Abstract

Estimation of link-dependent parameters of optical transport networks is quite complex without the availability of complete network information. However, at the network planning stage these estimations are to be done with incomplete information, and need to be accurate. In this paper, we provide effective methods to estimate link-dependent parameters of optical transport networks when only partial information about the network is available. We use the link length statistical distribution model for these estimations. This approach is applied to 40 real transport networks and shown to be more accurate than the previously proposed methods. The improved accuracy of the proposed methods is achieved without extra network details: only the network node locations and the total number of links are needed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Routray, R. M. Morais, J. R. F. da Rocha, and A. N. Pinto, “Statistical model for link lengths in optical transport networks,” J. Opt. Commun. Netw., vol.  5, no. 7, pp. 762–773, July 2013.
    [CrossRef]
  2. S. K. Korotky, “Network global expectation model: A statistical formalism for quickly quantifying network needs and costs,” J. Lightwave Technol., vol.  22, no. 3, pp. 703–722, Mar. 2004.
    [CrossRef]
  3. J. F. Labourdette, E. Bouillet, R. Ramamurthy, and A. A. Akyamaç, “Fast approximate dimensioning and performance analysis of mesh optical networks,” IEEE/ACM Trans. Netw., vol.  13, no. 4, pp. 906–917, Aug. 2005.
    [CrossRef]
  4. A. N. Pinto, C. Pavan, and R. M. Morais, “Dimensioning optical networks: A practical approach,” in Proc. Int. Conf. on Transparent Networks (ICTON), Munich, Germany, June 2010.
  5. A. N. Pinto, C. Pavan, R. M. Morais, and A. Correia, “Cost evaluation in optical networks,” Proc. Int. Conf. on Transparent Networks (ICTON), Stockholm, Sweden, June 2011.
  6. C. Pavan, R. M. Morais, and A. N. Pinto, “Estimation of CapEx in survivable optical transport networks,” in Proc. European Conf. on Networks and Optical Communications (NOC), Faro, Portugal, June 2010, vol. 1, pp. 263–268.
  7. A. N. Pinto, C. Pavan, and R. M. Morais, “A statistical model to CAPEX fast calculation in optical transport networks,” in Proc. Int. Conf. on Transparent Networks (ICTON), Ilha de São Miguel-Açores, Portugal, June 2009, vol. 1.
  8. C. Pavan, R. Morais, A. Correia, and A. Pinto, “Dimensioning of optical networks with incomplete information,” in Proc. 6th Advanced Int. Conf. on Telecommunications (AICT ‘08), Athens, Greece, June 2008, pp. 261–264.
  9. C. Pavan, R. M. Morais, and A. N. Pinto, “Estimating CapEx in optical multilayer networks,” in Proc. of the 7th Conf. on Telecommunications (ConfTele’09), Santa Maria da Feira, Portugal, May 2009, pp. 335–338.
  10. S. Kotz and S. Nadarajah, Extreme Value Distributions: Theory and Applications. Imperial College London, 2000.
  11. K. Chirstodoulopoulos, I. Tomkos, and E. A. Varvarigos, “Elastic bandwidth allocation in flexible OFDM-based optical networks,” J. Lightwave Technol., vol.  29, no. 9, pp. 1354–1366, May 2011.
    [CrossRef]
  12. A. Bocoi, M. Schuster, F. Rambach, M. Kiese, C.-A. Bunge, and B. Spinnler, “Reach-dependent capacity in optical networks enabled by OFDM,” in Proc. of OFC, 2009, paper OMQ4.
  13. M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, Aug. 2010.
    [CrossRef]

2013 (1)

2011 (1)

2010 (1)

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, Aug. 2010.
[CrossRef]

2005 (1)

J. F. Labourdette, E. Bouillet, R. Ramamurthy, and A. A. Akyamaç, “Fast approximate dimensioning and performance analysis of mesh optical networks,” IEEE/ACM Trans. Netw., vol.  13, no. 4, pp. 906–917, Aug. 2005.
[CrossRef]

2004 (1)

Akyamaç, A. A.

J. F. Labourdette, E. Bouillet, R. Ramamurthy, and A. A. Akyamaç, “Fast approximate dimensioning and performance analysis of mesh optical networks,” IEEE/ACM Trans. Netw., vol.  13, no. 4, pp. 906–917, Aug. 2005.
[CrossRef]

Bocoi, A.

A. Bocoi, M. Schuster, F. Rambach, M. Kiese, C.-A. Bunge, and B. Spinnler, “Reach-dependent capacity in optical networks enabled by OFDM,” in Proc. of OFC, 2009, paper OMQ4.

Bouillet, E.

J. F. Labourdette, E. Bouillet, R. Ramamurthy, and A. A. Akyamaç, “Fast approximate dimensioning and performance analysis of mesh optical networks,” IEEE/ACM Trans. Netw., vol.  13, no. 4, pp. 906–917, Aug. 2005.
[CrossRef]

Bunge, C.-A.

A. Bocoi, M. Schuster, F. Rambach, M. Kiese, C.-A. Bunge, and B. Spinnler, “Reach-dependent capacity in optical networks enabled by OFDM,” in Proc. of OFC, 2009, paper OMQ4.

Chirstodoulopoulos, K.

Correia, A.

C. Pavan, R. Morais, A. Correia, and A. Pinto, “Dimensioning of optical networks with incomplete information,” in Proc. 6th Advanced Int. Conf. on Telecommunications (AICT ‘08), Athens, Greece, June 2008, pp. 261–264.

A. N. Pinto, C. Pavan, R. M. Morais, and A. Correia, “Cost evaluation in optical networks,” Proc. Int. Conf. on Transparent Networks (ICTON), Stockholm, Sweden, June 2011.

da Rocha, J. R. F.

Hirano, A.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, Aug. 2010.
[CrossRef]

Jinno, M.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, Aug. 2010.
[CrossRef]

Kiese, M.

A. Bocoi, M. Schuster, F. Rambach, M. Kiese, C.-A. Bunge, and B. Spinnler, “Reach-dependent capacity in optical networks enabled by OFDM,” in Proc. of OFC, 2009, paper OMQ4.

Korotky, S. K.

Kotz, S.

S. Kotz and S. Nadarajah, Extreme Value Distributions: Theory and Applications. Imperial College London, 2000.

Kozicki, B.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, Aug. 2010.
[CrossRef]

Labourdette, J. F.

J. F. Labourdette, E. Bouillet, R. Ramamurthy, and A. A. Akyamaç, “Fast approximate dimensioning and performance analysis of mesh optical networks,” IEEE/ACM Trans. Netw., vol.  13, no. 4, pp. 906–917, Aug. 2005.
[CrossRef]

Morais, R.

C. Pavan, R. Morais, A. Correia, and A. Pinto, “Dimensioning of optical networks with incomplete information,” in Proc. 6th Advanced Int. Conf. on Telecommunications (AICT ‘08), Athens, Greece, June 2008, pp. 261–264.

Morais, R. M.

S. K. Routray, R. M. Morais, J. R. F. da Rocha, and A. N. Pinto, “Statistical model for link lengths in optical transport networks,” J. Opt. Commun. Netw., vol.  5, no. 7, pp. 762–773, July 2013.
[CrossRef]

A. N. Pinto, C. Pavan, R. M. Morais, and A. Correia, “Cost evaluation in optical networks,” Proc. Int. Conf. on Transparent Networks (ICTON), Stockholm, Sweden, June 2011.

A. N. Pinto, C. Pavan, and R. M. Morais, “A statistical model to CAPEX fast calculation in optical transport networks,” in Proc. Int. Conf. on Transparent Networks (ICTON), Ilha de São Miguel-Açores, Portugal, June 2009, vol. 1.

A. N. Pinto, C. Pavan, and R. M. Morais, “Dimensioning optical networks: A practical approach,” in Proc. Int. Conf. on Transparent Networks (ICTON), Munich, Germany, June 2010.

C. Pavan, R. M. Morais, and A. N. Pinto, “Estimation of CapEx in survivable optical transport networks,” in Proc. European Conf. on Networks and Optical Communications (NOC), Faro, Portugal, June 2010, vol. 1, pp. 263–268.

C. Pavan, R. M. Morais, and A. N. Pinto, “Estimating CapEx in optical multilayer networks,” in Proc. of the 7th Conf. on Telecommunications (ConfTele’09), Santa Maria da Feira, Portugal, May 2009, pp. 335–338.

Nadarajah, S.

S. Kotz and S. Nadarajah, Extreme Value Distributions: Theory and Applications. Imperial College London, 2000.

Pavan, C.

C. Pavan, R. M. Morais, and A. N. Pinto, “Estimating CapEx in optical multilayer networks,” in Proc. of the 7th Conf. on Telecommunications (ConfTele’09), Santa Maria da Feira, Portugal, May 2009, pp. 335–338.

C. Pavan, R. M. Morais, and A. N. Pinto, “Estimation of CapEx in survivable optical transport networks,” in Proc. European Conf. on Networks and Optical Communications (NOC), Faro, Portugal, June 2010, vol. 1, pp. 263–268.

A. N. Pinto, C. Pavan, and R. M. Morais, “Dimensioning optical networks: A practical approach,” in Proc. Int. Conf. on Transparent Networks (ICTON), Munich, Germany, June 2010.

C. Pavan, R. Morais, A. Correia, and A. Pinto, “Dimensioning of optical networks with incomplete information,” in Proc. 6th Advanced Int. Conf. on Telecommunications (AICT ‘08), Athens, Greece, June 2008, pp. 261–264.

A. N. Pinto, C. Pavan, and R. M. Morais, “A statistical model to CAPEX fast calculation in optical transport networks,” in Proc. Int. Conf. on Transparent Networks (ICTON), Ilha de São Miguel-Açores, Portugal, June 2009, vol. 1.

A. N. Pinto, C. Pavan, R. M. Morais, and A. Correia, “Cost evaluation in optical networks,” Proc. Int. Conf. on Transparent Networks (ICTON), Stockholm, Sweden, June 2011.

Pinto, A.

C. Pavan, R. Morais, A. Correia, and A. Pinto, “Dimensioning of optical networks with incomplete information,” in Proc. 6th Advanced Int. Conf. on Telecommunications (AICT ‘08), Athens, Greece, June 2008, pp. 261–264.

Pinto, A. N.

S. K. Routray, R. M. Morais, J. R. F. da Rocha, and A. N. Pinto, “Statistical model for link lengths in optical transport networks,” J. Opt. Commun. Netw., vol.  5, no. 7, pp. 762–773, July 2013.
[CrossRef]

A. N. Pinto, C. Pavan, R. M. Morais, and A. Correia, “Cost evaluation in optical networks,” Proc. Int. Conf. on Transparent Networks (ICTON), Stockholm, Sweden, June 2011.

A. N. Pinto, C. Pavan, and R. M. Morais, “A statistical model to CAPEX fast calculation in optical transport networks,” in Proc. Int. Conf. on Transparent Networks (ICTON), Ilha de São Miguel-Açores, Portugal, June 2009, vol. 1.

A. N. Pinto, C. Pavan, and R. M. Morais, “Dimensioning optical networks: A practical approach,” in Proc. Int. Conf. on Transparent Networks (ICTON), Munich, Germany, June 2010.

C. Pavan, R. M. Morais, and A. N. Pinto, “Estimation of CapEx in survivable optical transport networks,” in Proc. European Conf. on Networks and Optical Communications (NOC), Faro, Portugal, June 2010, vol. 1, pp. 263–268.

C. Pavan, R. M. Morais, and A. N. Pinto, “Estimating CapEx in optical multilayer networks,” in Proc. of the 7th Conf. on Telecommunications (ConfTele’09), Santa Maria da Feira, Portugal, May 2009, pp. 335–338.

Ramamurthy, R.

J. F. Labourdette, E. Bouillet, R. Ramamurthy, and A. A. Akyamaç, “Fast approximate dimensioning and performance analysis of mesh optical networks,” IEEE/ACM Trans. Netw., vol.  13, no. 4, pp. 906–917, Aug. 2005.
[CrossRef]

Rambach, F.

A. Bocoi, M. Schuster, F. Rambach, M. Kiese, C.-A. Bunge, and B. Spinnler, “Reach-dependent capacity in optical networks enabled by OFDM,” in Proc. of OFC, 2009, paper OMQ4.

Routray, S. K.

Schuster, M.

A. Bocoi, M. Schuster, F. Rambach, M. Kiese, C.-A. Bunge, and B. Spinnler, “Reach-dependent capacity in optical networks enabled by OFDM,” in Proc. of OFC, 2009, paper OMQ4.

Sone, Y.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, Aug. 2010.
[CrossRef]

Spinnler, B.

A. Bocoi, M. Schuster, F. Rambach, M. Kiese, C.-A. Bunge, and B. Spinnler, “Reach-dependent capacity in optical networks enabled by OFDM,” in Proc. of OFC, 2009, paper OMQ4.

Takara, H.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, Aug. 2010.
[CrossRef]

Tanaka, T.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, Aug. 2010.
[CrossRef]

Tomkos, I.

Varvarigos, E. A.

Watanabe, A.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, Aug. 2010.
[CrossRef]

IEEE Commun. Mag. (1)

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, Aug. 2010.
[CrossRef]

IEEE/ACM Trans. Netw. (1)

J. F. Labourdette, E. Bouillet, R. Ramamurthy, and A. A. Akyamaç, “Fast approximate dimensioning and performance analysis of mesh optical networks,” IEEE/ACM Trans. Netw., vol.  13, no. 4, pp. 906–917, Aug. 2005.
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (1)

Other (8)

A. N. Pinto, C. Pavan, and R. M. Morais, “Dimensioning optical networks: A practical approach,” in Proc. Int. Conf. on Transparent Networks (ICTON), Munich, Germany, June 2010.

A. N. Pinto, C. Pavan, R. M. Morais, and A. Correia, “Cost evaluation in optical networks,” Proc. Int. Conf. on Transparent Networks (ICTON), Stockholm, Sweden, June 2011.

C. Pavan, R. M. Morais, and A. N. Pinto, “Estimation of CapEx in survivable optical transport networks,” in Proc. European Conf. on Networks and Optical Communications (NOC), Faro, Portugal, June 2010, vol. 1, pp. 263–268.

A. N. Pinto, C. Pavan, and R. M. Morais, “A statistical model to CAPEX fast calculation in optical transport networks,” in Proc. Int. Conf. on Transparent Networks (ICTON), Ilha de São Miguel-Açores, Portugal, June 2009, vol. 1.

C. Pavan, R. Morais, A. Correia, and A. Pinto, “Dimensioning of optical networks with incomplete information,” in Proc. 6th Advanced Int. Conf. on Telecommunications (AICT ‘08), Athens, Greece, June 2008, pp. 261–264.

C. Pavan, R. M. Morais, and A. N. Pinto, “Estimating CapEx in optical multilayer networks,” in Proc. of the 7th Conf. on Telecommunications (ConfTele’09), Santa Maria da Feira, Portugal, May 2009, pp. 335–338.

S. Kotz and S. Nadarajah, Extreme Value Distributions: Theory and Applications. Imperial College London, 2000.

A. Bocoi, M. Schuster, F. Rambach, M. Kiese, C.-A. Bunge, and B. Spinnler, “Reach-dependent capacity in optical networks enabled by OFDM,” in Proc. of OFC, 2009, paper OMQ4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Estimated link length distribution for the USA100 optical transport network [1]. The average link length is 310 km, and GEV distribution parameters are α=200km, β=130km, and ξ=0.167. The vertical red line represents the average link length of the network.

Fig. 2.
Fig. 2.

OTN with average link length 310 km (so, LLL=1550km) and GEV distribution parameters α=200, β=130, and ξ=0.167. The proportion of links in each interval of 100 km is given by the area under its corresponding interval (i.e., S0,S1,,S15).

Fig. 3.
Fig. 3.

OTN with average link length 930 km, and GEV distribution parameters α=600, β=390, and ξ=0.167. It shows the link probabilities in different intervals of link lengths according to the half-distance law proposed in [12].

Tables (2)

Tables Icon

TABLE I Comparison Among Different Methods for 40 Real Optical Transport Networksa

Tables Icon

TABLE II Choosing Modulation Formats for 40 Real Optical Transport Networks Using the Average Link Length lc (Column UALL), Link Length Distribution (Column ULLD), and Exact Link Lengths (Column UELL)a

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

f(l;α,β,ξ)=f(t;β,ξ)=1βt(1/ξ)1exp(t1/ξ),
F(l;α,β,ξ)=F(t;ξ)=exp(t1/ξ).
α0.6577l+8.67,
β0.441l12.37,
ξ0.0887l1.5570.5297l13.927.
lcAcN1.
CAPEX=CL+CN.
ATE=Llcspan,
FTE=Llc.
f(l;α,β,ξ)dl=1.
0f(l;α,β,ξ)dl1.
0LLLf(l)dl1.
Llilj=Lliljf(l;α,β,ξ)dl.
[l0=0l1f(l)dl+l1l2f(l)dl++lX1lX=LLLf(l)dl]1.
L=nint(Ll0l1+Ll1l2++LlX1lX).
Alili+1=iLlili+1.
ATE=nint(i=0X1Alili+1)=nint(i=0X1iLlili+1),
ATE=nint(0·Ll0l1+1·Ll1l2++(X1)·LlX1lX).
N16QAM=NS=nint(L0375f(l;α,β,ξ)dl),
N8QAM=NE=nint(L375750f(l;α,β,ξ)dl),
NQPSK=NQ=nint(L7501500f(l;α,β,ξ)dl),
NBPSK=NB=nint(L15003000f(l;α,β,ξ)dl).
FT=Ll.
llc.
Error=L(llc).
FTE=L0lf(l)dl,
Error(%)=ExactEstimatedExact×100.
C=Z{S,E,Q,B}Min[NZ/UELL,NZ/OM],
Error(%)=LCL×100.