Abstract

This paper considers the network protection technique of shared backup path protection (SBPP) in comparison with 1 + 1 path protection for elastic optical networks. We develop integer linear programming (ILP) models to minimize both the required spare capacity and the maximum number of link frequency slots (FSs) used. We consider transponder tunability that corresponds to the condition of whether or not the same set of FSs is required to be used for both the working and protection lightpaths. We also apply the bandwidth squeezed restoration technique to obtain the maximum restoration levels for the affected service flows, subject to a limited FS capacity on each fiber link. Our studies show that the proposed SBPP technique requires much lower spare capacity compared to the traditional 1 + 1 path protection approach. The flexibility of allowing the working and protection lightpaths to use different sets of FSs (i.e., with full transponder tunability) has the advantage of reducing both the number of FSs needed and the spare capacity redundancy required.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription