossRef]

Koltchanov, I.

I.  Koltchanov, S.  Kindt, K.  Petermann, S.  Diez, R.  Ludwig, R.  Schnabel, H. G.  Weber, “Gain dispersion and saturation effects in four-wave mixing in semiconductor laser amplifiers,” IEEE J. Quantum Electron., vol.  32, pp. 712–720, 1996.
[CrossRef]

LaRochelle, S.

Lee, T. P.

K.  Kikuchi, M.  Amano, C. E.  Zah, T. P.  Lee, “Analysis of origin of nonlinear gain in 1.5  m semiconductor active layers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett., vol.  64, pp. 548–550, 1994.
[CrossRef]

Leuthold, J.

Li, T.

Liu, X.

Liu, Y.

E.  Tangdiongga, Y.  Liu, H.  de Waardt, G. D.  Khoe, H. J. S.  Dorren, “Demultiplexing 160/320  Gb/s to 40  Gb/s using a single SOA assisted by an optical filter,” in Proc. Optical Fiber Communication Conf., Anaheim, CA, 2006, paper OTuB5.

Lowery, A. J.

Ludwig, R.

I.  Koltchanov, S.  Kindt, K.  Petermann, S.  Diez, R.  Ludwig, R.  Schnabel, H. G.  Weber, “Gain dispersion and saturation effects in four-wave mixing in semiconductor laser amplifiers,” IEEE J. Quantum Electron., vol.  32, pp. 712–720, 1996.
[CrossRef]

Marcuse, D.

D.  Marcuse, “Computer simulation of FSK laser spectra and of FSK-to-ASK conversion,” J. Lightwave Technol., vol.  8, no. 7, pp. 1110–1122, 1990.

Mark, J.

A.  Uskov, J.  Mørk, J.  Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron., vol.  30, pp. 1769–1781, 1994.
[CrossRef]

Marom, D. M.

Mecozzi, A.

D.  Cassioli, S.  Scotti, A.  Mecozzi, “A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,” IEEE J. Quantum Electron., vol.  36, no. 9, pp. 1072–1080, 2000.
[CrossRef]

A.  Mecozzi, J.  Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron, vol.  3, no. 5, pp. 1190–1207, Oct.1997.
[CrossRef]

A.  Mecozzi, S.  Scotti, A.  D’Ottavi, E.  Iannone, P.  Spano, “Fourwave mixing in traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron., vol.  31, pp. 689–699, 1995.
[CrossRef]

R.  Hui, A.  Mecozzi, “Phase noise of four-wave mixing in semiconductor lasers,” Appl. Phys. Lett., vol.  60, pp. 2454–2456, 1992.
[CrossRef]

Mengali, U.

U.  Mengali, A. N.  D’Andrea, Synchronization Techniques for Digital Receivers. Plenum, 1997.

Miller, B. I.

J.  Zhou, N.  Park, J. W.  Dawson, K. J.  Vahala, M. A.  Newkirk, B. I.  Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett., vol.  63, pp. 1179–1181, 1993.
[CrossRef]

Mizuochi, T.

T.  Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron., vol.  12, no. 4, pp. 544–554, 2006.
[CrossRef]

Mori, Y.

Y.  Mori, C.  Zhang, K.  Igarashi, K.  Katoh, K.  Kikuchi, “Phase-noise tolerance of optical 16-QAM signals demodulated with decision-directed carrier-phase estimation,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OWG7.

Mørk, J.

A.  Mecozzi, J.  Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron, vol.  3, no. 5, pp. 1190–1207, Oct.1997.
[CrossRef]

A.  Uskov, J.  Mørk, J.  Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron., vol.  30, pp. 1769–1781, 1994.
[CrossRef]

Morshed, M.

Naimi, S. T.

S. T.  Naimi, S. Ó.  Dúill, L. P.  Barry, “Simulations of the OSNR and laser linewidth limits for reliable wavelength conversion of DQPSK signals using four-wave mixing,” J. Opt. Commun., vol.  310, no. 1, pp. 150–155, Jan.2014.
[CrossRef]

S. P.  Ó Dúill, S. T.  Naimi, A. P.  Anthur, T. N.  Huynh, D.  Venkitesh, L. P.  Barry, “Simulations of an OSNR limited wavelength conversion scheme,” IEEE Photon. Technol. Lett., vol.  25, no. 23, pp. 2311–2314, 2013.
[CrossRef]

Nesset, D.

A. E.  Kelly, A. D.  Ellis, D.  Nesset, R.  Kashyap, “100 Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier,” Electron. Lett., vol.  34, no. 20, pp. 1955–1956, 1998.
[CrossRef]

Newkirk, M. A.

J.  Zhou, N.  Park, J. W.  Dawson, K. J.  Vahala, M. A.  Newkirk, B. I.  Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett., vol.  63, pp. 1179–1181, 1993.
[CrossRef]

Ng, W. C.

Nguyen, A. T.

Nguyen, L.

Ó Dúill, S. P.

S. P.  Ó Dúill, S. T.  Naimi, A. P.  Anthur, T. N.  Huynh, D.  Venkitesh, L. P.  Barry, “Simulations of an OSNR limited wavelength conversion scheme,” IEEE Photon. Technol. Lett., vol.  25, no. 23, pp. 2311–2314, 2013.
[CrossRef]

O’Carroll, J.

Park, N.

J.  Zhou, N.  Park, J. W.  Dawson, K. J.  Vahala, M. A.  Newkirk, B. I.  Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett., vol.  63, pp. 1179–1181, 1993.
[CrossRef]

Peckham, D. W.

Pelusi, M. D.

Petermann, K.

I.  Koltchanov, S.  Kindt, K.  Petermann, S.  Diez, R.  Ludwig, R.  Schnabel, H. G.  Weber, “Gain dispersion and saturation effects in four-wave mixing in semiconductor laser amplifiers,” IEEE J. Quantum Electron., vol.  32, pp. 712–720, 1996.
[CrossRef]

Raybon, G.

J. E.  Simsarian, J.  Gripp, A. H.  Gnauck, G.  Raybon, P. J.  Winzer, “Fast-tuning 224-Gb/s intradyne receiver for optical packet networks,” in Proc. Optical Fiber Communication Conf., 2010, paper PDPB5.

Roditi, E.

I.  Tomkos, I.  Zacharopoulos, D.  Syvridis, T.  Sphicopoulos, C.  Caroubalos, E.  Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett., vol.  72, no. 20, pp. 2499–2501, 1998.
[CrossRef]

Rusch, L. A.

Ryf, R.

Savory, S. J.

S. J.  Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron., vol.  16, no. 5, pp. 1164–1179, 2010.
[CrossRef]

S. J.  Savory, G.  Gavioli, R. I.  Killey, P.  Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express, vol.  15, no. 5, pp. 2120–2126, 2007.
[CrossRef]

Schnabel, R.

I.  Koltchanov, S.  Kindt, K.  Petermann, S.  Diez, R.  Ludwig, R.  Schnabel, H. G.  Weber, “Gain dispersion and saturation effects in four-wave mixing in semiconductor laser amplifiers,” IEEE J. Quantum Electron., vol.  32, pp. 712–720, 1996.
[CrossRef]

Scotti, S.

D.  Cassioli, S.  Scotti, A.  Mecozzi, “A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,” IEEE J. Quantum Electron., vol.  36, no. 9, pp. 1072–1080, 2000.
[CrossRef]

A.  Mecozzi, S.  Scotti, A.  D’Ottavi, E.  Iannone, P.  Spano, “Fourwave mixing in traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron., vol.  31, pp. 689–699, 1995.
[CrossRef]

Shinada, S.

Simsarian, J. E.

J. E.  Simsarian, J.  Gripp, A. H.  Gnauck, G.  Raybon, P. J.  Winzer, “Fast-tuning 224-Gb/s intradyne receiver for optical packet networks,” in Proc. Optical Fiber Communication Conf., 2010, paper PDPB5.

Smyth, F.

Spano, P.

A.  Mecozzi, S.  Scotti, A.  D’Ottavi, E.  Iannone, P.  Spano, “Fourwave mixing in traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron., vol.  31, pp. 689–699, 1995.
[CrossRef]

Sphicopoulos, T.

I.  Tomkos, I.  Zacharopoulos, D.  Syvridis, T.  Sphicopoulos, C.  Caroubalos, E.  Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett., vol.  72, no. 20, pp. 2499–2501, 1998.
[CrossRef]

Syvridis, D.

I.  Tomkos, I.  Zacharopoulos, D.  Syvridis, T.  Sphicopoulos, C.  Caroubalos, E.  Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett., vol.  72, no. 20, pp. 2499–2501, 1998.
[CrossRef]

Tangdiongga, E.

E.  Tangdiongga, Y.  Liu, H.  de Waardt, G. D.  Khoe, H. J. S.  Dorren, “Demultiplexing 160/320  Gb/s to 40  Gb/s using a single SOA assisted by an optical filter,” in Proc. Optical Fiber Communication Conf., Anaheim, CA, 2006, paper OTuB5.

Tkach, R. W.

Tomkos, I.

I.  Tomkos, I.  Zacharopoulos, D.  Syvridis, T.  Sphicopoulos, C.  Caroubalos, E.  Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett., vol.  72, no. 20, pp. 2499–2501, 1998.
[CrossRef]

Uskov, A.

A.  Uskov, J.  Mørk, J.  Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron., vol.  30, pp. 1769–1781, 1994.
[CrossRef]

Vahala, K. J.

J.  Zhou, N.  Park, J. W.  Dawson, K. J.  Vahala, M. A.  Newkirk, B. I.  Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett., vol.  63, pp. 1179–1181, 1993.
[CrossRef]

Venkitesh, D.

S. P.  Ó Dúill, S. T.  Naimi, A. P.  Anthur, T. N.  Huynh, D.  Venkitesh, L. P.  Barry, “Simulations of an OSNR limited wavelength conversion scheme,” IEEE Photon. Technol. Lett., vol.  25, no. 23, pp. 2311–2314, 2013.
[CrossRef]

A.  Anthur, R.  Watts, J.  O’Carroll, D.  Venkitesh, L. P.  Barry, “Dual correlated pumping scheme for phase noise preservation in all-optical wavelength conversion,” Opt. Express, vol.  21, no. 13, pp. 15568–15579, 2013.
[CrossRef]

Vokkarane, V. M.

J. P.  Jue, V. M.  Vokkarane, Optical Burst Switched Networks. Springer, 2005.

Wada, N.

Watts, R.

Weber, H. G.

I.  Koltchanov, S.  Kindt, K.  Petermann, S.  Diez, R.  Ludwig, R.  Schnabel, H. G.  Weber, “Gain dispersion and saturation effects in four-wave mixing in semiconductor laser amplifiers,” IEEE J. Quantum Electron., vol.  32, pp. 712–720, 1996.
[CrossRef]

Winzer, P. J.

A. H.  Gnauck, P. J.  Winzer, S.  Chandrasekhar, X.  Liu, B.  Zhu, D. W.  Peckham, “Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol., vol.  29, no. 4, pp. 373–377, Feb.2011.
[CrossRef]

J. E.  Simsarian, J.  Gripp, A. H.  Gnauck, G.  Raybon, P. J.  Winzer, “Fast-tuning 224-Gb/s intradyne receiver for optical packet networks,” in Proc. Optical Fiber Communication Conf., 2010, paper PDPB5.

Yu, J.

J.  Yu, P.  Jeppesen, “80-Gb/s wavelength conversion based on cross-phase modulation in high-nonlinearity dispersion-shifted fiber and optical filtering,” IEEE Photon. Technol. Lett., vol.  13, no. 8, pp. 863–865, 2001.
[CrossRef]

Zacharopoulos, I.

I.  Tomkos, I.  Zacharopoulos, D.  Syvridis, T.  Sphicopoulos, C.  Caroubalos, E.  Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett., vol.  72, no. 20, pp. 2499–2501, 1998.
[CrossRef]

Zah, C. E.

K.  Kikuchi, M.  Amano, C. E.  Zah, T. P.  Lee, “Analysis of origin of nonlinear gain in 1.5  m semiconductor active layers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett., vol.  64, pp. 548–550, 1994.
[CrossRef]

Zhang, C.

Y.  Mori, C.  Zhang, K.  Igarashi, K.  Katoh, K.  Kikuchi, “Phase-noise tolerance of optical 16-QAM signals demodulated with decision-directed carrier-phase estimation,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OWG7.

Zhou, J.

J.  Zhou, N.  Park, J. W.  Dawson, K. J.  Vahala, M. A.  Newkirk, B. I.  Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett., vol.  63, pp. 1179–1181, 1993.
[CrossRef]

Zhu, B.

Appl. Phys. Lett. (4)

J.  Zhou, N.  Park, J. W.  Dawson, K. J.  Vahala, M. A.  Newkirk, B. I.  Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett., vol.  63, pp. 1179–1181, 1993.
[CrossRef]

K.  Kikuchi, M.  Amano, C. E.  Zah, T. P.  Lee, “Analysis of origin of nonlinear gain in 1.5  m semiconductor active layers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett., vol.  64, pp. 548–550, 1994.
[CrossRef]

R.  Hui, A.  Mecozzi, “Phase noise of four-wave mixing in semiconductor lasers,” Appl. Phys. Lett., vol.  60, pp. 2454–2456, 1992.
[CrossRef]

I.  Tomkos, I.  Zacharopoulos, D.  Syvridis, T.  Sphicopoulos, C.  Caroubalos, E.  Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett., vol.  72, no. 20, pp. 2499–2501, 1998.
[CrossRef]

Electron. Lett. (1)

A. E.  Kelly, A. D.  Ellis, D.  Nesset, R.  Kashyap, “100 Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier,” Electron. Lett., vol.  34, no. 20, pp. 1955–1956, 1998.
[CrossRef]

IEEE J. Quantum Electron. (4)

D.  Cassioli, S.  Scotti, A.  Mecozzi, “A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,” IEEE J. Quantum Electron., vol.  36, no. 9, pp. 1072–1080, 2000.
[CrossRef]

A.  Uskov, J.  Mørk, J.  Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron., vol.  30, pp. 1769–1781, 1994.
[CrossRef]

A.  Mecozzi, S.  Scotti, A.  D’Ottavi, E.  Iannone, P.  Spano, “Fourwave mixing in traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron., vol.  31, pp. 689–699, 1995.
[CrossRef]

I.  Koltchanov, S.  Kindt, K.  Petermann, S.  Diez, R.  Ludwig, R.  Schnabel, H. G.  Weber, “Gain dispersion and saturation effects in four-wave mixing in semiconductor laser amplifiers,” IEEE J. Quantum Electron., vol.  32, pp. 712–720, 1996.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (1)

A.  Mecozzi, J.  Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron, vol.  3, no. 5, pp. 1190–1207, Oct.1997.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

T.  Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron., vol.  12, no. 4, pp. 544–554, 2006.
[CrossRef]

S. J.  Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron., vol.  16, no. 5, pp. 1164–1179, 2010.
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. P.  Ó Dúill, S. T.  Naimi, A. P.  Anthur, T. N.  Huynh, D.  Venkitesh, L. P.  Barry, “Simulations of an OSNR limited wavelength conversion scheme,” IEEE Photon. Technol. Lett., vol.  25, no. 23, pp. 2311–2314, 2013.
[CrossRef]

J.  Yu, P.  Jeppesen, “80-Gb/s wavelength conversion based on cross-phase modulation in high-nonlinearity dispersion-shifted fiber and optical filtering,” IEEE Photon. Technol. Lett., vol.  13, no. 8, pp. 863–865, 2001.
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Commun. (1)

S. T.  Naimi, S. Ó.  Dúill, L. P.  Barry, “Simulations of the OSNR and laser linewidth limits for reliable wavelength conversion of DQPSK signals using four-wave mixing,” J. Opt. Commun., vol.  310, no. 1, pp. 150–155, Jan.2014.
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (6)

Other (6)

U.  Mengali, A. N.  D’Andrea, Synchronization Techniques for Digital Receivers. Plenum, 1997.

S.  Haykin, Adaptive Filter Theory. Prentice Hall, 2001.

Y.  Mori, C.  Zhang, K.  Igarashi, K.  Katoh, K.  Kikuchi, “Phase-noise tolerance of optical 16-QAM signals demodulated with decision-directed carrier-phase estimation,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OWG7.

E.  Tangdiongga, Y.  Liu, H.  de Waardt, G. D.  Khoe, H. J. S.  Dorren, “Demultiplexing 160/320  Gb/s to 40  Gb/s using a single SOA assisted by an optical filter,” in Proc. Optical Fiber Communication Conf., Anaheim, CA, 2006, paper OTuB5.

J. E.  Simsarian, J.  Gripp, A. H.  Gnauck, G.  Raybon, P. J.  Winzer, “Fast-tuning 224-Gb/s intradyne receiver for optical packet networks,” in Proc. Optical Fiber Communication Conf., 2010, paper PDPB5.

J. P.  Jue, V. M.  Vokkarane, Optical Burst Switched Networks. Springer, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of simulation platform to calculate the BER due to OSNR and linewidth for the dual-pump scheme. The input and detected constellations for 100 symbols of 10 Gbaud 16-QAM when the pump P1 has a linewidth of 500 kHz are shown to highlight the impact of the phase noise transfer from pump to converted idler.

Fig. 2.
Fig. 2.

Calculated (a) input spectra and (b) output spectra of the dual-pump scheme showing the spectral location of the 16-QAM signal, pumps P1 and P2, and the converted idlers.

Fig. 3.
Fig. 3.

(a) Structure of homodyne coherent detection. BD, balanced detector. (b) Decision-directed phase-locked loop carrier phase recovery. (c) Amplitude normalized decision-directed phase-locked loop carrier phase recovery.

Fig. 4.
Fig. 4.

Calculated optimum value of μ for each pump linewidth using the single-pump scheme for both DD-PLL and ANDD-PLL. The receiver using the DD-PLL was unable to detect the 16-QAM signal for pump linewidths greater than 1 MHz.

Fig. 5.
Fig. 5.

Calculated BER versus OSNR of degenerate WC of 16-QAM signals at 10 Gbaud using DD-PLL and ANDD-PLL. The black curve is the back-to-back result for 16-QAM transmission.

Fig. 6.
Fig. 6.

Required OSNR of degenerate FWM to achieve a BER of 103 and 104 using DD-PLL and AND-PLL.

Fig. 7.
Fig. 7.

(a) Comparison of relevant linewidth of degenerate and nondegenerate FWM-based WC of 16-QAM signal at 10 Gbaud using two separate pumps and DD-PLL. (b) Required OSNR of nondegenerate FWM to achieve a BER of 103 and 104 using DD-PLL and AND-PLL.

Tables (1)

Tables Icon

TABLE I SOA Parameters

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

dhcdp(t)dt=h0hcdp(t)τS[exp{hcdp(t)}1]|Ein(t)|2τSPSat,
dhchdt=hchτchεch(exp{hcdp}1)|Ein|2τch,
dhshbdt=hshbτ1εshb(exp{hcdp}1)|Ein|2τ1dhchdtdhcdpdt.
Gtot=exp[hcdp(t)+hch(t)+hshb(t)].
hch(t)=εch(exp{hcdp(t)}1)|Ein|2,
hshb(t)=εshb(exp{hcdp(t)}1)|Ein|2.
Ein(t)=PP1exp(jϕ˜P1)+PP2exp(j(ΩP1P2t+ϕ˜P2))+PSES(t)exp(ΩP1St+jϕ˜S),
Eout(t)=exp{12[αlossL+(1+jαcdp)hcdp(t)+(1+jαch)hch(t)+hshb(t)]}Ein(t),
e1(n)=Im[xc(n)xd*(n)],
e2(n)=Im[xc(n)xd*(n)]|xd(n)|2.
ϕi(n+1)=ϕi(n)+μei(n)i=1,2,