Abstract

In this paper, we present a novel concept of the IEEE 802.11n signal distribution over a multimode fiber passive optical network. In the study we provide a theory on the sources of potential interference in such a network, namely optical beat interference and modal noise, and ways to mitigate them. We demonstrate a passive optical distribution network deployed in a real environment of the faculty’s building. Our deployment utilizes custom designed remote antenna units. In the paper, we provide a series of network throughput measurements in different scenarios. These results confirm the correctness of our solution and show its excellent performance. The latter proves the network to be optically transparent. The distribution network does not downgrade the transmission rate when compared to the sole radio access point, and in addition it significantly increases the overall radio coverage.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and T. Ismail, “Broadband access using wireless over multimode fiber systems,” J. Lightwave Technol., vol.  28, no. 16, pp. 2430–2435, 2010.
    [CrossRef]
  2. C. Lethien, D. Wake, B. Verbeke, J.-P. Vilcot, C. Loyez, M. Zegaoui, N. Gomes, N. Rolland, and P.-A. Rolland, “Energy-autonomous picocell remote antenna unit for radio-over-fiber system using the multiservices concept,” IEEE Photon. Technol. Lett., vol.  24, no. 8, pp. 649–651, 2012.
    [CrossRef]
  3. T. Ismail, C. H. Chuang, and A. J. Seeds, “Wireless data transmission of IEEE802.11a signals over fibre using low cost uncooled directly modulated lasers,” in Asia-Pacific Microwave Photonics Conf., 2008, pp. 70–73.
  4. P. Assimakopoulos, A. Nkansah, and N. J. Gomes, “Use of commercial access point employing spatial diversity in a distributed antenna network with different fiber lengths,” in Asia-Pacific Microwave Photonics Conf., 2008, pp. 189–192.
  5. J. S. Zou, H. Chen, F. Huijskens, Z. Cao, E. Tangdiongga, and T. Koonen, “Demonstration of fully functional MIMO wireless LAN transmission over GI-MMF for inbuilding networks,” in OFC, 2013, paper JTh2A.08.
  6. M. Sauer, A. Kobyakov, and J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol., vol.  25, no. 11, pp. 3301–3320, 2007.
    [CrossRef]
  7. N. J. Gomes, M. Morant, A. Alphones, B. Cabon, J. E. Mitchell, C. Lethien, M. Csörnyei, A. Stöhr, and S. Iezekiel, “Radio-over-fiber transport for the support of wireless broadband services,” J. Opt. Netw., vol.  8, no. 2, pp. 156–178, 2009.
    [CrossRef]
  8. J. Siuzdak, M. Kowalczyk, L. Maksymiuk, and G. Stepniak, “Substantial OBI noise reduction in MM fiber network,” IEEE Photon. Technol. Lett., vol.  25, no. 14, pp. 1350–1353, 2013.
    [CrossRef]
  9. R. E. Epworth, “Phenomenon of modal noise in fiber systems,” in OFC, Washington, DC, 1979, paper ThD.
  10. L. Maksymiuk and J. Siuzdak, “Modeling of low-frequency modal noise induced by multimode couplers in cascade connections,” Opt. Appl., vol.  41, no. 3, pp. 649–660, 2011.
  11. H. Shihonara, “Modal-noise characteristics in aerial optical cables subjected to vibration,” J. Lightwave Technol., vol.  1, no. 4, pp. 535–541, Dec. 1983.
    [CrossRef]
  12. R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fiber depends on source spectrum and fiber dispersion,” J. Lightwave Technol., vol.  3, no. 1, pp. 7–12, Feb. 1985.
    [CrossRef]
  13. J. Siuzdak, G. Stepniak, M. Kowalczyk, and L. Maksymiuk, “Instability of the multimode fiber frequency response beyond the baseband for coherent sources,” IEEE Photon. Technol. Lett., vol.  21, no. 14, pp. 993–995, 2009.
    [CrossRef]
  14. S. Deronne, V. Moeyaert, and S. Bette, “WiFi transmission in radio-over-fiber systems: Performance of the IEEE 802.11n aggregation mechanism,” in Int. Conf. on Optical Network Design and Modeling (ONDM), Brest, France, 2013, pp. 167–172.
  15. C. Carlsson, A. Larsson, and A. Alping, “RF transmission over multimode fibers using VCSELs—comparing standard and high-bandwidth multimode fibers,” J. Lightwave Technol., vol.  22, no. 7, pp. 1694–1700, 2004.
    [CrossRef]
  16. “IEEE Standard for Information Technology—Telecommunications, and Information Exchange Between Systems Local, and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC), and Physical Layer (PHY) Specifications,” , Apr. 2012.
  17. C. Desem, “Optical interference in subcarrier multiplexed systems with multiple optical carriers,” IEEE J. Sel. Areas Commun., vol.  8, no. 7, pp. 1290–1295, 1990.
    [CrossRef]
  18. T. H. Wood and N. K. Shankaranarayanan, “Operation of a passive optical network with subcarrier multiplexing in the presence of optical beat interference,” J. Lightwave Technol., vol.  11, no. 10, pp. 1632–1640, 1993.
    [CrossRef]
  19. M. Tauber and S. N. Bhatti, “Low RSSI in WLANs: Impact on application-level performance,” in Int. Conf. on Computing, Networking and Communications (IEEE ICNC), San Diego, CA, 2013.
  20. S. Sendra, M. Garcia, C. Turro, and J. Lloret, “WLAN IEEE 802.11a/b/g/n indoor coverage and interference performance study,” Int. J. Adv. Netw. Serv., vol.  4, no. 1–2, pp. 209–222, 2011.
  21. M. Kowalczyk and J. Siuzdak, “Low-cost RAU with optical power supply used in a hybrid RoF IEEE 802.11 network,” J. Opt. Commun., to be published.
    [CrossRef]
  22. T. Khattab, M. T. El-Hadidi, and H. M. Mourad, “Analysis of wireless CSMA/CA network using single station superposition (SSS),” Int. J. Electron. Commun., vol.  56, no. 2, pp. 73–83, 2002.
    [CrossRef]

2013 (1)

J. Siuzdak, M. Kowalczyk, L. Maksymiuk, and G. Stepniak, “Substantial OBI noise reduction in MM fiber network,” IEEE Photon. Technol. Lett., vol.  25, no. 14, pp. 1350–1353, 2013.
[CrossRef]

2012 (1)

C. Lethien, D. Wake, B. Verbeke, J.-P. Vilcot, C. Loyez, M. Zegaoui, N. Gomes, N. Rolland, and P.-A. Rolland, “Energy-autonomous picocell remote antenna unit for radio-over-fiber system using the multiservices concept,” IEEE Photon. Technol. Lett., vol.  24, no. 8, pp. 649–651, 2012.
[CrossRef]

2011 (2)

L. Maksymiuk and J. Siuzdak, “Modeling of low-frequency modal noise induced by multimode couplers in cascade connections,” Opt. Appl., vol.  41, no. 3, pp. 649–660, 2011.

S. Sendra, M. Garcia, C. Turro, and J. Lloret, “WLAN IEEE 802.11a/b/g/n indoor coverage and interference performance study,” Int. J. Adv. Netw. Serv., vol.  4, no. 1–2, pp. 209–222, 2011.

2010 (1)

2009 (2)

N. J. Gomes, M. Morant, A. Alphones, B. Cabon, J. E. Mitchell, C. Lethien, M. Csörnyei, A. Stöhr, and S. Iezekiel, “Radio-over-fiber transport for the support of wireless broadband services,” J. Opt. Netw., vol.  8, no. 2, pp. 156–178, 2009.
[CrossRef]

J. Siuzdak, G. Stepniak, M. Kowalczyk, and L. Maksymiuk, “Instability of the multimode fiber frequency response beyond the baseband for coherent sources,” IEEE Photon. Technol. Lett., vol.  21, no. 14, pp. 993–995, 2009.
[CrossRef]

2007 (1)

2004 (1)

2002 (1)

T. Khattab, M. T. El-Hadidi, and H. M. Mourad, “Analysis of wireless CSMA/CA network using single station superposition (SSS),” Int. J. Electron. Commun., vol.  56, no. 2, pp. 73–83, 2002.
[CrossRef]

1993 (1)

T. H. Wood and N. K. Shankaranarayanan, “Operation of a passive optical network with subcarrier multiplexing in the presence of optical beat interference,” J. Lightwave Technol., vol.  11, no. 10, pp. 1632–1640, 1993.
[CrossRef]

1990 (1)

C. Desem, “Optical interference in subcarrier multiplexed systems with multiple optical carriers,” IEEE J. Sel. Areas Commun., vol.  8, no. 7, pp. 1290–1295, 1990.
[CrossRef]

1985 (1)

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fiber depends on source spectrum and fiber dispersion,” J. Lightwave Technol., vol.  3, no. 1, pp. 7–12, Feb. 1985.
[CrossRef]

1983 (1)

H. Shihonara, “Modal-noise characteristics in aerial optical cables subjected to vibration,” J. Lightwave Technol., vol.  1, no. 4, pp. 535–541, Dec. 1983.
[CrossRef]

Alphones, A.

Alping, A.

Assimakopoulos, P.

P. Assimakopoulos, A. Nkansah, and N. J. Gomes, “Use of commercial access point employing spatial diversity in a distributed antenna network with different fiber lengths,” in Asia-Pacific Microwave Photonics Conf., 2008, pp. 189–192.

Bertholds, A.

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fiber depends on source spectrum and fiber dispersion,” J. Lightwave Technol., vol.  3, no. 1, pp. 7–12, Feb. 1985.
[CrossRef]

Bette, S.

S. Deronne, V. Moeyaert, and S. Bette, “WiFi transmission in radio-over-fiber systems: Performance of the IEEE 802.11n aggregation mechanism,” in Int. Conf. on Optical Network Design and Modeling (ONDM), Brest, France, 2013, pp. 167–172.

Bhatti, S. N.

M. Tauber and S. N. Bhatti, “Low RSSI in WLANs: Impact on application-level performance,” in Int. Conf. on Computing, Networking and Communications (IEEE ICNC), San Diego, CA, 2013.

Cabon, B.

Cao, Z.

J. S. Zou, H. Chen, F. Huijskens, Z. Cao, E. Tangdiongga, and T. Koonen, “Demonstration of fully functional MIMO wireless LAN transmission over GI-MMF for inbuilding networks,” in OFC, 2013, paper JTh2A.08.

Carlsson, C.

Chen, H.

J. S. Zou, H. Chen, F. Huijskens, Z. Cao, E. Tangdiongga, and T. Koonen, “Demonstration of fully functional MIMO wireless LAN transmission over GI-MMF for inbuilding networks,” in OFC, 2013, paper JTh2A.08.

Chuang, C. H.

T. Ismail, C. H. Chuang, and A. J. Seeds, “Wireless data transmission of IEEE802.11a signals over fibre using low cost uncooled directly modulated lasers,” in Asia-Pacific Microwave Photonics Conf., 2008, pp. 70–73.

Csörnyei, M.

Dandliker, R.

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fiber depends on source spectrum and fiber dispersion,” J. Lightwave Technol., vol.  3, no. 1, pp. 7–12, Feb. 1985.
[CrossRef]

Deronne, S.

S. Deronne, V. Moeyaert, and S. Bette, “WiFi transmission in radio-over-fiber systems: Performance of the IEEE 802.11n aggregation mechanism,” in Int. Conf. on Optical Network Design and Modeling (ONDM), Brest, France, 2013, pp. 167–172.

Desem, C.

C. Desem, “Optical interference in subcarrier multiplexed systems with multiple optical carriers,” IEEE J. Sel. Areas Commun., vol.  8, no. 7, pp. 1290–1295, 1990.
[CrossRef]

El-Hadidi, M. T.

T. Khattab, M. T. El-Hadidi, and H. M. Mourad, “Analysis of wireless CSMA/CA network using single station superposition (SSS),” Int. J. Electron. Commun., vol.  56, no. 2, pp. 73–83, 2002.
[CrossRef]

Epworth, R. E.

R. E. Epworth, “Phenomenon of modal noise in fiber systems,” in OFC, Washington, DC, 1979, paper ThD.

Garcia, M.

S. Sendra, M. Garcia, C. Turro, and J. Lloret, “WLAN IEEE 802.11a/b/g/n indoor coverage and interference performance study,” Int. J. Adv. Netw. Serv., vol.  4, no. 1–2, pp. 209–222, 2011.

George, J.

Gomes, N.

C. Lethien, D. Wake, B. Verbeke, J.-P. Vilcot, C. Loyez, M. Zegaoui, N. Gomes, N. Rolland, and P.-A. Rolland, “Energy-autonomous picocell remote antenna unit for radio-over-fiber system using the multiservices concept,” IEEE Photon. Technol. Lett., vol.  24, no. 8, pp. 649–651, 2012.
[CrossRef]

Gomes, N. J.

N. J. Gomes, M. Morant, A. Alphones, B. Cabon, J. E. Mitchell, C. Lethien, M. Csörnyei, A. Stöhr, and S. Iezekiel, “Radio-over-fiber transport for the support of wireless broadband services,” J. Opt. Netw., vol.  8, no. 2, pp. 156–178, 2009.
[CrossRef]

P. Assimakopoulos, A. Nkansah, and N. J. Gomes, “Use of commercial access point employing spatial diversity in a distributed antenna network with different fiber lengths,” in Asia-Pacific Microwave Photonics Conf., 2008, pp. 189–192.

Huijskens, F.

J. S. Zou, H. Chen, F. Huijskens, Z. Cao, E. Tangdiongga, and T. Koonen, “Demonstration of fully functional MIMO wireless LAN transmission over GI-MMF for inbuilding networks,” in OFC, 2013, paper JTh2A.08.

Iezekiel, S.

Ismail, T.

A. J. Seeds and T. Ismail, “Broadband access using wireless over multimode fiber systems,” J. Lightwave Technol., vol.  28, no. 16, pp. 2430–2435, 2010.
[CrossRef]

T. Ismail, C. H. Chuang, and A. J. Seeds, “Wireless data transmission of IEEE802.11a signals over fibre using low cost uncooled directly modulated lasers,” in Asia-Pacific Microwave Photonics Conf., 2008, pp. 70–73.

Khattab, T.

T. Khattab, M. T. El-Hadidi, and H. M. Mourad, “Analysis of wireless CSMA/CA network using single station superposition (SSS),” Int. J. Electron. Commun., vol.  56, no. 2, pp. 73–83, 2002.
[CrossRef]

Kobyakov, A.

Koonen, T.

J. S. Zou, H. Chen, F. Huijskens, Z. Cao, E. Tangdiongga, and T. Koonen, “Demonstration of fully functional MIMO wireless LAN transmission over GI-MMF for inbuilding networks,” in OFC, 2013, paper JTh2A.08.

Kowalczyk, M.

J. Siuzdak, M. Kowalczyk, L. Maksymiuk, and G. Stepniak, “Substantial OBI noise reduction in MM fiber network,” IEEE Photon. Technol. Lett., vol.  25, no. 14, pp. 1350–1353, 2013.
[CrossRef]

J. Siuzdak, G. Stepniak, M. Kowalczyk, and L. Maksymiuk, “Instability of the multimode fiber frequency response beyond the baseband for coherent sources,” IEEE Photon. Technol. Lett., vol.  21, no. 14, pp. 993–995, 2009.
[CrossRef]

M. Kowalczyk and J. Siuzdak, “Low-cost RAU with optical power supply used in a hybrid RoF IEEE 802.11 network,” J. Opt. Commun., to be published.
[CrossRef]

Larsson, A.

Lethien, C.

C. Lethien, D. Wake, B. Verbeke, J.-P. Vilcot, C. Loyez, M. Zegaoui, N. Gomes, N. Rolland, and P.-A. Rolland, “Energy-autonomous picocell remote antenna unit for radio-over-fiber system using the multiservices concept,” IEEE Photon. Technol. Lett., vol.  24, no. 8, pp. 649–651, 2012.
[CrossRef]

N. J. Gomes, M. Morant, A. Alphones, B. Cabon, J. E. Mitchell, C. Lethien, M. Csörnyei, A. Stöhr, and S. Iezekiel, “Radio-over-fiber transport for the support of wireless broadband services,” J. Opt. Netw., vol.  8, no. 2, pp. 156–178, 2009.
[CrossRef]

Lloret, J.

S. Sendra, M. Garcia, C. Turro, and J. Lloret, “WLAN IEEE 802.11a/b/g/n indoor coverage and interference performance study,” Int. J. Adv. Netw. Serv., vol.  4, no. 1–2, pp. 209–222, 2011.

Loyez, C.

C. Lethien, D. Wake, B. Verbeke, J.-P. Vilcot, C. Loyez, M. Zegaoui, N. Gomes, N. Rolland, and P.-A. Rolland, “Energy-autonomous picocell remote antenna unit for radio-over-fiber system using the multiservices concept,” IEEE Photon. Technol. Lett., vol.  24, no. 8, pp. 649–651, 2012.
[CrossRef]

Maksymiuk, L.

J. Siuzdak, M. Kowalczyk, L. Maksymiuk, and G. Stepniak, “Substantial OBI noise reduction in MM fiber network,” IEEE Photon. Technol. Lett., vol.  25, no. 14, pp. 1350–1353, 2013.
[CrossRef]

L. Maksymiuk and J. Siuzdak, “Modeling of low-frequency modal noise induced by multimode couplers in cascade connections,” Opt. Appl., vol.  41, no. 3, pp. 649–660, 2011.

J. Siuzdak, G. Stepniak, M. Kowalczyk, and L. Maksymiuk, “Instability of the multimode fiber frequency response beyond the baseband for coherent sources,” IEEE Photon. Technol. Lett., vol.  21, no. 14, pp. 993–995, 2009.
[CrossRef]

Maystre, F.

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fiber depends on source spectrum and fiber dispersion,” J. Lightwave Technol., vol.  3, no. 1, pp. 7–12, Feb. 1985.
[CrossRef]

Mitchell, J. E.

Moeyaert, V.

S. Deronne, V. Moeyaert, and S. Bette, “WiFi transmission in radio-over-fiber systems: Performance of the IEEE 802.11n aggregation mechanism,” in Int. Conf. on Optical Network Design and Modeling (ONDM), Brest, France, 2013, pp. 167–172.

Morant, M.

Mourad, H. M.

T. Khattab, M. T. El-Hadidi, and H. M. Mourad, “Analysis of wireless CSMA/CA network using single station superposition (SSS),” Int. J. Electron. Commun., vol.  56, no. 2, pp. 73–83, 2002.
[CrossRef]

Nkansah, A.

P. Assimakopoulos, A. Nkansah, and N. J. Gomes, “Use of commercial access point employing spatial diversity in a distributed antenna network with different fiber lengths,” in Asia-Pacific Microwave Photonics Conf., 2008, pp. 189–192.

Rolland, N.

C. Lethien, D. Wake, B. Verbeke, J.-P. Vilcot, C. Loyez, M. Zegaoui, N. Gomes, N. Rolland, and P.-A. Rolland, “Energy-autonomous picocell remote antenna unit for radio-over-fiber system using the multiservices concept,” IEEE Photon. Technol. Lett., vol.  24, no. 8, pp. 649–651, 2012.
[CrossRef]

Rolland, P.-A.

C. Lethien, D. Wake, B. Verbeke, J.-P. Vilcot, C. Loyez, M. Zegaoui, N. Gomes, N. Rolland, and P.-A. Rolland, “Energy-autonomous picocell remote antenna unit for radio-over-fiber system using the multiservices concept,” IEEE Photon. Technol. Lett., vol.  24, no. 8, pp. 649–651, 2012.
[CrossRef]

Sauer, M.

Seeds, A. J.

A. J. Seeds and T. Ismail, “Broadband access using wireless over multimode fiber systems,” J. Lightwave Technol., vol.  28, no. 16, pp. 2430–2435, 2010.
[CrossRef]

T. Ismail, C. H. Chuang, and A. J. Seeds, “Wireless data transmission of IEEE802.11a signals over fibre using low cost uncooled directly modulated lasers,” in Asia-Pacific Microwave Photonics Conf., 2008, pp. 70–73.

Sendra, S.

S. Sendra, M. Garcia, C. Turro, and J. Lloret, “WLAN IEEE 802.11a/b/g/n indoor coverage and interference performance study,” Int. J. Adv. Netw. Serv., vol.  4, no. 1–2, pp. 209–222, 2011.

Shankaranarayanan, N. K.

T. H. Wood and N. K. Shankaranarayanan, “Operation of a passive optical network with subcarrier multiplexing in the presence of optical beat interference,” J. Lightwave Technol., vol.  11, no. 10, pp. 1632–1640, 1993.
[CrossRef]

Shihonara, H.

H. Shihonara, “Modal-noise characteristics in aerial optical cables subjected to vibration,” J. Lightwave Technol., vol.  1, no. 4, pp. 535–541, Dec. 1983.
[CrossRef]

Siuzdak, J.

J. Siuzdak, M. Kowalczyk, L. Maksymiuk, and G. Stepniak, “Substantial OBI noise reduction in MM fiber network,” IEEE Photon. Technol. Lett., vol.  25, no. 14, pp. 1350–1353, 2013.
[CrossRef]

L. Maksymiuk and J. Siuzdak, “Modeling of low-frequency modal noise induced by multimode couplers in cascade connections,” Opt. Appl., vol.  41, no. 3, pp. 649–660, 2011.

J. Siuzdak, G. Stepniak, M. Kowalczyk, and L. Maksymiuk, “Instability of the multimode fiber frequency response beyond the baseband for coherent sources,” IEEE Photon. Technol. Lett., vol.  21, no. 14, pp. 993–995, 2009.
[CrossRef]

M. Kowalczyk and J. Siuzdak, “Low-cost RAU with optical power supply used in a hybrid RoF IEEE 802.11 network,” J. Opt. Commun., to be published.
[CrossRef]

Stepniak, G.

J. Siuzdak, M. Kowalczyk, L. Maksymiuk, and G. Stepniak, “Substantial OBI noise reduction in MM fiber network,” IEEE Photon. Technol. Lett., vol.  25, no. 14, pp. 1350–1353, 2013.
[CrossRef]

J. Siuzdak, G. Stepniak, M. Kowalczyk, and L. Maksymiuk, “Instability of the multimode fiber frequency response beyond the baseband for coherent sources,” IEEE Photon. Technol. Lett., vol.  21, no. 14, pp. 993–995, 2009.
[CrossRef]

Stöhr, A.

Tangdiongga, E.

J. S. Zou, H. Chen, F. Huijskens, Z. Cao, E. Tangdiongga, and T. Koonen, “Demonstration of fully functional MIMO wireless LAN transmission over GI-MMF for inbuilding networks,” in OFC, 2013, paper JTh2A.08.

Tauber, M.

M. Tauber and S. N. Bhatti, “Low RSSI in WLANs: Impact on application-level performance,” in Int. Conf. on Computing, Networking and Communications (IEEE ICNC), San Diego, CA, 2013.

Turro, C.

S. Sendra, M. Garcia, C. Turro, and J. Lloret, “WLAN IEEE 802.11a/b/g/n indoor coverage and interference performance study,” Int. J. Adv. Netw. Serv., vol.  4, no. 1–2, pp. 209–222, 2011.

Verbeke, B.

C. Lethien, D. Wake, B. Verbeke, J.-P. Vilcot, C. Loyez, M. Zegaoui, N. Gomes, N. Rolland, and P.-A. Rolland, “Energy-autonomous picocell remote antenna unit for radio-over-fiber system using the multiservices concept,” IEEE Photon. Technol. Lett., vol.  24, no. 8, pp. 649–651, 2012.
[CrossRef]

Vilcot, J.-P.

C. Lethien, D. Wake, B. Verbeke, J.-P. Vilcot, C. Loyez, M. Zegaoui, N. Gomes, N. Rolland, and P.-A. Rolland, “Energy-autonomous picocell remote antenna unit for radio-over-fiber system using the multiservices concept,” IEEE Photon. Technol. Lett., vol.  24, no. 8, pp. 649–651, 2012.
[CrossRef]

Wake, D.

C. Lethien, D. Wake, B. Verbeke, J.-P. Vilcot, C. Loyez, M. Zegaoui, N. Gomes, N. Rolland, and P.-A. Rolland, “Energy-autonomous picocell remote antenna unit for radio-over-fiber system using the multiservices concept,” IEEE Photon. Technol. Lett., vol.  24, no. 8, pp. 649–651, 2012.
[CrossRef]

Wood, T. H.

T. H. Wood and N. K. Shankaranarayanan, “Operation of a passive optical network with subcarrier multiplexing in the presence of optical beat interference,” J. Lightwave Technol., vol.  11, no. 10, pp. 1632–1640, 1993.
[CrossRef]

Zegaoui, M.

C. Lethien, D. Wake, B. Verbeke, J.-P. Vilcot, C. Loyez, M. Zegaoui, N. Gomes, N. Rolland, and P.-A. Rolland, “Energy-autonomous picocell remote antenna unit for radio-over-fiber system using the multiservices concept,” IEEE Photon. Technol. Lett., vol.  24, no. 8, pp. 649–651, 2012.
[CrossRef]

Zou, J. S.

J. S. Zou, H. Chen, F. Huijskens, Z. Cao, E. Tangdiongga, and T. Koonen, “Demonstration of fully functional MIMO wireless LAN transmission over GI-MMF for inbuilding networks,” in OFC, 2013, paper JTh2A.08.

IEEE J. Sel. Areas Commun. (1)

C. Desem, “Optical interference in subcarrier multiplexed systems with multiple optical carriers,” IEEE J. Sel. Areas Commun., vol.  8, no. 7, pp. 1290–1295, 1990.
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. Lethien, D. Wake, B. Verbeke, J.-P. Vilcot, C. Loyez, M. Zegaoui, N. Gomes, N. Rolland, and P.-A. Rolland, “Energy-autonomous picocell remote antenna unit for radio-over-fiber system using the multiservices concept,” IEEE Photon. Technol. Lett., vol.  24, no. 8, pp. 649–651, 2012.
[CrossRef]

J. Siuzdak, M. Kowalczyk, L. Maksymiuk, and G. Stepniak, “Substantial OBI noise reduction in MM fiber network,” IEEE Photon. Technol. Lett., vol.  25, no. 14, pp. 1350–1353, 2013.
[CrossRef]

J. Siuzdak, G. Stepniak, M. Kowalczyk, and L. Maksymiuk, “Instability of the multimode fiber frequency response beyond the baseband for coherent sources,” IEEE Photon. Technol. Lett., vol.  21, no. 14, pp. 993–995, 2009.
[CrossRef]

Int. J. Adv. Netw. Serv. (1)

S. Sendra, M. Garcia, C. Turro, and J. Lloret, “WLAN IEEE 802.11a/b/g/n indoor coverage and interference performance study,” Int. J. Adv. Netw. Serv., vol.  4, no. 1–2, pp. 209–222, 2011.

Int. J. Electron. Commun. (1)

T. Khattab, M. T. El-Hadidi, and H. M. Mourad, “Analysis of wireless CSMA/CA network using single station superposition (SSS),” Int. J. Electron. Commun., vol.  56, no. 2, pp. 73–83, 2002.
[CrossRef]

J. Lightwave Technol. (6)

T. H. Wood and N. K. Shankaranarayanan, “Operation of a passive optical network with subcarrier multiplexing in the presence of optical beat interference,” J. Lightwave Technol., vol.  11, no. 10, pp. 1632–1640, 1993.
[CrossRef]

C. Carlsson, A. Larsson, and A. Alping, “RF transmission over multimode fibers using VCSELs—comparing standard and high-bandwidth multimode fibers,” J. Lightwave Technol., vol.  22, no. 7, pp. 1694–1700, 2004.
[CrossRef]

A. J. Seeds and T. Ismail, “Broadband access using wireless over multimode fiber systems,” J. Lightwave Technol., vol.  28, no. 16, pp. 2430–2435, 2010.
[CrossRef]

H. Shihonara, “Modal-noise characteristics in aerial optical cables subjected to vibration,” J. Lightwave Technol., vol.  1, no. 4, pp. 535–541, Dec. 1983.
[CrossRef]

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fiber depends on source spectrum and fiber dispersion,” J. Lightwave Technol., vol.  3, no. 1, pp. 7–12, Feb. 1985.
[CrossRef]

M. Sauer, A. Kobyakov, and J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol., vol.  25, no. 11, pp. 3301–3320, 2007.
[CrossRef]

J. Opt. Netw. (1)

Opt. Appl. (1)

L. Maksymiuk and J. Siuzdak, “Modeling of low-frequency modal noise induced by multimode couplers in cascade connections,” Opt. Appl., vol.  41, no. 3, pp. 649–660, 2011.

Other (8)

“IEEE Standard for Information Technology—Telecommunications, and Information Exchange Between Systems Local, and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC), and Physical Layer (PHY) Specifications,” , Apr. 2012.

S. Deronne, V. Moeyaert, and S. Bette, “WiFi transmission in radio-over-fiber systems: Performance of the IEEE 802.11n aggregation mechanism,” in Int. Conf. on Optical Network Design and Modeling (ONDM), Brest, France, 2013, pp. 167–172.

R. E. Epworth, “Phenomenon of modal noise in fiber systems,” in OFC, Washington, DC, 1979, paper ThD.

T. Ismail, C. H. Chuang, and A. J. Seeds, “Wireless data transmission of IEEE802.11a signals over fibre using low cost uncooled directly modulated lasers,” in Asia-Pacific Microwave Photonics Conf., 2008, pp. 70–73.

P. Assimakopoulos, A. Nkansah, and N. J. Gomes, “Use of commercial access point employing spatial diversity in a distributed antenna network with different fiber lengths,” in Asia-Pacific Microwave Photonics Conf., 2008, pp. 189–192.

J. S. Zou, H. Chen, F. Huijskens, Z. Cao, E. Tangdiongga, and T. Koonen, “Demonstration of fully functional MIMO wireless LAN transmission over GI-MMF for inbuilding networks,” in OFC, 2013, paper JTh2A.08.

M. Tauber and S. N. Bhatti, “Low RSSI in WLANs: Impact on application-level performance,” in Int. Conf. on Computing, Networking and Communications (IEEE ICNC), San Diego, CA, 2013.

M. Kowalczyk and J. Siuzdak, “Low-cost RAU with optical power supply used in a hybrid RoF IEEE 802.11 network,” J. Opt. Commun., to be published.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (25)

Fig. 1.
Fig. 1.

Concept of multimode fiber-based PON for radio signal distribution. RAU, remote antenna unit.

Fig. 2.
Fig. 2.

Measured modal noise spectra; solid lines (measurement realizations 1, 2, etc.) correspond to different realizations in time; dotted line is for reference—measurement over a short patchcord.

Fig. 3.
Fig. 3.

Measurement setup used for EVM measurements; three network topologies (Case Nos. 1–3) used in the experiments are depicted.

Fig. 4.
Fig. 4.

EVM measurement in the topology shown in Fig. 3 (Case 1); dots stand for a particular symbol EVM value; solid line is an averaged value.

Fig. 5.
Fig. 5.

EVM measurement in the topology shown in Fig. 3 (Case 2); dots stand for a particular symbol EVM value; solid line is an averaged value.

Fig. 6.
Fig. 6.

EVM measurement in the topology shown in Fig. 3 (Case 3); dots stand for a particular symbol EVM value; solid line is an averaged value.

Fig. 7.
Fig. 7.

Measured frequency responses of the optical link shown in Fig. 3. Case 1: different curves correspond to different measurement realizations (differ in time).

Fig. 8.
Fig. 8.

Measurement setup used for measurement of signal degradation caused by the OBI impairment; lower arm of the interferometer is considered as an interfering channel.

Fig. 9.
Fig. 9.

Total EVMs versus power of interfering channel (see Fig. 8); measurement performed for MMF- and SMF-based setups.

Fig. 10.
Fig. 10.

Network deployment layout at floor plan (red line denotes fiber).

Fig. 11.
Fig. 11.

Schematic of an optical network connection with the AP and realization of the bidirectional transmission over a single fiber. PD, photodiode; C, microwave circulator; L, laser; AP, access point.

Fig. 12.
Fig. 12.

Schematic of the network topology with exact fiber span lengths—cases refer to different measurements (description in the text).

Fig. 13.
Fig. 13.

Block schematic and photo of the RAU module.

Fig. 14.
Fig. 14.

Bit rates versus time in the downlink—basic network topology; the dashed–dotted line corresponds to the total bit rate; solid lines stand for bit rates achieved by three different notebooks each in the proximity of a different RAU.

Fig. 15.
Fig. 15.

Bit rates versus time in the downlink—reference measurement without optical distribution network; sole AP interconnected with one notebook.

Fig. 16.
Fig. 16.

Bit rates versus time in the uplink—basic network topology; the dashed–dotted line corresponds to the total bit rate; solid lines stand for bit rates achieved by three different notebooks, each in the proximity of a different RAU; two notebooks active at the same time.

Fig. 17.
Fig. 17.

Bit rates versus time in the uplink—basic network topology; the dashed–dotted line corresponds to the total bit rate; solid lines stand for bit rates achieved by three different notebooks, each in the proximity of a different RAU; three notebooks active all the time.

Fig. 18.
Fig. 18.

Bit rates versus time in the uplink—basic network topology; the dashed–dotted line corresponds to the total bit rate; solid lines stand for bit rates achieved by three different notebooks, each in the proximity of RAU 3.

Fig. 19.
Fig. 19.

Bit rates versus time in the uplink—reference measurement without optical distribution network; all notebooks placed in proximity of the sole AP.

Fig. 20.
Fig. 20.

Bit rates versus time in the downlink—basic network topology with an additional 200 m fiber in front of the network; the dashed–dotted line corresponds to the total bit rate; solid lines stand for bit rates achieved by three different notebooks, each in the proximity of a different RAU.

Fig. 21.
Fig. 21.

Bit rates versus time in the downlink—basic network topology with an additional 500 m fiber in front of the network; the dashed–dotted line corresponds to the total bit rate; solid lines stand for bit rates achieved by three different notebooks, each in the proximity of a different RAU.

Fig. 22.
Fig. 22.

Bit rates versus time in the downlink—basic network topology with an additional 700 m fiber in front of the network; the dashed–dotted line corresponds to the total bit rate; solid lines stand for bit rates achieved by three different notebooks, each in the proximity of a different RAU.

Fig. 23.
Fig. 23.

Bit rates versus time in the downlink—basic network topology with an additional 500 m fiber in front of RAU 3 (Case 2 in Fig. 12); the dashed–dotted line corresponds to the total bit rate; solid lines stand for bit rates achieved by three different notebooks, each in the proximity of a different RAU.

Fig. 24.
Fig. 24.

Bit rates versus time in two-channel MIMO for download process; notebook in the proximity of RAU 3; two cases that differ in the distance between MIMO antennas are shown (separation of RAU modules).

Fig. 25.
Fig. 25.

Bit rates versus time in two-channel MIMO for download process—reference measurement without optical distribution network; notebook directly interconnected with sole AP.

Tables (1)

Tables Icon

TABLE I Achieved Net Bit Ratesa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

POBI=R2P1P24N.