Abstract

Elastic optical networks are envisaged as promising solutions to fulfill the diverse bandwidth requirements for the emerging heterogeneous network applications. To support flexible allocation of spectrum resources the optical network nodes need to be agile. Among the different proposed solutions for elastic nodes, the one based on architecture of demand (AoD) exhibits considerable flexibility against the other alternatives. The node modules in the case of AoD are not hard-wired, but can be connected/disconnected to any input/output port according to the requirements. Thus, each AoD node and the network (fabricated with AoD nodes) as a whole acts like an optical field-programmable gate array. This flexibility inherent in AoD can be exploited for different purposes, such as for cost-efficient and energy-efficient design of the networks. This study looks into the cost-efficient network planning issue for synthetic networks implemented through AoD nodes. The problem is formalized as an integer linear programming formulation for presenting the optimal solution. Furthermore, a scalable and effective heuristic algorithm is proposed for cost-efficient design, and its performance is compared with the optimal solution. The designed networks with AoD nodes are further investigated for a dynamic scenario, and their blocking probability due to limited switching resources in the nodes is examined. To alleviate the blocking performance for the dynamic case, an efficient synthesis strategy along with a scheme for optimal placement of switching resources within the network nodes is presented. Extensive results show that 1) even at high loads, the network with AoD nodes achieves saving of switching modules up to 40% compared to the one with static reconfigurable optical add–drop multiplexers (ROADMs) through a proper network design, 2) by diminishing the spectrum selective switches the overall power consumption of the network decreases by more than 25% for high loads, and 3) for the dynamic scenario the blocking owing to the node modules constraint is alleviated significantly by slightly augmenting the switching devices and optimally deploying them within the network nodes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Jinno, H. Takara, and B. Kozicki, “Dynamic optical mesh networks: Drivers, challenges, and solutions for the future,” in 35th European Conf. and Exhibition on Optical Communication (ECOC), 2009, pp. 1–3.
  2. S. K. Korotky, R.-J. Essiambre, and R. W. Tkach, “Expectations of optical network traffic gain afforded by bit rate adaptive transmission,” Bell Labs Tech. J., vol.  14, no. 4, pp. 285–295, 2010.
    [CrossRef]
  3. B. Kozicki, H. Takara, Y. Sone, A. Watanabe, and M. Jinno, “Distance-adaptive spectrum allocation in elastic optical path network (SLICE) with bit per symbol adjustment,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2010, pp. 1–3.
  4. A. Morea, A. Chong, and O. Rival, “Impact of transparent network constraints on capacity gain of elastic channel spacing,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2011, pp. 1–3.
  5. J. L. Vizcaino, Y. Ye, and I. Monroy, “Energy efficiency in elastic-bandwidth optical networks,” in Int. Conf. on the Network of the Future (NOF), 2011, pp. 107–111.
  6. O. Rival and A. Morea, “Cost-efficiency of mixed 10-40-100 Gbps networks and elastic optical networks,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2011, pp. 1–3.
  7. Y. Wang and X. Cao, “Multi-granular optical switching: A classified overview for the past and future,” IEEE Commun. Surv. Tutorials, vol.  14, no. 3, pp. 698–713, 2012.
  8. P. Ji and Y. Aono, “Colorless and directionless multi-degree reconfigurable optical add/drop multiplexers,” in 19th Annual Wireless and Optical Communications Conf. (WOCC), 2010, pp. 1–5.
  9. A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), 2010, pp. 1–10.
  10. S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, 2010.
    [CrossRef]
  11. R. Jensen, “Optical switch architectures for emerging colorless/directionless/contentionless ROADM networks,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2011, pp. 1–3.
  12. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, 2009.
    [CrossRef]
  13. A. Autenrieth, A. K. Tilwankar, C. M. Machuca, and J.-P. Elbers, “Power consumption analysis of opaque and transparent optical core networks,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–5.
  14. M. Murakami and K. Oda, “Power consumption analysis of optical cross-connect equipment for future large capacity optical networks,” in 11th Int. Conf. on Transparent Optical Networks (ICTON), 2009, pp. 1–4.
  15. N. Amaya, G. Zervas, and D. Simeonidou, “Architecture on demand for transparent optical networks,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–4.
  16. N. Amaya, G. Zervas, B. Rofoee, M. Irfan, Y. Qin, and D. Simeonidou, “Field trial of a 1.5  Tb/s adaptive and gridless OXC supporting elastic 1000-fold bandwidth granularity,” in 37th European Conf. and Exhibition on Optical Communication (ECOC), 2011, pp. 1–3.
  17. N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, J. Sakaguchi, W. Klaus, B. J. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, and I. Henning, “First fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.
  18. N. Amaya, G. Zervas, and D. Simeonidou, “Introducing node architecture flexibility for elastic optical networks,” J. Opt. Commun. Netw., vol.  5, no. 6, pp. 593–608, 2013.
    [CrossRef]
  19. M. Garrich, N. Amaya, G. Zervas, P. Giaccone, and D. Simeonidou, “Architecture on demand: Synthesis and scalability,” in 16th Int. Conf. on Optical Network Design and Modeling (ONDM), 2012, pp. 1–6.
  20. M. Garrich, N. Amaya, G. Zervas, P. Giaccone, and D. Simeonidou, “Power consumption analysis of architecture on demand,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.
  21. M. Dzanko, B. Mikac, N. Gonzalez, G. Zervas, and D. Simeonidou, “Availability analysis of optical cross-connect implemented by architecture on demand,” in 14th Int. Conf. on Transparent Optical Networks (ICTON), 2012, pp. 1–4.
  22. M. Dzanko, M. Furdek, N. Gonzalez, G. Zervas, B. Mikac, and D. Simeonidou, “Self-healing optical networks with architecture on demand nodes,” in 39th European Conf. and Exhibition on Optical Communication (ECOC), 2013, pp. 1–3.
  23. A. Pages, J. Perello, and S. Spadaro, “Lightpath fragmentation for efficient spectrum utilization in dynamic elastic optical networks,” in 16th Int. Conf. on Optical Network Design and Modeling (ONDM), 2012, pp. 1–6.
  24. Y. Wang, X. Cao, and Y. Pan, “A study of the routing and spectrum allocation in spectrum-sliced elastic optical path networks,” in IEEE INFOCOM, 2011, pp. 1503–1511.
  25. M. Zhang, Y. Yin, R. Proietti, Z. Zhu, and S. Yoo, “Spectrum defragmentation algorithms for elastic optical networks using hitless spectrum retuning techniques,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2013, pp. 1–3.
  26. P. Zhang, J. Li, B. Guo, Y. He, Z. Chen, and H. Wu, “Comparison of node architectures for elastic optical networks with waveband conversion,” China Commun., vol.  10, no. 8, pp. 77–87, 2013.
  27. M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, 2010.
    [CrossRef]
  28. ILOG CPLEX [Online]. Available: http://www.ilog.com .
  29. J. Y. Yen, “Finding the K shortest loopless paths in a network,” Manage. Sci., vol.  17, no. 11, pp. 712–716, 1971.
    [CrossRef]
  30. Y. Li, F. Zhang, and R. Casellas, “Flexible grid label format in wavelength switched optical network,” IETF RFC Draft, 2012.
  31. Polatis products [Online]. Available: http://www.polatis.com .
  32. K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Routing and spectrum allocation in OFDM-based optical networks with elastic bandwidth allocation,” in IEEE Global Telecommunications Conf. (GLOBECOM), 2010, pp. 1–6.
  33. Finisar’s Waveshaper [Online]. Available: http://www.finisar.com .
  34. Calient’s Fiber Connect [Online]. Available: http://www.calient.net/products/ .

2013 (2)

N. Amaya, G. Zervas, and D. Simeonidou, “Introducing node architecture flexibility for elastic optical networks,” J. Opt. Commun. Netw., vol.  5, no. 6, pp. 593–608, 2013.
[CrossRef]

P. Zhang, J. Li, B. Guo, Y. He, Z. Chen, and H. Wu, “Comparison of node architectures for elastic optical networks with waveband conversion,” China Commun., vol.  10, no. 8, pp. 77–87, 2013.

2012 (1)

Y. Wang and X. Cao, “Multi-granular optical switching: A classified overview for the past and future,” IEEE Commun. Surv. Tutorials, vol.  14, no. 3, pp. 698–713, 2012.

2010 (3)

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, 2010.
[CrossRef]

S. K. Korotky, R.-J. Essiambre, and R. W. Tkach, “Expectations of optical network traffic gain afforded by bit rate adaptive transmission,” Bell Labs Tech. J., vol.  14, no. 4, pp. 285–295, 2010.
[CrossRef]

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, 2010.
[CrossRef]

2009 (1)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, 2009.
[CrossRef]

1971 (1)

J. Y. Yen, “Finding the K shortest loopless paths in a network,” Manage. Sci., vol.  17, no. 11, pp. 712–716, 1971.
[CrossRef]

Amaya, N.

N. Amaya, G. Zervas, and D. Simeonidou, “Introducing node architecture flexibility for elastic optical networks,” J. Opt. Commun. Netw., vol.  5, no. 6, pp. 593–608, 2013.
[CrossRef]

N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, J. Sakaguchi, W. Klaus, B. J. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, and I. Henning, “First fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

N. Amaya, G. Zervas, and D. Simeonidou, “Architecture on demand for transparent optical networks,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–4.

N. Amaya, G. Zervas, B. Rofoee, M. Irfan, Y. Qin, and D. Simeonidou, “Field trial of a 1.5  Tb/s adaptive and gridless OXC supporting elastic 1000-fold bandwidth granularity,” in 37th European Conf. and Exhibition on Optical Communication (ECOC), 2011, pp. 1–3.

M. Garrich, N. Amaya, G. Zervas, P. Giaccone, and D. Simeonidou, “Architecture on demand: Synthesis and scalability,” in 16th Int. Conf. on Optical Network Design and Modeling (ONDM), 2012, pp. 1–6.

M. Garrich, N. Amaya, G. Zervas, P. Giaccone, and D. Simeonidou, “Power consumption analysis of architecture on demand,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

Aono, Y.

P. Ji and Y. Aono, “Colorless and directionless multi-degree reconfigurable optical add/drop multiplexers,” in 19th Annual Wireless and Optical Communications Conf. (WOCC), 2010, pp. 1–5.

Autenrieth, A.

A. Autenrieth, A. K. Tilwankar, C. M. Machuca, and J.-P. Elbers, “Power consumption analysis of opaque and transparent optical core networks,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–5.

Awaji, Y.

N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, J. Sakaguchi, W. Klaus, B. J. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, and I. Henning, “First fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

Basch, B.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, 2010.
[CrossRef]

Cao, X.

Y. Wang and X. Cao, “Multi-granular optical switching: A classified overview for the past and future,” IEEE Commun. Surv. Tutorials, vol.  14, no. 3, pp. 698–713, 2012.

Y. Wang, X. Cao, and Y. Pan, “A study of the routing and spectrum allocation in spectrum-sliced elastic optical path networks,” in IEEE INFOCOM, 2011, pp. 1503–1511.

Casellas, R.

Y. Li, F. Zhang, and R. Casellas, “Flexible grid label format in wavelength switched optical network,” IETF RFC Draft, 2012.

Chen, Z.

P. Zhang, J. Li, B. Guo, Y. He, Z. Chen, and H. Wu, “Comparison of node architectures for elastic optical networks with waveband conversion,” China Commun., vol.  10, no. 8, pp. 77–87, 2013.

Chong, A.

A. Morea, A. Chong, and O. Rival, “Impact of transparent network constraints on capacity gain of elastic channel spacing,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2011, pp. 1–3.

Christodoulopoulos, K.

K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Routing and spectrum allocation in OFDM-based optical networks with elastic bandwidth allocation,” in IEEE Global Telecommunications Conf. (GLOBECOM), 2010, pp. 1–6.

Devarajan, A.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), 2010, pp. 1–10.

Dzanko, M.

M. Dzanko, M. Furdek, N. Gonzalez, G. Zervas, B. Mikac, and D. Simeonidou, “Self-healing optical networks with architecture on demand nodes,” in 39th European Conf. and Exhibition on Optical Communication (ECOC), 2013, pp. 1–3.

M. Dzanko, B. Mikac, N. Gonzalez, G. Zervas, and D. Simeonidou, “Availability analysis of optical cross-connect implemented by architecture on demand,” in 14th Int. Conf. on Transparent Optical Networks (ICTON), 2012, pp. 1–4.

Egorov, R.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, 2010.
[CrossRef]

Elbers, J.-P.

A. Autenrieth, A. K. Tilwankar, C. M. Machuca, and J.-P. Elbers, “Power consumption analysis of opaque and transparent optical core networks,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–5.

Essiambre, R.-J.

S. K. Korotky, R.-J. Essiambre, and R. W. Tkach, “Expectations of optical network traffic gain afforded by bit rate adaptive transmission,” Bell Labs Tech. J., vol.  14, no. 4, pp. 285–295, 2010.
[CrossRef]

Furdek, M.

M. Dzanko, M. Furdek, N. Gonzalez, G. Zervas, B. Mikac, and D. Simeonidou, “Self-healing optical networks with architecture on demand nodes,” in 39th European Conf. and Exhibition on Optical Communication (ECOC), 2013, pp. 1–3.

Garrich, M.

M. Garrich, N. Amaya, G. Zervas, P. Giaccone, and D. Simeonidou, “Architecture on demand: Synthesis and scalability,” in 16th Int. Conf. on Optical Network Design and Modeling (ONDM), 2012, pp. 1–6.

M. Garrich, N. Amaya, G. Zervas, P. Giaccone, and D. Simeonidou, “Power consumption analysis of architecture on demand,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

Giaccone, P.

M. Garrich, N. Amaya, G. Zervas, P. Giaccone, and D. Simeonidou, “Architecture on demand: Synthesis and scalability,” in 16th Int. Conf. on Optical Network Design and Modeling (ONDM), 2012, pp. 1–6.

M. Garrich, N. Amaya, G. Zervas, P. Giaccone, and D. Simeonidou, “Power consumption analysis of architecture on demand,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

Gonzalez, N.

M. Dzanko, B. Mikac, N. Gonzalez, G. Zervas, and D. Simeonidou, “Availability analysis of optical cross-connect implemented by architecture on demand,” in 14th Int. Conf. on Transparent Optical Networks (ICTON), 2012, pp. 1–4.

M. Dzanko, M. Furdek, N. Gonzalez, G. Zervas, B. Mikac, and D. Simeonidou, “Self-healing optical networks with architecture on demand nodes,” in 39th European Conf. and Exhibition on Optical Communication (ECOC), 2013, pp. 1–3.

Gowrishankar, R.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), 2010, pp. 1–10.

Gringeri, S.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, 2010.
[CrossRef]

Guo, B.

P. Zhang, J. Li, B. Guo, Y. He, Z. Chen, and H. Wu, “Comparison of node architectures for elastic optical networks with waveband conversion,” China Commun., vol.  10, no. 8, pp. 77–87, 2013.

He, Y.

P. Zhang, J. Li, B. Guo, Y. He, Z. Chen, and H. Wu, “Comparison of node architectures for elastic optical networks with waveband conversion,” China Commun., vol.  10, no. 8, pp. 77–87, 2013.

Henning, I.

N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, J. Sakaguchi, W. Klaus, B. J. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, and I. Henning, “First fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

Hirano, A.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, 2010.
[CrossRef]

Irfan, M.

N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, J. Sakaguchi, W. Klaus, B. J. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, and I. Henning, “First fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

N. Amaya, G. Zervas, B. Rofoee, M. Irfan, Y. Qin, and D. Simeonidou, “Field trial of a 1.5  Tb/s adaptive and gridless OXC supporting elastic 1000-fold bandwidth granularity,” in 37th European Conf. and Exhibition on Optical Communication (ECOC), 2011, pp. 1–3.

Jensen, R.

R. Jensen, “Optical switch architectures for emerging colorless/directionless/contentionless ROADM networks,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2011, pp. 1–3.

Ji, P.

P. Ji and Y. Aono, “Colorless and directionless multi-degree reconfigurable optical add/drop multiplexers,” in 19th Annual Wireless and Optical Communications Conf. (WOCC), 2010, pp. 1–5.

Jinno, M.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, 2010.
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, 2009.
[CrossRef]

M. Jinno, H. Takara, and B. Kozicki, “Dynamic optical mesh networks: Drivers, challenges, and solutions for the future,” in 35th European Conf. and Exhibition on Optical Communication (ECOC), 2009, pp. 1–3.

B. Kozicki, H. Takara, Y. Sone, A. Watanabe, and M. Jinno, “Distance-adaptive spectrum allocation in elastic optical path network (SLICE) with bit per symbol adjustment,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2010, pp. 1–3.

Johnson, R.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), 2010, pp. 1–10.

Kishore, B.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), 2010, pp. 1–10.

Klaus, W.

N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, J. Sakaguchi, W. Klaus, B. J. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, and I. Henning, “First fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

Korotky, S. K.

S. K. Korotky, R.-J. Essiambre, and R. W. Tkach, “Expectations of optical network traffic gain afforded by bit rate adaptive transmission,” Bell Labs Tech. J., vol.  14, no. 4, pp. 285–295, 2010.
[CrossRef]

Kozicki, B.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, 2010.
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, 2009.
[CrossRef]

M. Jinno, H. Takara, and B. Kozicki, “Dynamic optical mesh networks: Drivers, challenges, and solutions for the future,” in 35th European Conf. and Exhibition on Optical Communication (ECOC), 2009, pp. 1–3.

B. Kozicki, H. Takara, Y. Sone, A. Watanabe, and M. Jinno, “Distance-adaptive spectrum allocation in elastic optical path network (SLICE) with bit per symbol adjustment,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2010, pp. 1–3.

Li, J.

P. Zhang, J. Li, B. Guo, Y. He, Z. Chen, and H. Wu, “Comparison of node architectures for elastic optical networks with waveband conversion,” China Commun., vol.  10, no. 8, pp. 77–87, 2013.

Li, Y.

Y. Li, F. Zhang, and R. Casellas, “Flexible grid label format in wavelength switched optical network,” IETF RFC Draft, 2012.

Machuca, C. M.

A. Autenrieth, A. K. Tilwankar, C. M. Machuca, and J.-P. Elbers, “Power consumption analysis of opaque and transparent optical core networks,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–5.

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, 2009.
[CrossRef]

Mikac, B.

M. Dzanko, B. Mikac, N. Gonzalez, G. Zervas, and D. Simeonidou, “Availability analysis of optical cross-connect implemented by architecture on demand,” in 14th Int. Conf. on Transparent Optical Networks (ICTON), 2012, pp. 1–4.

M. Dzanko, M. Furdek, N. Gonzalez, G. Zervas, B. Mikac, and D. Simeonidou, “Self-healing optical networks with architecture on demand nodes,” in 39th European Conf. and Exhibition on Optical Communication (ECOC), 2013, pp. 1–3.

Miyazawa, T.

N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, J. Sakaguchi, W. Klaus, B. J. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, and I. Henning, “First fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

Monroy, I.

J. L. Vizcaino, Y. Ye, and I. Monroy, “Energy efficiency in elastic-bandwidth optical networks,” in Int. Conf. on the Network of the Future (NOF), 2011, pp. 107–111.

Morea, A.

O. Rival and A. Morea, “Cost-efficiency of mixed 10-40-100 Gbps networks and elastic optical networks,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2011, pp. 1–3.

A. Morea, A. Chong, and O. Rival, “Impact of transparent network constraints on capacity gain of elastic channel spacing,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2011, pp. 1–3.

Murakami, M.

M. Murakami and K. Oda, “Power consumption analysis of optical cross-connect equipment for future large capacity optical networks,” in 11th Int. Conf. on Transparent Optical Networks (ICTON), 2009, pp. 1–4.

Nejabati, R.

N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, J. Sakaguchi, W. Klaus, B. J. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, and I. Henning, “First fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

Oda, K.

M. Murakami and K. Oda, “Power consumption analysis of optical cross-connect equipment for future large capacity optical networks,” in 11th Int. Conf. on Transparent Optical Networks (ICTON), 2009, pp. 1–4.

Pages, A.

A. Pages, J. Perello, and S. Spadaro, “Lightpath fragmentation for efficient spectrum utilization in dynamic elastic optical networks,” in 16th Int. Conf. on Optical Network Design and Modeling (ONDM), 2012, pp. 1–6.

Pan, Y.

Y. Wang, X. Cao, and Y. Pan, “A study of the routing and spectrum allocation in spectrum-sliced elastic optical path networks,” in IEEE INFOCOM, 2011, pp. 1503–1511.

Perello, J.

A. Pages, J. Perello, and S. Spadaro, “Lightpath fragmentation for efficient spectrum utilization in dynamic elastic optical networks,” in 16th Int. Conf. on Optical Network Design and Modeling (ONDM), 2012, pp. 1–6.

Prasanna, G.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), 2010, pp. 1–10.

Proietti, R.

M. Zhang, Y. Yin, R. Proietti, Z. Zhu, and S. Yoo, “Spectrum defragmentation algorithms for elastic optical networks using hitless spectrum retuning techniques,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2013, pp. 1–3.

Puttnam, B. J.

N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, J. Sakaguchi, W. Klaus, B. J. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, and I. Henning, “First fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

Qin, Y.

N. Amaya, G. Zervas, B. Rofoee, M. Irfan, Y. Qin, and D. Simeonidou, “Field trial of a 1.5  Tb/s adaptive and gridless OXC supporting elastic 1000-fold bandwidth granularity,” in 37th European Conf. and Exhibition on Optical Communication (ECOC), 2011, pp. 1–3.

Rival, O.

O. Rival and A. Morea, “Cost-efficiency of mixed 10-40-100 Gbps networks and elastic optical networks,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2011, pp. 1–3.

A. Morea, A. Chong, and O. Rival, “Impact of transparent network constraints on capacity gain of elastic channel spacing,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2011, pp. 1–3.

Rofoee, B.

N. Amaya, G. Zervas, B. Rofoee, M. Irfan, Y. Qin, and D. Simeonidou, “Field trial of a 1.5  Tb/s adaptive and gridless OXC supporting elastic 1000-fold bandwidth granularity,” in 37th European Conf. and Exhibition on Optical Communication (ECOC), 2011, pp. 1–3.

Sakaguchi, J.

N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, J. Sakaguchi, W. Klaus, B. J. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, and I. Henning, “First fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

Sandesha, K.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), 2010, pp. 1–10.

Shukla, V.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, 2010.
[CrossRef]

Simeonidou, D.

N. Amaya, G. Zervas, and D. Simeonidou, “Introducing node architecture flexibility for elastic optical networks,” J. Opt. Commun. Netw., vol.  5, no. 6, pp. 593–608, 2013.
[CrossRef]

M. Garrich, N. Amaya, G. Zervas, P. Giaccone, and D. Simeonidou, “Architecture on demand: Synthesis and scalability,” in 16th Int. Conf. on Optical Network Design and Modeling (ONDM), 2012, pp. 1–6.

M. Garrich, N. Amaya, G. Zervas, P. Giaccone, and D. Simeonidou, “Power consumption analysis of architecture on demand,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

M. Dzanko, B. Mikac, N. Gonzalez, G. Zervas, and D. Simeonidou, “Availability analysis of optical cross-connect implemented by architecture on demand,” in 14th Int. Conf. on Transparent Optical Networks (ICTON), 2012, pp. 1–4.

M. Dzanko, M. Furdek, N. Gonzalez, G. Zervas, B. Mikac, and D. Simeonidou, “Self-healing optical networks with architecture on demand nodes,” in 39th European Conf. and Exhibition on Optical Communication (ECOC), 2013, pp. 1–3.

N. Amaya, G. Zervas, and D. Simeonidou, “Architecture on demand for transparent optical networks,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–4.

N. Amaya, G. Zervas, B. Rofoee, M. Irfan, Y. Qin, and D. Simeonidou, “Field trial of a 1.5  Tb/s adaptive and gridless OXC supporting elastic 1000-fold bandwidth granularity,” in 37th European Conf. and Exhibition on Optical Communication (ECOC), 2011, pp. 1–3.

N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, J. Sakaguchi, W. Klaus, B. J. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, and I. Henning, “First fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

Sone, Y.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, 2010.
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, 2009.
[CrossRef]

B. Kozicki, H. Takara, Y. Sone, A. Watanabe, and M. Jinno, “Distance-adaptive spectrum allocation in elastic optical path network (SLICE) with bit per symbol adjustment,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2010, pp. 1–3.

Spadaro, S.

A. Pages, J. Perello, and S. Spadaro, “Lightpath fragmentation for efficient spectrum utilization in dynamic elastic optical networks,” in 16th Int. Conf. on Optical Network Design and Modeling (ONDM), 2012, pp. 1–6.

Takara, H.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, 2010.
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, 2009.
[CrossRef]

B. Kozicki, H. Takara, Y. Sone, A. Watanabe, and M. Jinno, “Distance-adaptive spectrum allocation in elastic optical path network (SLICE) with bit per symbol adjustment,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2010, pp. 1–3.

M. Jinno, H. Takara, and B. Kozicki, “Dynamic optical mesh networks: Drivers, challenges, and solutions for the future,” in 35th European Conf. and Exhibition on Optical Communication (ECOC), 2009, pp. 1–3.

Tanaka, T.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, 2010.
[CrossRef]

Tilwankar, A. K.

A. Autenrieth, A. K. Tilwankar, C. M. Machuca, and J.-P. Elbers, “Power consumption analysis of opaque and transparent optical core networks,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–5.

Tkach, R. W.

S. K. Korotky, R.-J. Essiambre, and R. W. Tkach, “Expectations of optical network traffic gain afforded by bit rate adaptive transmission,” Bell Labs Tech. J., vol.  14, no. 4, pp. 285–295, 2010.
[CrossRef]

Tomkos, I.

K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Routing and spectrum allocation in OFDM-based optical networks with elastic bandwidth allocation,” in IEEE Global Telecommunications Conf. (GLOBECOM), 2010, pp. 1–6.

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, 2009.
[CrossRef]

Varvarigos, E.

K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Routing and spectrum allocation in OFDM-based optical networks with elastic bandwidth allocation,” in IEEE Global Telecommunications Conf. (GLOBECOM), 2010, pp. 1–6.

Vizcaino, J. L.

J. L. Vizcaino, Y. Ye, and I. Monroy, “Energy efficiency in elastic-bandwidth optical networks,” in Int. Conf. on the Network of the Future (NOF), 2011, pp. 107–111.

Voruganti, P.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), 2010, pp. 1–10.

Wada, N.

N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, J. Sakaguchi, W. Klaus, B. J. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, and I. Henning, “First fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

Wang, Y.

Y. Wang and X. Cao, “Multi-granular optical switching: A classified overview for the past and future,” IEEE Commun. Surv. Tutorials, vol.  14, no. 3, pp. 698–713, 2012.

Y. Wang, X. Cao, and Y. Pan, “A study of the routing and spectrum allocation in spectrum-sliced elastic optical path networks,” in IEEE INFOCOM, 2011, pp. 1503–1511.

Watanabe, A.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, 2010.
[CrossRef]

B. Kozicki, H. Takara, Y. Sone, A. Watanabe, and M. Jinno, “Distance-adaptive spectrum allocation in elastic optical path network (SLICE) with bit per symbol adjustment,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2010, pp. 1–3.

Wu, H.

P. Zhang, J. Li, B. Guo, Y. He, Z. Chen, and H. Wu, “Comparison of node architectures for elastic optical networks with waveband conversion,” China Commun., vol.  10, no. 8, pp. 77–87, 2013.

Xia, T.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, 2010.
[CrossRef]

Ye, Y.

J. L. Vizcaino, Y. Ye, and I. Monroy, “Energy efficiency in elastic-bandwidth optical networks,” in Int. Conf. on the Network of the Future (NOF), 2011, pp. 107–111.

Yen, J. Y.

J. Y. Yen, “Finding the K shortest loopless paths in a network,” Manage. Sci., vol.  17, no. 11, pp. 712–716, 1971.
[CrossRef]

Yin, Y.

M. Zhang, Y. Yin, R. Proietti, Z. Zhu, and S. Yoo, “Spectrum defragmentation algorithms for elastic optical networks using hitless spectrum retuning techniques,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2013, pp. 1–3.

Yoo, S.

M. Zhang, Y. Yin, R. Proietti, Z. Zhu, and S. Yoo, “Spectrum defragmentation algorithms for elastic optical networks using hitless spectrum retuning techniques,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2013, pp. 1–3.

Zervas, G.

N. Amaya, G. Zervas, and D. Simeonidou, “Introducing node architecture flexibility for elastic optical networks,” J. Opt. Commun. Netw., vol.  5, no. 6, pp. 593–608, 2013.
[CrossRef]

N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, J. Sakaguchi, W. Klaus, B. J. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, and I. Henning, “First fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

N. Amaya, G. Zervas, B. Rofoee, M. Irfan, Y. Qin, and D. Simeonidou, “Field trial of a 1.5  Tb/s adaptive and gridless OXC supporting elastic 1000-fold bandwidth granularity,” in 37th European Conf. and Exhibition on Optical Communication (ECOC), 2011, pp. 1–3.

N. Amaya, G. Zervas, and D. Simeonidou, “Architecture on demand for transparent optical networks,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–4.

M. Dzanko, M. Furdek, N. Gonzalez, G. Zervas, B. Mikac, and D. Simeonidou, “Self-healing optical networks with architecture on demand nodes,” in 39th European Conf. and Exhibition on Optical Communication (ECOC), 2013, pp. 1–3.

M. Garrich, N. Amaya, G. Zervas, P. Giaccone, and D. Simeonidou, “Power consumption analysis of architecture on demand,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

M. Dzanko, B. Mikac, N. Gonzalez, G. Zervas, and D. Simeonidou, “Availability analysis of optical cross-connect implemented by architecture on demand,” in 14th Int. Conf. on Transparent Optical Networks (ICTON), 2012, pp. 1–4.

M. Garrich, N. Amaya, G. Zervas, P. Giaccone, and D. Simeonidou, “Architecture on demand: Synthesis and scalability,” in 16th Int. Conf. on Optical Network Design and Modeling (ONDM), 2012, pp. 1–6.

Zhang, F.

Y. Li, F. Zhang, and R. Casellas, “Flexible grid label format in wavelength switched optical network,” IETF RFC Draft, 2012.

Zhang, M.

M. Zhang, Y. Yin, R. Proietti, Z. Zhu, and S. Yoo, “Spectrum defragmentation algorithms for elastic optical networks using hitless spectrum retuning techniques,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2013, pp. 1–3.

Zhang, P.

P. Zhang, J. Li, B. Guo, Y. He, Z. Chen, and H. Wu, “Comparison of node architectures for elastic optical networks with waveband conversion,” China Commun., vol.  10, no. 8, pp. 77–87, 2013.

Zhu, Z.

M. Zhang, Y. Yin, R. Proietti, Z. Zhu, and S. Yoo, “Spectrum defragmentation algorithms for elastic optical networks using hitless spectrum retuning techniques,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2013, pp. 1–3.

Bell Labs Tech. J. (1)

S. K. Korotky, R.-J. Essiambre, and R. W. Tkach, “Expectations of optical network traffic gain afforded by bit rate adaptive transmission,” Bell Labs Tech. J., vol.  14, no. 4, pp. 285–295, 2010.
[CrossRef]

China Commun. (1)

P. Zhang, J. Li, B. Guo, Y. He, Z. Chen, and H. Wu, “Comparison of node architectures for elastic optical networks with waveband conversion,” China Commun., vol.  10, no. 8, pp. 77–87, 2013.

IEEE Commun. Mag. (3)

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, 2010.
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, 2009.
[CrossRef]

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, 2010.
[CrossRef]

IEEE Commun. Surv. Tutorials (1)

Y. Wang and X. Cao, “Multi-granular optical switching: A classified overview for the past and future,” IEEE Commun. Surv. Tutorials, vol.  14, no. 3, pp. 698–713, 2012.

J. Opt. Commun. Netw. (1)

Manage. Sci. (1)

J. Y. Yen, “Finding the K shortest loopless paths in a network,” Manage. Sci., vol.  17, no. 11, pp. 712–716, 1971.
[CrossRef]

Other (26)

Y. Li, F. Zhang, and R. Casellas, “Flexible grid label format in wavelength switched optical network,” IETF RFC Draft, 2012.

Polatis products [Online]. Available: http://www.polatis.com .

K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Routing and spectrum allocation in OFDM-based optical networks with elastic bandwidth allocation,” in IEEE Global Telecommunications Conf. (GLOBECOM), 2010, pp. 1–6.

Finisar’s Waveshaper [Online]. Available: http://www.finisar.com .

Calient’s Fiber Connect [Online]. Available: http://www.calient.net/products/ .

A. Autenrieth, A. K. Tilwankar, C. M. Machuca, and J.-P. Elbers, “Power consumption analysis of opaque and transparent optical core networks,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–5.

M. Murakami and K. Oda, “Power consumption analysis of optical cross-connect equipment for future large capacity optical networks,” in 11th Int. Conf. on Transparent Optical Networks (ICTON), 2009, pp. 1–4.

N. Amaya, G. Zervas, and D. Simeonidou, “Architecture on demand for transparent optical networks,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–4.

N. Amaya, G. Zervas, B. Rofoee, M. Irfan, Y. Qin, and D. Simeonidou, “Field trial of a 1.5  Tb/s adaptive and gridless OXC supporting elastic 1000-fold bandwidth granularity,” in 37th European Conf. and Exhibition on Optical Communication (ECOC), 2011, pp. 1–3.

N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, J. Sakaguchi, W. Klaus, B. J. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, and I. Henning, “First fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

ILOG CPLEX [Online]. Available: http://www.ilog.com .

M. Jinno, H. Takara, and B. Kozicki, “Dynamic optical mesh networks: Drivers, challenges, and solutions for the future,” in 35th European Conf. and Exhibition on Optical Communication (ECOC), 2009, pp. 1–3.

M. Garrich, N. Amaya, G. Zervas, P. Giaccone, and D. Simeonidou, “Architecture on demand: Synthesis and scalability,” in 16th Int. Conf. on Optical Network Design and Modeling (ONDM), 2012, pp. 1–6.

M. Garrich, N. Amaya, G. Zervas, P. Giaccone, and D. Simeonidou, “Power consumption analysis of architecture on demand,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012, pp. 1–3.

M. Dzanko, B. Mikac, N. Gonzalez, G. Zervas, and D. Simeonidou, “Availability analysis of optical cross-connect implemented by architecture on demand,” in 14th Int. Conf. on Transparent Optical Networks (ICTON), 2012, pp. 1–4.

M. Dzanko, M. Furdek, N. Gonzalez, G. Zervas, B. Mikac, and D. Simeonidou, “Self-healing optical networks with architecture on demand nodes,” in 39th European Conf. and Exhibition on Optical Communication (ECOC), 2013, pp. 1–3.

A. Pages, J. Perello, and S. Spadaro, “Lightpath fragmentation for efficient spectrum utilization in dynamic elastic optical networks,” in 16th Int. Conf. on Optical Network Design and Modeling (ONDM), 2012, pp. 1–6.

Y. Wang, X. Cao, and Y. Pan, “A study of the routing and spectrum allocation in spectrum-sliced elastic optical path networks,” in IEEE INFOCOM, 2011, pp. 1503–1511.

M. Zhang, Y. Yin, R. Proietti, Z. Zhu, and S. Yoo, “Spectrum defragmentation algorithms for elastic optical networks using hitless spectrum retuning techniques,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2013, pp. 1–3.

P. Ji and Y. Aono, “Colorless and directionless multi-degree reconfigurable optical add/drop multiplexers,” in 19th Annual Wireless and Optical Communications Conf. (WOCC), 2010, pp. 1–5.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), 2010, pp. 1–10.

R. Jensen, “Optical switch architectures for emerging colorless/directionless/contentionless ROADM networks,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2011, pp. 1–3.

B. Kozicki, H. Takara, Y. Sone, A. Watanabe, and M. Jinno, “Distance-adaptive spectrum allocation in elastic optical path network (SLICE) with bit per symbol adjustment,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2010, pp. 1–3.

A. Morea, A. Chong, and O. Rival, “Impact of transparent network constraints on capacity gain of elastic channel spacing,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2011, pp. 1–3.

J. L. Vizcaino, Y. Ye, and I. Monroy, “Energy efficiency in elastic-bandwidth optical networks,” in Int. Conf. on the Network of the Future (NOF), 2011, pp. 107–111.

O. Rival and A. Morea, “Cost-efficiency of mixed 10-40-100 Gbps networks and elastic optical networks,” in Optical Fiber Communication Conf. and Expo. (OFC/NFOEC), 2011, pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (26)

Fig. 1.
Fig. 1.

AoD implementation.

Fig. 2.
Fig. 2.

AoD logical model.

Fig. 3.
Fig. 3.

Example of AoD configuration for a specific set of demands.

Fig. 4.
Fig. 4.

Example of AoD implementation for a specific set of demands.

Fig. 5.
Fig. 5.

Traffic demand matrices.

Fig. 6.
Fig. 6.

Sample topology.

Fig. 7.
Fig. 7.

Network with static ROADMs.

Fig. 8.
Fig. 8.

Network configuration for demands=20 using AoD nodes.

Fig. 9.
Fig. 9.

Network configuration for demands=10 using AoD nodes.

Fig. 10.
Fig. 10.

NSF topology with 14 nodes and 42 unidirectional links.

Fig. 11.
Fig. 11.

COST239 topology with 11 nodes and 52 unidirectional links.

Fig. 12.
Fig. 12.

Sample topology: number of switching modules versus traffic demands.

Fig. 13.
Fig. 13.

Sample topology: number of switching modules versus traffic demands, for nodes with different nodal degree.

Fig. 14.
Fig. 14.

Number of switching modules versus network load, for NSF and COST239 topologies.

Fig. 15.
Fig. 15.

Average switching module savings versus network load, for NSF and COST239 topologies.

Fig. 16.
Fig. 16.

NSF topology: number of switching modules installed in the network nodes versus network node number.

Fig. 17.
Fig. 17.

COST239 topology: number of switching modules installed in the network nodes versus network node number.

Fig. 18.
Fig. 18.

NSF topology: network resource utilization per link versus network link number.

Fig. 19.
Fig. 19.

Cost239 topology: network resource utilization per link versus network link number.

Fig. 20.
Fig. 20.

NSF topology: number of cross-connections per node versus network node number.

Fig. 21.
Fig. 21.

COST239 topology: number of cross-connections per node versus network node number.

Fig. 22.
Fig. 22.

Network power consumption versus network load, for NSF and COST239 topologies.

Fig. 23.
Fig. 23.

Average power saving versus network load, for NSF and COST239 topologies.

Fig. 24.
Fig. 24.

NSF topology: blocking probability (LHS) and average module savings (RHS) versus offered network load.

Fig. 25.
Fig. 25.

NSF topology: blocking probability versus offered network load.

Fig. 26.
Fig. 26.

COST239 topology: blocking probability (LHS) and average module savings (RHS) versus offered network load.

Tables (3)

Tables Icon

Algorithm 1 Network Fabrication With Minimum Processing Modules

Tables Icon

Algorithm 2 Synthesis Strategy for Dynamic Scenario

Tables Icon

TABLE I Power Consumption Contributions

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Minimize:MFN.
MFN=nV((u,v)v=nMin,uv+(v,w)v=nMon,vw),
π^dπdxπ^d=1dD,
s^Ffs^,i˜j˜d=Ωd(i˜,j˜)Hπ^d,dD,
lϒKl·s^F|s^|·fs^,i˜j˜dlϒs^FKl·|s^|·fs^,i˜j˜d=0dD,
fs^,i˜j˜d+d^D:Hπ^dHπ^d^Øfs^,i˜j˜d^1(i˜,j˜)Hπ^d,dD,
d:(v,w)Hπ^dxπ^dC·Φuv,vwn(v,w)v=n,nV,
(v,w)v=nΦuv,vwnC·Min,uv<2(u,v)v=n,nV,
d:(u,v)Hπ^dxπ^dC·ψvw,uvn(u,v)v=n,nV,
(u,v)v=nψvw,uvnC·Mon,vw<2(v,w)v=n,nV.
Cπ^dd=|Hπ^d|+(FSπ^dFSS(π^d)).