Abstract

In this paper, we propose a novel physical layer design for beam transmission that enhances the data security in a terrestrial free-space optical (FSO) communication system. The optical transmitter sends successive packets through different beam paths between the transmitter apertures and the receiver apertures using acousto-optic deflectors (AODs) with synthetic holographic gratings. Increasing the radius and intensity of the beam at the optical link raises the probability of eavesdropping; however, these parameters are sensitive to atmospheric turbulence. More precisely, as atmospheric turbulence increases, the radius of the beam increases while the intensity of the beam decreases. Thus, if the intensity of the beam is adjusted based on the strong turbulence in order to receive sufficient intensity at the receiver, then the intensity of the beam increases when atmospheric turbulence decreases, which causes the link security to be reduced. We formulate the beam settings at the transmitter where the AOD’s parameters are varied, which cause the Gaussian beam changes to the secondary Gaussian Schell-model (GSM) beam with different parameters. For such a situation, it is demonstrated, analytically supported by simulation results, that the radius of the beam at different beam paths can be controlled by changing the AOD’s parameters in different atmospheric turbulence. In addition, the radius of the adjusted beam in the secured FSO transceiver is compared with that of the ideal Gaussian and the ideal GSM beams in various turbulence conditions.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Kedar and S. Arnon, “Urban optical wireless communication networks: The main challenges and possible solutions,” IEEE Commun. Mag., vol.  42, no. 5, pp. S2–S7, May 2004.
    [CrossRef]
  2. V. V. Nikulin, R. Khandekar, J. Sofka, and G. Tartakovsky, “Acousto-optic pointing and tracking systems for free-space laser communications,” Proc. SPIE, vol.  5892, 589216, Aug. 2005.
    [CrossRef]
  3. D. K. Borah and D. G. Voelz, “Spatially partially coherent beam parameter optimization for free space optical communications,” Opt. Express, vol.  18, no. 20, pp. 20746–20758, Sept. 2010.
    [CrossRef]
  4. J. Abouei and K. N. Plataniotis, “Multiuser diversity scheduling in free-space optical communications,” J. Lightwave Technol., vol.  30, no. 9, pp. 1351–1358, May 2012.
    [CrossRef]
  5. V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, “Secure chaotic transmission on a free-space optics data link,” IEEE J. Quantum Electron., vol.  44, no. 11, pp. 1089–1095, Nov. 2008.
    [CrossRef]
  6. M. R. Chatterjee and M. Al-Saedi, “Examination of chaotic signal encryption and recovery for secure communication using hybrid acousto-optic feedback,” Opt. Eng., vol.  50, no. 5, 055002, May 2011.
    [CrossRef]
  7. A. K. Ghosh, P. Verma, S. Cheng, R. C. Huck, M. R. Chatterjee, and M. Al-Saedi, “Design of acousto-optic chaos based secure free-space optical communication links,” Proc. SPIE, vol.  7464, 74640L, Aug. 2009.
    [CrossRef]
  8. R. Vallee and C. Delisle, “Mode description of the dynamical evolution of an acousto-optic bistable device,” IEEE J. Quantum Electron., vol.  21, no. 9, pp. 1423–1428, Sept. 1985.
    [CrossRef]
  9. M. R. Chatterjee and J.-J. Huang, “Demonstration of acousto-optic bistability and chaos by direct nonlinear circuit modeling,” Appl. Opt., vol.  31, no. 14, pp. 2506–2517, May 1992.
    [CrossRef]
  10. R. Rejeb, M. S. Leeson, C. M. Machuca, and I. Tomkos, “Control and management issues in all-optical networks,” J. Netw., vol.  5, no. 2, pp. 132–139, Feb. 2010.
    [CrossRef]
  11. N. Das, Optical Communications Systems. InTech, Mar. 2012.
  12. M. Furdek and N. Skorin-Kapov, “Physical-layer attacks in all-optical WDM networks,” in Proc. IEEE Int. Convention MIPRO, May 2011, pp. 446–451.
  13. S. V. Kartalopoulos, “Security in advanced optical communication networks,” in Proc. IEEE Int. Conf. on Communications (ICC), Dresden, Germany, June 2009.
  14. K.-I. Kitayama, M. Sasaki, S. Araki, M. Tsubokawa, A. Tomita, K. Inoue, K. Harasawa, Y. Nagasako, and A. Takada, “Security in photonic networks: Threats and security enhancement,” J. Lightwave Technol., vol.  29, no. 21, pp. 3210–3222, Nov. 2011.
    [CrossRef]
  15. X. Wu, P. Liu, and M. Matsumoto, “A study on atmospheric turbulence effects in full-optical free-space communication systems,” in Proc. IEEE Int. Conf. on Wireless Communications Networking and Mobile Computing (WiCOM), Sept. 2010.
  16. W. O. Popoola, “Subcarrier intensity modulated free-space optical communication systems,” Ph.D dissertation, Northumbria University, Sept. 2009.
  17. I. C. Chang, “Acousto-optic devices and applications,” IEEE Trans. Sonics Ultrason., vol.  SU-23, no. 1, pp. 2–21, Jan. 1976.
    [CrossRef]
  18. W. Jian, “Propagation of a Gaussian-Schell beam through turbulent media,” J. Mod. Opt., vol.  37, no. 4, pp. 671–684, 1990.
    [CrossRef]
  19. J. Wu and A. D. Boardman, “Coherence length of a Gaussian-Schell beam and atmospheric turbulence,” J. Mod. Opt., vol.  38, no. 7, pp. 1355–1363, 1991.
    [CrossRef]
  20. E. Tervonen, A. T. Friberg, and J. Turunen, “Acousto-optic conversion of laser beams into flat-top beams,” J. Mod. Opt., vol.  40, no. 4, pp. 625–635, July 1993.
    [CrossRef]
  21. E. T. Tervonen, J. P. Turunen, and A. T. Friberg, “Synthetic acousto-optic holograms,” Proc. SPIE, vol.  1319, pp. 288–289, July 1990.
    [CrossRef]
  22. A. C. Schell, “A technique for determination of the radiation pattern of a partially coherent aperture,” IEEE Trans. Antennas Propag., vol.  AP-15, no. 1, pp. 187–188, Jan. 1967.
    [CrossRef]
  23. Y. Cai, “Propagation of some coherent and partially coherent laser beams,” Ph.D. dissertation, Royal Institute of Technology, Stockholm, Sweden, 2006.
  24. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: Implications for free-space laser communication,” J. Opt. Soc. Am. A, vol.  19, no. 9, pp. 1794–1802, Sept. 2002.
    [CrossRef]
  25. T. Shirai, A. Dogariu, and E. Wolf, “Directionality of Gaussian Schell-model beams propagating in atmospheric turbulence,” Opt. Lett., vol.  28, no. 8, pp. 610–612, Aug. 2003.
    [CrossRef]
  26. T. Shirai, A. Dogariu, and E. Wolf, “Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence,” J. Opt. Soc. Am. A, vol.  20, no. 6, pp. 1094–1102, June 2003.
    [CrossRef]
  27. J.-X. Ling and P. Z. Cai, “Turbulence-induced changes in degree of polarization, degree of coherence and spectrum of partially coherent electromagnetic beams,” Chin. Phys. B, vol.  19, no. 2, pp. 1–19, Feb. 2010.
  28. G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun., vol.  222, pp. 117–125, July 2003.
    [CrossRef]
  29. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics. Cambridge University, 1995.

2012

2011

M. R. Chatterjee and M. Al-Saedi, “Examination of chaotic signal encryption and recovery for secure communication using hybrid acousto-optic feedback,” Opt. Eng., vol.  50, no. 5, 055002, May 2011.
[CrossRef]

K.-I. Kitayama, M. Sasaki, S. Araki, M. Tsubokawa, A. Tomita, K. Inoue, K. Harasawa, Y. Nagasako, and A. Takada, “Security in photonic networks: Threats and security enhancement,” J. Lightwave Technol., vol.  29, no. 21, pp. 3210–3222, Nov. 2011.
[CrossRef]

2010

R. Rejeb, M. S. Leeson, C. M. Machuca, and I. Tomkos, “Control and management issues in all-optical networks,” J. Netw., vol.  5, no. 2, pp. 132–139, Feb. 2010.
[CrossRef]

D. K. Borah and D. G. Voelz, “Spatially partially coherent beam parameter optimization for free space optical communications,” Opt. Express, vol.  18, no. 20, pp. 20746–20758, Sept. 2010.
[CrossRef]

J.-X. Ling and P. Z. Cai, “Turbulence-induced changes in degree of polarization, degree of coherence and spectrum of partially coherent electromagnetic beams,” Chin. Phys. B, vol.  19, no. 2, pp. 1–19, Feb. 2010.

2009

A. K. Ghosh, P. Verma, S. Cheng, R. C. Huck, M. R. Chatterjee, and M. Al-Saedi, “Design of acousto-optic chaos based secure free-space optical communication links,” Proc. SPIE, vol.  7464, 74640L, Aug. 2009.
[CrossRef]

2008

V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, “Secure chaotic transmission on a free-space optics data link,” IEEE J. Quantum Electron., vol.  44, no. 11, pp. 1089–1095, Nov. 2008.
[CrossRef]

2005

V. V. Nikulin, R. Khandekar, J. Sofka, and G. Tartakovsky, “Acousto-optic pointing and tracking systems for free-space laser communications,” Proc. SPIE, vol.  5892, 589216, Aug. 2005.
[CrossRef]

2004

D. Kedar and S. Arnon, “Urban optical wireless communication networks: The main challenges and possible solutions,” IEEE Commun. Mag., vol.  42, no. 5, pp. S2–S7, May 2004.
[CrossRef]

2003

2002

1993

E. Tervonen, A. T. Friberg, and J. Turunen, “Acousto-optic conversion of laser beams into flat-top beams,” J. Mod. Opt., vol.  40, no. 4, pp. 625–635, July 1993.
[CrossRef]

1992

1991

J. Wu and A. D. Boardman, “Coherence length of a Gaussian-Schell beam and atmospheric turbulence,” J. Mod. Opt., vol.  38, no. 7, pp. 1355–1363, 1991.
[CrossRef]

1990

E. T. Tervonen, J. P. Turunen, and A. T. Friberg, “Synthetic acousto-optic holograms,” Proc. SPIE, vol.  1319, pp. 288–289, July 1990.
[CrossRef]

W. Jian, “Propagation of a Gaussian-Schell beam through turbulent media,” J. Mod. Opt., vol.  37, no. 4, pp. 671–684, 1990.
[CrossRef]

1985

R. Vallee and C. Delisle, “Mode description of the dynamical evolution of an acousto-optic bistable device,” IEEE J. Quantum Electron., vol.  21, no. 9, pp. 1423–1428, Sept. 1985.
[CrossRef]

1976

I. C. Chang, “Acousto-optic devices and applications,” IEEE Trans. Sonics Ultrason., vol.  SU-23, no. 1, pp. 2–21, Jan. 1976.
[CrossRef]

1967

A. C. Schell, “A technique for determination of the radiation pattern of a partially coherent aperture,” IEEE Trans. Antennas Propag., vol.  AP-15, no. 1, pp. 187–188, Jan. 1967.
[CrossRef]

Abouei, J.

Al-Saedi, M.

M. R. Chatterjee and M. Al-Saedi, “Examination of chaotic signal encryption and recovery for secure communication using hybrid acousto-optic feedback,” Opt. Eng., vol.  50, no. 5, 055002, May 2011.
[CrossRef]

A. K. Ghosh, P. Verma, S. Cheng, R. C. Huck, M. R. Chatterjee, and M. Al-Saedi, “Design of acousto-optic chaos based secure free-space optical communication links,” Proc. SPIE, vol.  7464, 74640L, Aug. 2009.
[CrossRef]

Annovazzi-Lodi, V.

V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, “Secure chaotic transmission on a free-space optics data link,” IEEE J. Quantum Electron., vol.  44, no. 11, pp. 1089–1095, Nov. 2008.
[CrossRef]

Araki, S.

Arnon, S.

D. Kedar and S. Arnon, “Urban optical wireless communication networks: The main challenges and possible solutions,” IEEE Commun. Mag., vol.  42, no. 5, pp. S2–S7, May 2004.
[CrossRef]

Aromataris, G.

V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, “Secure chaotic transmission on a free-space optics data link,” IEEE J. Quantum Electron., vol.  44, no. 11, pp. 1089–1095, Nov. 2008.
[CrossRef]

Benedetti, M.

V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, “Secure chaotic transmission on a free-space optics data link,” IEEE J. Quantum Electron., vol.  44, no. 11, pp. 1089–1095, Nov. 2008.
[CrossRef]

Boardman, A. D.

J. Wu and A. D. Boardman, “Coherence length of a Gaussian-Schell beam and atmospheric turbulence,” J. Mod. Opt., vol.  38, no. 7, pp. 1355–1363, 1991.
[CrossRef]

Borah, D. K.

Cai, P. Z.

J.-X. Ling and P. Z. Cai, “Turbulence-induced changes in degree of polarization, degree of coherence and spectrum of partially coherent electromagnetic beams,” Chin. Phys. B, vol.  19, no. 2, pp. 1–19, Feb. 2010.

Cai, Y.

Y. Cai, “Propagation of some coherent and partially coherent laser beams,” Ph.D. dissertation, Royal Institute of Technology, Stockholm, Sweden, 2006.

Chang, I. C.

I. C. Chang, “Acousto-optic devices and applications,” IEEE Trans. Sonics Ultrason., vol.  SU-23, no. 1, pp. 2–21, Jan. 1976.
[CrossRef]

Chatterjee, M. R.

M. R. Chatterjee and M. Al-Saedi, “Examination of chaotic signal encryption and recovery for secure communication using hybrid acousto-optic feedback,” Opt. Eng., vol.  50, no. 5, 055002, May 2011.
[CrossRef]

A. K. Ghosh, P. Verma, S. Cheng, R. C. Huck, M. R. Chatterjee, and M. Al-Saedi, “Design of acousto-optic chaos based secure free-space optical communication links,” Proc. SPIE, vol.  7464, 74640L, Aug. 2009.
[CrossRef]

M. R. Chatterjee and J.-J. Huang, “Demonstration of acousto-optic bistability and chaos by direct nonlinear circuit modeling,” Appl. Opt., vol.  31, no. 14, pp. 2506–2517, May 1992.
[CrossRef]

Cheng, S.

A. K. Ghosh, P. Verma, S. Cheng, R. C. Huck, M. R. Chatterjee, and M. Al-Saedi, “Design of acousto-optic chaos based secure free-space optical communication links,” Proc. SPIE, vol.  7464, 74640L, Aug. 2009.
[CrossRef]

Das, N.

N. Das, Optical Communications Systems. InTech, Mar. 2012.

Davidson, F. M.

Delisle, C.

R. Vallee and C. Delisle, “Mode description of the dynamical evolution of an acousto-optic bistable device,” IEEE J. Quantum Electron., vol.  21, no. 9, pp. 1423–1428, Sept. 1985.
[CrossRef]

Dogariu, A.

Friberg, A. T.

E. Tervonen, A. T. Friberg, and J. Turunen, “Acousto-optic conversion of laser beams into flat-top beams,” J. Mod. Opt., vol.  40, no. 4, pp. 625–635, July 1993.
[CrossRef]

E. T. Tervonen, J. P. Turunen, and A. T. Friberg, “Synthetic acousto-optic holograms,” Proc. SPIE, vol.  1319, pp. 288–289, July 1990.
[CrossRef]

Furdek, M.

M. Furdek and N. Skorin-Kapov, “Physical-layer attacks in all-optical WDM networks,” in Proc. IEEE Int. Convention MIPRO, May 2011, pp. 446–451.

Gbur, G.

G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun., vol.  222, pp. 117–125, July 2003.
[CrossRef]

Ghosh, A. K.

A. K. Ghosh, P. Verma, S. Cheng, R. C. Huck, M. R. Chatterjee, and M. Al-Saedi, “Design of acousto-optic chaos based secure free-space optical communication links,” Proc. SPIE, vol.  7464, 74640L, Aug. 2009.
[CrossRef]

Harasawa, K.

Huang, J.-J.

Huck, R. C.

A. K. Ghosh, P. Verma, S. Cheng, R. C. Huck, M. R. Chatterjee, and M. Al-Saedi, “Design of acousto-optic chaos based secure free-space optical communication links,” Proc. SPIE, vol.  7464, 74640L, Aug. 2009.
[CrossRef]

Inoue, K.

Jian, W.

W. Jian, “Propagation of a Gaussian-Schell beam through turbulent media,” J. Mod. Opt., vol.  37, no. 4, pp. 671–684, 1990.
[CrossRef]

Kartalopoulos, S. V.

S. V. Kartalopoulos, “Security in advanced optical communication networks,” in Proc. IEEE Int. Conf. on Communications (ICC), Dresden, Germany, June 2009.

Kedar, D.

D. Kedar and S. Arnon, “Urban optical wireless communication networks: The main challenges and possible solutions,” IEEE Commun. Mag., vol.  42, no. 5, pp. S2–S7, May 2004.
[CrossRef]

Khandekar, R.

V. V. Nikulin, R. Khandekar, J. Sofka, and G. Tartakovsky, “Acousto-optic pointing and tracking systems for free-space laser communications,” Proc. SPIE, vol.  5892, 589216, Aug. 2005.
[CrossRef]

Kitayama, K.-I.

Leeson, M. S.

R. Rejeb, M. S. Leeson, C. M. Machuca, and I. Tomkos, “Control and management issues in all-optical networks,” J. Netw., vol.  5, no. 2, pp. 132–139, Feb. 2010.
[CrossRef]

Ling, J.-X.

J.-X. Ling and P. Z. Cai, “Turbulence-induced changes in degree of polarization, degree of coherence and spectrum of partially coherent electromagnetic beams,” Chin. Phys. B, vol.  19, no. 2, pp. 1–19, Feb. 2010.

Liu, P.

X. Wu, P. Liu, and M. Matsumoto, “A study on atmospheric turbulence effects in full-optical free-space communication systems,” in Proc. IEEE Int. Conf. on Wireless Communications Networking and Mobile Computing (WiCOM), Sept. 2010.

Machuca, C. M.

R. Rejeb, M. S. Leeson, C. M. Machuca, and I. Tomkos, “Control and management issues in all-optical networks,” J. Netw., vol.  5, no. 2, pp. 132–139, Feb. 2010.
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics. Cambridge University, 1995.

Matsumoto, M.

X. Wu, P. Liu, and M. Matsumoto, “A study on atmospheric turbulence effects in full-optical free-space communication systems,” in Proc. IEEE Int. Conf. on Wireless Communications Networking and Mobile Computing (WiCOM), Sept. 2010.

Merlo, S.

V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, “Secure chaotic transmission on a free-space optics data link,” IEEE J. Quantum Electron., vol.  44, no. 11, pp. 1089–1095, Nov. 2008.
[CrossRef]

Nagasako, Y.

Nikulin, V. V.

V. V. Nikulin, R. Khandekar, J. Sofka, and G. Tartakovsky, “Acousto-optic pointing and tracking systems for free-space laser communications,” Proc. SPIE, vol.  5892, 589216, Aug. 2005.
[CrossRef]

Plataniotis, K. N.

Popoola, W. O.

W. O. Popoola, “Subcarrier intensity modulated free-space optical communication systems,” Ph.D dissertation, Northumbria University, Sept. 2009.

Rejeb, R.

R. Rejeb, M. S. Leeson, C. M. Machuca, and I. Tomkos, “Control and management issues in all-optical networks,” J. Netw., vol.  5, no. 2, pp. 132–139, Feb. 2010.
[CrossRef]

Ricklin, J. C.

Sasaki, M.

Schell, A. C.

A. C. Schell, “A technique for determination of the radiation pattern of a partially coherent aperture,” IEEE Trans. Antennas Propag., vol.  AP-15, no. 1, pp. 187–188, Jan. 1967.
[CrossRef]

Shirai, T.

Skorin-Kapov, N.

M. Furdek and N. Skorin-Kapov, “Physical-layer attacks in all-optical WDM networks,” in Proc. IEEE Int. Convention MIPRO, May 2011, pp. 446–451.

Sofka, J.

V. V. Nikulin, R. Khandekar, J. Sofka, and G. Tartakovsky, “Acousto-optic pointing and tracking systems for free-space laser communications,” Proc. SPIE, vol.  5892, 589216, Aug. 2005.
[CrossRef]

Takada, A.

Tartakovsky, G.

V. V. Nikulin, R. Khandekar, J. Sofka, and G. Tartakovsky, “Acousto-optic pointing and tracking systems for free-space laser communications,” Proc. SPIE, vol.  5892, 589216, Aug. 2005.
[CrossRef]

Tervonen, E.

E. Tervonen, A. T. Friberg, and J. Turunen, “Acousto-optic conversion of laser beams into flat-top beams,” J. Mod. Opt., vol.  40, no. 4, pp. 625–635, July 1993.
[CrossRef]

Tervonen, E. T.

E. T. Tervonen, J. P. Turunen, and A. T. Friberg, “Synthetic acousto-optic holograms,” Proc. SPIE, vol.  1319, pp. 288–289, July 1990.
[CrossRef]

Tomita, A.

Tomkos, I.

R. Rejeb, M. S. Leeson, C. M. Machuca, and I. Tomkos, “Control and management issues in all-optical networks,” J. Netw., vol.  5, no. 2, pp. 132–139, Feb. 2010.
[CrossRef]

Tsubokawa, M.

Turunen, J.

E. Tervonen, A. T. Friberg, and J. Turunen, “Acousto-optic conversion of laser beams into flat-top beams,” J. Mod. Opt., vol.  40, no. 4, pp. 625–635, July 1993.
[CrossRef]

Turunen, J. P.

E. T. Tervonen, J. P. Turunen, and A. T. Friberg, “Synthetic acousto-optic holograms,” Proc. SPIE, vol.  1319, pp. 288–289, July 1990.
[CrossRef]

Vallee, R.

R. Vallee and C. Delisle, “Mode description of the dynamical evolution of an acousto-optic bistable device,” IEEE J. Quantum Electron., vol.  21, no. 9, pp. 1423–1428, Sept. 1985.
[CrossRef]

Verma, P.

A. K. Ghosh, P. Verma, S. Cheng, R. C. Huck, M. R. Chatterjee, and M. Al-Saedi, “Design of acousto-optic chaos based secure free-space optical communication links,” Proc. SPIE, vol.  7464, 74640L, Aug. 2009.
[CrossRef]

Visser, T. D.

G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun., vol.  222, pp. 117–125, July 2003.
[CrossRef]

Voelz, D. G.

Wolf, E.

Wu, J.

J. Wu and A. D. Boardman, “Coherence length of a Gaussian-Schell beam and atmospheric turbulence,” J. Mod. Opt., vol.  38, no. 7, pp. 1355–1363, 1991.
[CrossRef]

Wu, X.

X. Wu, P. Liu, and M. Matsumoto, “A study on atmospheric turbulence effects in full-optical free-space communication systems,” in Proc. IEEE Int. Conf. on Wireless Communications Networking and Mobile Computing (WiCOM), Sept. 2010.

Appl. Opt.

Chin. Phys. B

J.-X. Ling and P. Z. Cai, “Turbulence-induced changes in degree of polarization, degree of coherence and spectrum of partially coherent electromagnetic beams,” Chin. Phys. B, vol.  19, no. 2, pp. 1–19, Feb. 2010.

IEEE Commun. Mag.

D. Kedar and S. Arnon, “Urban optical wireless communication networks: The main challenges and possible solutions,” IEEE Commun. Mag., vol.  42, no. 5, pp. S2–S7, May 2004.
[CrossRef]

IEEE J. Quantum Electron.

V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, “Secure chaotic transmission on a free-space optics data link,” IEEE J. Quantum Electron., vol.  44, no. 11, pp. 1089–1095, Nov. 2008.
[CrossRef]

R. Vallee and C. Delisle, “Mode description of the dynamical evolution of an acousto-optic bistable device,” IEEE J. Quantum Electron., vol.  21, no. 9, pp. 1423–1428, Sept. 1985.
[CrossRef]

IEEE Trans. Antennas Propag.

A. C. Schell, “A technique for determination of the radiation pattern of a partially coherent aperture,” IEEE Trans. Antennas Propag., vol.  AP-15, no. 1, pp. 187–188, Jan. 1967.
[CrossRef]

IEEE Trans. Sonics Ultrason.

I. C. Chang, “Acousto-optic devices and applications,” IEEE Trans. Sonics Ultrason., vol.  SU-23, no. 1, pp. 2–21, Jan. 1976.
[CrossRef]

J. Lightwave Technol.

J. Mod. Opt.

W. Jian, “Propagation of a Gaussian-Schell beam through turbulent media,” J. Mod. Opt., vol.  37, no. 4, pp. 671–684, 1990.
[CrossRef]

J. Wu and A. D. Boardman, “Coherence length of a Gaussian-Schell beam and atmospheric turbulence,” J. Mod. Opt., vol.  38, no. 7, pp. 1355–1363, 1991.
[CrossRef]

E. Tervonen, A. T. Friberg, and J. Turunen, “Acousto-optic conversion of laser beams into flat-top beams,” J. Mod. Opt., vol.  40, no. 4, pp. 625–635, July 1993.
[CrossRef]

J. Netw.

R. Rejeb, M. S. Leeson, C. M. Machuca, and I. Tomkos, “Control and management issues in all-optical networks,” J. Netw., vol.  5, no. 2, pp. 132–139, Feb. 2010.
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun., vol.  222, pp. 117–125, July 2003.
[CrossRef]

Opt. Eng.

M. R. Chatterjee and M. Al-Saedi, “Examination of chaotic signal encryption and recovery for secure communication using hybrid acousto-optic feedback,” Opt. Eng., vol.  50, no. 5, 055002, May 2011.
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

V. V. Nikulin, R. Khandekar, J. Sofka, and G. Tartakovsky, “Acousto-optic pointing and tracking systems for free-space laser communications,” Proc. SPIE, vol.  5892, 589216, Aug. 2005.
[CrossRef]

A. K. Ghosh, P. Verma, S. Cheng, R. C. Huck, M. R. Chatterjee, and M. Al-Saedi, “Design of acousto-optic chaos based secure free-space optical communication links,” Proc. SPIE, vol.  7464, 74640L, Aug. 2009.
[CrossRef]

E. T. Tervonen, J. P. Turunen, and A. T. Friberg, “Synthetic acousto-optic holograms,” Proc. SPIE, vol.  1319, pp. 288–289, July 1990.
[CrossRef]

Other

X. Wu, P. Liu, and M. Matsumoto, “A study on atmospheric turbulence effects in full-optical free-space communication systems,” in Proc. IEEE Int. Conf. on Wireless Communications Networking and Mobile Computing (WiCOM), Sept. 2010.

W. O. Popoola, “Subcarrier intensity modulated free-space optical communication systems,” Ph.D dissertation, Northumbria University, Sept. 2009.

N. Das, Optical Communications Systems. InTech, Mar. 2012.

M. Furdek and N. Skorin-Kapov, “Physical-layer attacks in all-optical WDM networks,” in Proc. IEEE Int. Convention MIPRO, May 2011, pp. 446–451.

S. V. Kartalopoulos, “Security in advanced optical communication networks,” in Proc. IEEE Int. Conf. on Communications (ICC), Dresden, Germany, June 2009.

Y. Cai, “Propagation of some coherent and partially coherent laser beams,” Ph.D. dissertation, Royal Institute of Technology, Stockholm, Sweden, 2006.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics. Cambridge University, 1995.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Interception of a conventional FSO link without disrupting the laser beam from reaching the receiver.

Fig. 2.
Fig. 2.

Enhancing the physical layer security of the FSO link by sending laser beams from different paths using acousto-optic deflectors (AODs).

Fig. 3.
Fig. 3.

FSO transceiver based on AOD.

Fig. 4.
Fig. 4.

Bragg angle in a typical AOD.

Fig. 5.
Fig. 5.

Beam paths with the upper limit of the beam overlapping the cross section of the receiver.

Fig. 6.
Fig. 6.

Different positions of an attacker between the transmitter and the receiver.

Fig. 7.
Fig. 7.

Two different phase grating profiles of AODs using synthetic holographic gratings.

Fig. 8.
Fig. 8.

Transmitted and received beams with phase grating profile 1, Λ x = 28 mm and Λ u = 40 mm .

Fig. 9.
Fig. 9.

Transmitted and received beams with phase grating profile 2, Λ x = 50 mm and Λ u = 50 mm .

Tables (1)

Tables Icon

TABLE I Radius of Beams in the Transmitter and Receiver

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

θ B = λ f s 2 N a v s ,
Δ θ B = λ Δ f s N a v s .
W ( x 1 , x 2 , y 1 , y 2 , 0 ) = I 0 x I 0 y exp [ x 1 2 + x 2 2 ω 0 x 2 ] exp [ y 1 2 + y 2 2 ω 0 y 2 ] ,
Φ = ( a b c d ) = ( f 3 f 2 ( 1 L 2 4 f 1 ) f 3 f 2 f 1 f 2 f 3 f 1 L 5 6 f 3 f 1 f 2 f 2 f 3 f 1 0 ) ,
Φ = ( a b c d ) = ( 0 f 1 f 0 ) ,
W ( u 1 , u 2 , v 1 , v 2 , z 1 ) = m = + n = + P m x P n y I x I y × exp [ ( u 1 λ f m Λ x ) 2 + ( u 2 λ f m Λ x ) 2 ω x 2 ] × exp [ ( v 1 λ f m Λ y ) 2 + ( v 2 λ f m Λ y ) 2 ω y 2 ] ,
P m x = | Λ x 1 0 Λ x exp [ i Φ ( x ) i 2 π m x Λ x ] d x | 2 , P n y = | Λ y 1 0 Λ y exp [ i Φ ( y ) i 2 π n y Λ y ] d y | 2 ,
W d ( u 1 , u 2 , v 1 , v 2 , z 2 ) = W ( u 1 , u 2 , v 1 , v 2 , z 1 ) × m = + P m u exp [ i 2 π m ( u 1 u 2 ) Λ u ] × n = + P n v exp [ i 2 π n ( v 1 v 2 ) Λ v ] ,
P m u = | Λ u 1 0 Λ u exp [ i Φ ( u ) i 2 π m u Λ u ] d u | 2 , P n v = | Λ v 1 0 Λ v exp [ i Φ ( v ) i 2 π n v Λ v ] d v | 2 .
W ( ρ x 1 , ρ x 2 , ρ y 1 , ρ y 2 , D + z 2 ) = k 2 4 π 2 D 2 W d ( u 1 , u 2 , v 1 , v 2 , z 2 ) × exp [ i k 2 D ( u 1 2 + v 1 2 2 ( ρ x 1 u 1 + ρ y 1 v 1 ) + ρ x 1 2 + ρ y 1 2 ] × exp [ i k 2 D ( u 2 2 + v 2 2 2 ( ρ x 2 u 2 + ρ y 2 v 2 ) + ρ x 2 2 + ρ y 2 2 ] × exp [ Ψ ( u 1 , v 1 , ρ x 1 , ρ y 1 , D ) + Ψ * ( u 2 , v 2 , ρ x 2 , ρ y 2 , D ) ] d u 1 d u 2 d v 1 d v 2 ,
exp [ Ψ ( u 1 , v 1 , ρ x 1 , ρ y 1 , D ) + Ψ * ( u 2 , v 2 , ρ x 2 , ρ y 2 , D ) ] = exp { 1 ρ 0 2 [ ( u 1 u 2 ) 2 + ( v 1 v 2 ) 2 + ( ρ x 1 ρ x 2 ) 2 + ( ρ y 1 ρ y 2 ) 2 + ( u 1 u 2 ) ( ρ x 1 ρ x 2 ) + ( v 1 v 2 ) ( ρ y 1 ρ y 2 ) ] } ,
W ( ρ x 1 , ρ x 2 , ρ y 1 , ρ y 2 , D + z 2 ) = S 1 I x I y × exp [ j ( i π λ D ( ρ j 1 2 ρ j 2 2 ) + 1 ρ 0 2 ( ρ j 1 ρ j 2 ) 2 ) ] × j exp [ λ D ρ 0 2 S 2 2 A j ( [ 2 i π ρ 0 2 λ D λ D ρ 0 2 ] ρ j 1 + ρ j 2 ρ 0 2 + S 3 ) 2 ] × j exp { λ D S 4 A j 4 B j [ 2 i π λ D ( λ D S 5 ρ j 1 A j ρ j 2 ) + ( ρ j 1 ρ j 2 ) ρ 0 2 ( 1 λ D S 5 A j ) + S 6 ] 2 } ,
I j = 2 exp { 2 λ 2 f 2 Num j 2 ω j 2 Λ j 2 } I j π ρ 0 ω j 2 B j , A j = 2 i π ρ 0 2 ω j 2 + 2 ω j 2 λ D + 2 λ D ρ 0 2 , B j = 2 λ 2 D 2 ρ 0 2 + 4 λ 2 D 2 ω j 2 + 2 π 2 ρ 0 2 ω j 4 , Num x = m , Num y = n , Λ x = Λ u , Λ y = Λ v .
I j = 2 I 0 j π ρ 0 σ 0 j ω 0 j 2 B p j , A j = 2 i π ρ 0 2 ω 0 j 2 + 2 ω 0 j 2 λ D + 2 λ D ρ 0 2 + λ D ρ 0 2 ω 0 j 2 / σ 0 j 2 , B j = 2 λ 2 D 2 ρ 0 2 σ 0 j 2 + 4 λ 2 D 2 σ 0 j 2 ω 0 j 2 + 2 π 2 σ 0 j 2 ρ 0 2 ω 0 j 4 + 2 λ 2 D 2 ρ 0 2 ω 0 j 2 .
I ( u , z 2 ) = W d ( u , u , z 2 ) , μ ( u 1 , u 2 , z 2 ) = W d ( u 1 , u 2 , z 2 ) I ( u 1 , z 2 ) I ( u 2 , z 2 ) ,
I GSM ( u ) = W GSM ( u , u ) , μ GSM ( u 1 , u 2 ) = W GSM ( u 1 , u 2 ) I GSM ( u 1 ) I GSM ( u 2 ) ,
W GSM ( u 1 , u 2 ) = I 0 x exp [ u 1 2 + u 2 2 ω 0 x 2 ] exp [ ( u 1 u 2 ) 2 2 σ 0 x 2 ] ,