Abstract

One approach to accommodating time-varying traffic is to construct a virtual network over an optical backbone network by connecting nodes with optical paths. The virtual network is dynamically reconfigured by adding or deleting optical paths so as to suit the current traffic. However, a large number of optical paths have to be added when there are large traffic changes, and this may entail a large overhead. To avoid adding a large number of optical paths, we should construct a virtual network that is adaptive to traffic changes, wherein congestion caused by traffic changes can be mitigated by adding only a small number of optical paths. In this paper, we propose a method to control a virtual network that adapts to traffic changes. We propose a new index, called flow inclusive relation modularity (FIRM), inspired by a model of lifeforms that survive and evolve under significant environmental changes. Through simulation, we clarify that the virtual network with high FIRM can handle traffic changes by adding a small number of optical paths. Moreover, we find that a virtual network embodying FIRM reduces the number of optical paths that have to be added when there are significant traffic changes compared with a virtual network configured only on the basis of the utilization of optical paths.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ministry of Internal Affairs and Communications, “Information and Communications in Japan,” White Paper, July 2012 [Online]. Available: http://www.soumu.go.jp/johotsusintokei/whitepaper/eng/WP2012/2012-index.html .
  2. B. Mukherjee, D. Banerjee, S. Ramamurthy, and A. Mukherjee, “Some principles for designing a wide-area WDM optical network,” IEEE/ACM Trans. Netw., vol.  4, no. 5, pp. 684–696, Oct. 1996.
    [CrossRef]
  3. D. Banerjee and B. Mukherjee, “Wavelength-routed optical networks: Linear formulation, resource budgeting tradeoffs, and a reconfiguration study,” IEEE/ACM Trans. Netw., vol.  8, no. 5, pp. 598–607, Oct. 2000.
    [CrossRef]
  4. J. Wei, C.-D. Liu, S.-Y. Park, K. Liu, R. Ramamurthy, H. Kim, and M. Maeda, “Network control and management for the next generation Internet,” IEICE Trans. Commun., vol.  83-B, no. 10, pp. 2191–2209, Oct. 2000.
  5. L. Zhang, K. Lee, and C.-H. Youn, “Adaptive virtual topology reconfiguration policy employing multi-stage traffic prediction in optical Internet,” in Proc. of Workshop on High Performance Switching and Routing, May 2002, pp. 26–29.
  6. A. Gençata and B. Mukherjee, “Virtual-topology adaptation for WDM mesh networks under dynamic traffic,” IEEE/ACM Trans. Netw., vol.  11, no. 2, pp. 236–247, Apr. 2003.
    [CrossRef]
  7. K. Shiomoto, E. Oki, W. Imajuku, S. Okamoto, and N. Yamanaka, “Distributed virtual network topology control mechanism in GMPLS-based multiregion networks,” IEEE J. Sel. Areas Commun., vol.  21, no. 8, pp. 1254–1262, Oct. 2003.
    [CrossRef]
  8. S. Gieselman, N. Singhal, and B. Mukherjee, “Minimum-cost virtual-topology adaptation for optical WDM mesh networks,” in Proc. IEEE ICC, June 2005, pp. 1787–1791.
  9. Y. Koizumi, T. Miyamura, S. Arakawa, E. Oki, K. Shiomoto, and M. Murata, “Adaptive virtual network topology control based on attractor selection,” J. Lightwave Technol., vol.  28, no. 11, pp. 1720–1731, June 2010.
    [CrossRef]
  10. Y. Ohsita, T. Miyamura, S. Arakawa, S. Ata, E. Oki, K. Shiomoto, and M. Murata, “Gradually reconfiguring virtual network topologies based on estimated traffic matrices,” IEEE/ACM Trans. Netw., vol.  18, no. 1, pp. 177–189, Feb. 2010.
    [CrossRef]
  11. A. Marnerides, D. Pezaros, and D. Hutchison, “Flash crowd detection within the realms of an Internet service provider (ISP),” in Proc. of Annu. Postgraduate Symp. on the Convergence of Telecommunications, Networking and Broadcasting, June 2008.
  12. R. Teixeira, N. Duffield, J. Rexford, and M. Roughan, “Traffic matrix reloaded: Impact of routing changes,” in Proc. Passive and Active Measurement Workshop, Mar. 2005, pp. 251–264.
  13. L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, vol.  40, no. 1, pp. 35–41, Mar. 1977.
  14. A. Bigdeli, A. Tizghadam, and A. Leon-Garcia, “Comparison of network criticality, algebraic connectivity, and other graph metrics,” in Proc. SIMPLEX, July 2009, pp. 1–6.
  15. A. Tizghadam and A. Leon-Garcia, “Autonomic traffic engineering for network robustness,” IEEE J. Sel. Areas Commun., vol.  28, no. 1, pp. 39–50, Jan. 2010.
    [CrossRef]
  16. M. Yoshinari, Y. Ohsita, and M. Murata, “Virtual network topologies adaptive to large traffic changes by reconfiguring a small number of paths,” in Proc. of Int. Conf. on Networking and Services, Mar. 2013, pp. 28–33.
  17. H. Lipson, J. B. Pollack, and N. P. Suh, “On the origin of modular variation,” Evolution, vol.  56, no. 8, pp. 1549–1556, Aug. 2002.
    [CrossRef]
  18. J. Clune, J.-B. Mouret, and H. Lipson, “The evolutionary origins of modularity,” Proc. R. Soc. B, vol.  280, no. 1755, 20122863, Mar. 2013.
    [CrossRef]
  19. M. E. J. Newman, “Modularity and community structure in networks,” Proc. Natl. Acad. Sci. USA, vol.  103, no. 23, pp. 8577–8582, June 2006.
    [CrossRef]
  20. N. Hidaka, “A topology design method for sustainable information networks,” Master’s thesis, Graduate School of Information Science and Technology, Osaka University, Feb. 2009.
  21. I. Antoniou, V. Ivanov, V. V. Ivanov, and P. Zrelov, “On the log-normal distribution of network traffic,” Physica D, vol.  167, no. 1–2, pp. 72–85, July 2002.
    [CrossRef]

2013

J. Clune, J.-B. Mouret, and H. Lipson, “The evolutionary origins of modularity,” Proc. R. Soc. B, vol.  280, no. 1755, 20122863, Mar. 2013.
[CrossRef]

2010

Y. Koizumi, T. Miyamura, S. Arakawa, E. Oki, K. Shiomoto, and M. Murata, “Adaptive virtual network topology control based on attractor selection,” J. Lightwave Technol., vol.  28, no. 11, pp. 1720–1731, June 2010.
[CrossRef]

Y. Ohsita, T. Miyamura, S. Arakawa, S. Ata, E. Oki, K. Shiomoto, and M. Murata, “Gradually reconfiguring virtual network topologies based on estimated traffic matrices,” IEEE/ACM Trans. Netw., vol.  18, no. 1, pp. 177–189, Feb. 2010.
[CrossRef]

A. Tizghadam and A. Leon-Garcia, “Autonomic traffic engineering for network robustness,” IEEE J. Sel. Areas Commun., vol.  28, no. 1, pp. 39–50, Jan. 2010.
[CrossRef]

2006

M. E. J. Newman, “Modularity and community structure in networks,” Proc. Natl. Acad. Sci. USA, vol.  103, no. 23, pp. 8577–8582, June 2006.
[CrossRef]

2003

A. Gençata and B. Mukherjee, “Virtual-topology adaptation for WDM mesh networks under dynamic traffic,” IEEE/ACM Trans. Netw., vol.  11, no. 2, pp. 236–247, Apr. 2003.
[CrossRef]

K. Shiomoto, E. Oki, W. Imajuku, S. Okamoto, and N. Yamanaka, “Distributed virtual network topology control mechanism in GMPLS-based multiregion networks,” IEEE J. Sel. Areas Commun., vol.  21, no. 8, pp. 1254–1262, Oct. 2003.
[CrossRef]

2002

H. Lipson, J. B. Pollack, and N. P. Suh, “On the origin of modular variation,” Evolution, vol.  56, no. 8, pp. 1549–1556, Aug. 2002.
[CrossRef]

I. Antoniou, V. Ivanov, V. V. Ivanov, and P. Zrelov, “On the log-normal distribution of network traffic,” Physica D, vol.  167, no. 1–2, pp. 72–85, July 2002.
[CrossRef]

2000

D. Banerjee and B. Mukherjee, “Wavelength-routed optical networks: Linear formulation, resource budgeting tradeoffs, and a reconfiguration study,” IEEE/ACM Trans. Netw., vol.  8, no. 5, pp. 598–607, Oct. 2000.
[CrossRef]

J. Wei, C.-D. Liu, S.-Y. Park, K. Liu, R. Ramamurthy, H. Kim, and M. Maeda, “Network control and management for the next generation Internet,” IEICE Trans. Commun., vol.  83-B, no. 10, pp. 2191–2209, Oct. 2000.

1996

B. Mukherjee, D. Banerjee, S. Ramamurthy, and A. Mukherjee, “Some principles for designing a wide-area WDM optical network,” IEEE/ACM Trans. Netw., vol.  4, no. 5, pp. 684–696, Oct. 1996.
[CrossRef]

1977

L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, vol.  40, no. 1, pp. 35–41, Mar. 1977.

Antoniou, I.

I. Antoniou, V. Ivanov, V. V. Ivanov, and P. Zrelov, “On the log-normal distribution of network traffic,” Physica D, vol.  167, no. 1–2, pp. 72–85, July 2002.
[CrossRef]

Arakawa, S.

Y. Koizumi, T. Miyamura, S. Arakawa, E. Oki, K. Shiomoto, and M. Murata, “Adaptive virtual network topology control based on attractor selection,” J. Lightwave Technol., vol.  28, no. 11, pp. 1720–1731, June 2010.
[CrossRef]

Y. Ohsita, T. Miyamura, S. Arakawa, S. Ata, E. Oki, K. Shiomoto, and M. Murata, “Gradually reconfiguring virtual network topologies based on estimated traffic matrices,” IEEE/ACM Trans. Netw., vol.  18, no. 1, pp. 177–189, Feb. 2010.
[CrossRef]

Ata, S.

Y. Ohsita, T. Miyamura, S. Arakawa, S. Ata, E. Oki, K. Shiomoto, and M. Murata, “Gradually reconfiguring virtual network topologies based on estimated traffic matrices,” IEEE/ACM Trans. Netw., vol.  18, no. 1, pp. 177–189, Feb. 2010.
[CrossRef]

Banerjee, D.

D. Banerjee and B. Mukherjee, “Wavelength-routed optical networks: Linear formulation, resource budgeting tradeoffs, and a reconfiguration study,” IEEE/ACM Trans. Netw., vol.  8, no. 5, pp. 598–607, Oct. 2000.
[CrossRef]

B. Mukherjee, D. Banerjee, S. Ramamurthy, and A. Mukherjee, “Some principles for designing a wide-area WDM optical network,” IEEE/ACM Trans. Netw., vol.  4, no. 5, pp. 684–696, Oct. 1996.
[CrossRef]

Bigdeli, A.

A. Bigdeli, A. Tizghadam, and A. Leon-Garcia, “Comparison of network criticality, algebraic connectivity, and other graph metrics,” in Proc. SIMPLEX, July 2009, pp. 1–6.

Clune, J.

J. Clune, J.-B. Mouret, and H. Lipson, “The evolutionary origins of modularity,” Proc. R. Soc. B, vol.  280, no. 1755, 20122863, Mar. 2013.
[CrossRef]

Duffield, N.

R. Teixeira, N. Duffield, J. Rexford, and M. Roughan, “Traffic matrix reloaded: Impact of routing changes,” in Proc. Passive and Active Measurement Workshop, Mar. 2005, pp. 251–264.

Freeman, L. C.

L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, vol.  40, no. 1, pp. 35–41, Mar. 1977.

Gençata, A.

A. Gençata and B. Mukherjee, “Virtual-topology adaptation for WDM mesh networks under dynamic traffic,” IEEE/ACM Trans. Netw., vol.  11, no. 2, pp. 236–247, Apr. 2003.
[CrossRef]

Gieselman, S.

S. Gieselman, N. Singhal, and B. Mukherjee, “Minimum-cost virtual-topology adaptation for optical WDM mesh networks,” in Proc. IEEE ICC, June 2005, pp. 1787–1791.

Hidaka, N.

N. Hidaka, “A topology design method for sustainable information networks,” Master’s thesis, Graduate School of Information Science and Technology, Osaka University, Feb. 2009.

Hutchison, D.

A. Marnerides, D. Pezaros, and D. Hutchison, “Flash crowd detection within the realms of an Internet service provider (ISP),” in Proc. of Annu. Postgraduate Symp. on the Convergence of Telecommunications, Networking and Broadcasting, June 2008.

Imajuku, W.

K. Shiomoto, E. Oki, W. Imajuku, S. Okamoto, and N. Yamanaka, “Distributed virtual network topology control mechanism in GMPLS-based multiregion networks,” IEEE J. Sel. Areas Commun., vol.  21, no. 8, pp. 1254–1262, Oct. 2003.
[CrossRef]

Ivanov, V.

I. Antoniou, V. Ivanov, V. V. Ivanov, and P. Zrelov, “On the log-normal distribution of network traffic,” Physica D, vol.  167, no. 1–2, pp. 72–85, July 2002.
[CrossRef]

Ivanov, V. V.

I. Antoniou, V. Ivanov, V. V. Ivanov, and P. Zrelov, “On the log-normal distribution of network traffic,” Physica D, vol.  167, no. 1–2, pp. 72–85, July 2002.
[CrossRef]

Kim, H.

J. Wei, C.-D. Liu, S.-Y. Park, K. Liu, R. Ramamurthy, H. Kim, and M. Maeda, “Network control and management for the next generation Internet,” IEICE Trans. Commun., vol.  83-B, no. 10, pp. 2191–2209, Oct. 2000.

Koizumi, Y.

Lee, K.

L. Zhang, K. Lee, and C.-H. Youn, “Adaptive virtual topology reconfiguration policy employing multi-stage traffic prediction in optical Internet,” in Proc. of Workshop on High Performance Switching and Routing, May 2002, pp. 26–29.

Leon-Garcia, A.

A. Tizghadam and A. Leon-Garcia, “Autonomic traffic engineering for network robustness,” IEEE J. Sel. Areas Commun., vol.  28, no. 1, pp. 39–50, Jan. 2010.
[CrossRef]

A. Bigdeli, A. Tizghadam, and A. Leon-Garcia, “Comparison of network criticality, algebraic connectivity, and other graph metrics,” in Proc. SIMPLEX, July 2009, pp. 1–6.

Lipson, H.

J. Clune, J.-B. Mouret, and H. Lipson, “The evolutionary origins of modularity,” Proc. R. Soc. B, vol.  280, no. 1755, 20122863, Mar. 2013.
[CrossRef]

H. Lipson, J. B. Pollack, and N. P. Suh, “On the origin of modular variation,” Evolution, vol.  56, no. 8, pp. 1549–1556, Aug. 2002.
[CrossRef]

Liu, C.-D.

J. Wei, C.-D. Liu, S.-Y. Park, K. Liu, R. Ramamurthy, H. Kim, and M. Maeda, “Network control and management for the next generation Internet,” IEICE Trans. Commun., vol.  83-B, no. 10, pp. 2191–2209, Oct. 2000.

Liu, K.

J. Wei, C.-D. Liu, S.-Y. Park, K. Liu, R. Ramamurthy, H. Kim, and M. Maeda, “Network control and management for the next generation Internet,” IEICE Trans. Commun., vol.  83-B, no. 10, pp. 2191–2209, Oct. 2000.

Maeda, M.

J. Wei, C.-D. Liu, S.-Y. Park, K. Liu, R. Ramamurthy, H. Kim, and M. Maeda, “Network control and management for the next generation Internet,” IEICE Trans. Commun., vol.  83-B, no. 10, pp. 2191–2209, Oct. 2000.

Marnerides, A.

A. Marnerides, D. Pezaros, and D. Hutchison, “Flash crowd detection within the realms of an Internet service provider (ISP),” in Proc. of Annu. Postgraduate Symp. on the Convergence of Telecommunications, Networking and Broadcasting, June 2008.

Miyamura, T.

Y. Ohsita, T. Miyamura, S. Arakawa, S. Ata, E. Oki, K. Shiomoto, and M. Murata, “Gradually reconfiguring virtual network topologies based on estimated traffic matrices,” IEEE/ACM Trans. Netw., vol.  18, no. 1, pp. 177–189, Feb. 2010.
[CrossRef]

Y. Koizumi, T. Miyamura, S. Arakawa, E. Oki, K. Shiomoto, and M. Murata, “Adaptive virtual network topology control based on attractor selection,” J. Lightwave Technol., vol.  28, no. 11, pp. 1720–1731, June 2010.
[CrossRef]

Mouret, J.-B.

J. Clune, J.-B. Mouret, and H. Lipson, “The evolutionary origins of modularity,” Proc. R. Soc. B, vol.  280, no. 1755, 20122863, Mar. 2013.
[CrossRef]

Mukherjee, A.

B. Mukherjee, D. Banerjee, S. Ramamurthy, and A. Mukherjee, “Some principles for designing a wide-area WDM optical network,” IEEE/ACM Trans. Netw., vol.  4, no. 5, pp. 684–696, Oct. 1996.
[CrossRef]

Mukherjee, B.

A. Gençata and B. Mukherjee, “Virtual-topology adaptation for WDM mesh networks under dynamic traffic,” IEEE/ACM Trans. Netw., vol.  11, no. 2, pp. 236–247, Apr. 2003.
[CrossRef]

D. Banerjee and B. Mukherjee, “Wavelength-routed optical networks: Linear formulation, resource budgeting tradeoffs, and a reconfiguration study,” IEEE/ACM Trans. Netw., vol.  8, no. 5, pp. 598–607, Oct. 2000.
[CrossRef]

B. Mukherjee, D. Banerjee, S. Ramamurthy, and A. Mukherjee, “Some principles for designing a wide-area WDM optical network,” IEEE/ACM Trans. Netw., vol.  4, no. 5, pp. 684–696, Oct. 1996.
[CrossRef]

S. Gieselman, N. Singhal, and B. Mukherjee, “Minimum-cost virtual-topology adaptation for optical WDM mesh networks,” in Proc. IEEE ICC, June 2005, pp. 1787–1791.

Murata, M.

Y. Koizumi, T. Miyamura, S. Arakawa, E. Oki, K. Shiomoto, and M. Murata, “Adaptive virtual network topology control based on attractor selection,” J. Lightwave Technol., vol.  28, no. 11, pp. 1720–1731, June 2010.
[CrossRef]

Y. Ohsita, T. Miyamura, S. Arakawa, S. Ata, E. Oki, K. Shiomoto, and M. Murata, “Gradually reconfiguring virtual network topologies based on estimated traffic matrices,” IEEE/ACM Trans. Netw., vol.  18, no. 1, pp. 177–189, Feb. 2010.
[CrossRef]

M. Yoshinari, Y. Ohsita, and M. Murata, “Virtual network topologies adaptive to large traffic changes by reconfiguring a small number of paths,” in Proc. of Int. Conf. on Networking and Services, Mar. 2013, pp. 28–33.

Newman, M. E. J.

M. E. J. Newman, “Modularity and community structure in networks,” Proc. Natl. Acad. Sci. USA, vol.  103, no. 23, pp. 8577–8582, June 2006.
[CrossRef]

Ohsita, Y.

Y. Ohsita, T. Miyamura, S. Arakawa, S. Ata, E. Oki, K. Shiomoto, and M. Murata, “Gradually reconfiguring virtual network topologies based on estimated traffic matrices,” IEEE/ACM Trans. Netw., vol.  18, no. 1, pp. 177–189, Feb. 2010.
[CrossRef]

M. Yoshinari, Y. Ohsita, and M. Murata, “Virtual network topologies adaptive to large traffic changes by reconfiguring a small number of paths,” in Proc. of Int. Conf. on Networking and Services, Mar. 2013, pp. 28–33.

Okamoto, S.

K. Shiomoto, E. Oki, W. Imajuku, S. Okamoto, and N. Yamanaka, “Distributed virtual network topology control mechanism in GMPLS-based multiregion networks,” IEEE J. Sel. Areas Commun., vol.  21, no. 8, pp. 1254–1262, Oct. 2003.
[CrossRef]

Oki, E.

Y. Koizumi, T. Miyamura, S. Arakawa, E. Oki, K. Shiomoto, and M. Murata, “Adaptive virtual network topology control based on attractor selection,” J. Lightwave Technol., vol.  28, no. 11, pp. 1720–1731, June 2010.
[CrossRef]

Y. Ohsita, T. Miyamura, S. Arakawa, S. Ata, E. Oki, K. Shiomoto, and M. Murata, “Gradually reconfiguring virtual network topologies based on estimated traffic matrices,” IEEE/ACM Trans. Netw., vol.  18, no. 1, pp. 177–189, Feb. 2010.
[CrossRef]

K. Shiomoto, E. Oki, W. Imajuku, S. Okamoto, and N. Yamanaka, “Distributed virtual network topology control mechanism in GMPLS-based multiregion networks,” IEEE J. Sel. Areas Commun., vol.  21, no. 8, pp. 1254–1262, Oct. 2003.
[CrossRef]

Park, S.-Y.

J. Wei, C.-D. Liu, S.-Y. Park, K. Liu, R. Ramamurthy, H. Kim, and M. Maeda, “Network control and management for the next generation Internet,” IEICE Trans. Commun., vol.  83-B, no. 10, pp. 2191–2209, Oct. 2000.

Pezaros, D.

A. Marnerides, D. Pezaros, and D. Hutchison, “Flash crowd detection within the realms of an Internet service provider (ISP),” in Proc. of Annu. Postgraduate Symp. on the Convergence of Telecommunications, Networking and Broadcasting, June 2008.

Pollack, J. B.

H. Lipson, J. B. Pollack, and N. P. Suh, “On the origin of modular variation,” Evolution, vol.  56, no. 8, pp. 1549–1556, Aug. 2002.
[CrossRef]

Ramamurthy, R.

J. Wei, C.-D. Liu, S.-Y. Park, K. Liu, R. Ramamurthy, H. Kim, and M. Maeda, “Network control and management for the next generation Internet,” IEICE Trans. Commun., vol.  83-B, no. 10, pp. 2191–2209, Oct. 2000.

Ramamurthy, S.

B. Mukherjee, D. Banerjee, S. Ramamurthy, and A. Mukherjee, “Some principles for designing a wide-area WDM optical network,” IEEE/ACM Trans. Netw., vol.  4, no. 5, pp. 684–696, Oct. 1996.
[CrossRef]

Rexford, J.

R. Teixeira, N. Duffield, J. Rexford, and M. Roughan, “Traffic matrix reloaded: Impact of routing changes,” in Proc. Passive and Active Measurement Workshop, Mar. 2005, pp. 251–264.

Roughan, M.

R. Teixeira, N. Duffield, J. Rexford, and M. Roughan, “Traffic matrix reloaded: Impact of routing changes,” in Proc. Passive and Active Measurement Workshop, Mar. 2005, pp. 251–264.

Shiomoto, K.

Y. Ohsita, T. Miyamura, S. Arakawa, S. Ata, E. Oki, K. Shiomoto, and M. Murata, “Gradually reconfiguring virtual network topologies based on estimated traffic matrices,” IEEE/ACM Trans. Netw., vol.  18, no. 1, pp. 177–189, Feb. 2010.
[CrossRef]

Y. Koizumi, T. Miyamura, S. Arakawa, E. Oki, K. Shiomoto, and M. Murata, “Adaptive virtual network topology control based on attractor selection,” J. Lightwave Technol., vol.  28, no. 11, pp. 1720–1731, June 2010.
[CrossRef]

K. Shiomoto, E. Oki, W. Imajuku, S. Okamoto, and N. Yamanaka, “Distributed virtual network topology control mechanism in GMPLS-based multiregion networks,” IEEE J. Sel. Areas Commun., vol.  21, no. 8, pp. 1254–1262, Oct. 2003.
[CrossRef]

Singhal, N.

S. Gieselman, N. Singhal, and B. Mukherjee, “Minimum-cost virtual-topology adaptation for optical WDM mesh networks,” in Proc. IEEE ICC, June 2005, pp. 1787–1791.

Suh, N. P.

H. Lipson, J. B. Pollack, and N. P. Suh, “On the origin of modular variation,” Evolution, vol.  56, no. 8, pp. 1549–1556, Aug. 2002.
[CrossRef]

Teixeira, R.

R. Teixeira, N. Duffield, J. Rexford, and M. Roughan, “Traffic matrix reloaded: Impact of routing changes,” in Proc. Passive and Active Measurement Workshop, Mar. 2005, pp. 251–264.

Tizghadam, A.

A. Tizghadam and A. Leon-Garcia, “Autonomic traffic engineering for network robustness,” IEEE J. Sel. Areas Commun., vol.  28, no. 1, pp. 39–50, Jan. 2010.
[CrossRef]

A. Bigdeli, A. Tizghadam, and A. Leon-Garcia, “Comparison of network criticality, algebraic connectivity, and other graph metrics,” in Proc. SIMPLEX, July 2009, pp. 1–6.

Wei, J.

J. Wei, C.-D. Liu, S.-Y. Park, K. Liu, R. Ramamurthy, H. Kim, and M. Maeda, “Network control and management for the next generation Internet,” IEICE Trans. Commun., vol.  83-B, no. 10, pp. 2191–2209, Oct. 2000.

Yamanaka, N.

K. Shiomoto, E. Oki, W. Imajuku, S. Okamoto, and N. Yamanaka, “Distributed virtual network topology control mechanism in GMPLS-based multiregion networks,” IEEE J. Sel. Areas Commun., vol.  21, no. 8, pp. 1254–1262, Oct. 2003.
[CrossRef]

Yoshinari, M.

M. Yoshinari, Y. Ohsita, and M. Murata, “Virtual network topologies adaptive to large traffic changes by reconfiguring a small number of paths,” in Proc. of Int. Conf. on Networking and Services, Mar. 2013, pp. 28–33.

Youn, C.-H.

L. Zhang, K. Lee, and C.-H. Youn, “Adaptive virtual topology reconfiguration policy employing multi-stage traffic prediction in optical Internet,” in Proc. of Workshop on High Performance Switching and Routing, May 2002, pp. 26–29.

Zhang, L.

L. Zhang, K. Lee, and C.-H. Youn, “Adaptive virtual topology reconfiguration policy employing multi-stage traffic prediction in optical Internet,” in Proc. of Workshop on High Performance Switching and Routing, May 2002, pp. 26–29.

Zrelov, P.

I. Antoniou, V. Ivanov, V. V. Ivanov, and P. Zrelov, “On the log-normal distribution of network traffic,” Physica D, vol.  167, no. 1–2, pp. 72–85, July 2002.
[CrossRef]

Evolution

H. Lipson, J. B. Pollack, and N. P. Suh, “On the origin of modular variation,” Evolution, vol.  56, no. 8, pp. 1549–1556, Aug. 2002.
[CrossRef]

IEEE J. Sel. Areas Commun.

A. Tizghadam and A. Leon-Garcia, “Autonomic traffic engineering for network robustness,” IEEE J. Sel. Areas Commun., vol.  28, no. 1, pp. 39–50, Jan. 2010.
[CrossRef]

K. Shiomoto, E. Oki, W. Imajuku, S. Okamoto, and N. Yamanaka, “Distributed virtual network topology control mechanism in GMPLS-based multiregion networks,” IEEE J. Sel. Areas Commun., vol.  21, no. 8, pp. 1254–1262, Oct. 2003.
[CrossRef]

IEEE/ACM Trans. Netw.

A. Gençata and B. Mukherjee, “Virtual-topology adaptation for WDM mesh networks under dynamic traffic,” IEEE/ACM Trans. Netw., vol.  11, no. 2, pp. 236–247, Apr. 2003.
[CrossRef]

B. Mukherjee, D. Banerjee, S. Ramamurthy, and A. Mukherjee, “Some principles for designing a wide-area WDM optical network,” IEEE/ACM Trans. Netw., vol.  4, no. 5, pp. 684–696, Oct. 1996.
[CrossRef]

D. Banerjee and B. Mukherjee, “Wavelength-routed optical networks: Linear formulation, resource budgeting tradeoffs, and a reconfiguration study,” IEEE/ACM Trans. Netw., vol.  8, no. 5, pp. 598–607, Oct. 2000.
[CrossRef]

Y. Ohsita, T. Miyamura, S. Arakawa, S. Ata, E. Oki, K. Shiomoto, and M. Murata, “Gradually reconfiguring virtual network topologies based on estimated traffic matrices,” IEEE/ACM Trans. Netw., vol.  18, no. 1, pp. 177–189, Feb. 2010.
[CrossRef]

IEICE Trans. Commun.

J. Wei, C.-D. Liu, S.-Y. Park, K. Liu, R. Ramamurthy, H. Kim, and M. Maeda, “Network control and management for the next generation Internet,” IEICE Trans. Commun., vol.  83-B, no. 10, pp. 2191–2209, Oct. 2000.

J. Lightwave Technol.

Physica D

I. Antoniou, V. Ivanov, V. V. Ivanov, and P. Zrelov, “On the log-normal distribution of network traffic,” Physica D, vol.  167, no. 1–2, pp. 72–85, July 2002.
[CrossRef]

Proc. Natl. Acad. Sci. USA

M. E. J. Newman, “Modularity and community structure in networks,” Proc. Natl. Acad. Sci. USA, vol.  103, no. 23, pp. 8577–8582, June 2006.
[CrossRef]

Proc. R. Soc. B

J. Clune, J.-B. Mouret, and H. Lipson, “The evolutionary origins of modularity,” Proc. R. Soc. B, vol.  280, no. 1755, 20122863, Mar. 2013.
[CrossRef]

Sociometry

L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, vol.  40, no. 1, pp. 35–41, Mar. 1977.

Other

A. Bigdeli, A. Tizghadam, and A. Leon-Garcia, “Comparison of network criticality, algebraic connectivity, and other graph metrics,” in Proc. SIMPLEX, July 2009, pp. 1–6.

A. Marnerides, D. Pezaros, and D. Hutchison, “Flash crowd detection within the realms of an Internet service provider (ISP),” in Proc. of Annu. Postgraduate Symp. on the Convergence of Telecommunications, Networking and Broadcasting, June 2008.

R. Teixeira, N. Duffield, J. Rexford, and M. Roughan, “Traffic matrix reloaded: Impact of routing changes,” in Proc. Passive and Active Measurement Workshop, Mar. 2005, pp. 251–264.

M. Yoshinari, Y. Ohsita, and M. Murata, “Virtual network topologies adaptive to large traffic changes by reconfiguring a small number of paths,” in Proc. of Int. Conf. on Networking and Services, Mar. 2013, pp. 28–33.

L. Zhang, K. Lee, and C.-H. Youn, “Adaptive virtual topology reconfiguration policy employing multi-stage traffic prediction in optical Internet,” in Proc. of Workshop on High Performance Switching and Routing, May 2002, pp. 26–29.

Ministry of Internal Affairs and Communications, “Information and Communications in Japan,” White Paper, July 2012 [Online]. Available: http://www.soumu.go.jp/johotsusintokei/whitepaper/eng/WP2012/2012-index.html .

S. Gieselman, N. Singhal, and B. Mukherjee, “Minimum-cost virtual-topology adaptation for optical WDM mesh networks,” in Proc. IEEE ICC, June 2005, pp. 1787–1791.

N. Hidaka, “A topology design method for sustainable information networks,” Master’s thesis, Graduate School of Information Science and Technology, Osaka University, Feb. 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Reconfiguration of a virtual network in an IP over WDM optical network.

Fig. 2.
Fig. 2.

Overview of virtual network reconfiguration considering adaptability to traffic changes.

Fig. 3.
Fig. 3.

Model of functions.

Fig. 4.
Fig. 4.

Example of a FIR.

Fig. 5.
Fig. 5.

Relation between index and the number of added optical paths (all virtual networks).

Fig. 6.
Fig. 6.

Relation between index and the number of added optical paths (virtual networks with maximum betweenness values from 0.4 to 0.5).

Fig. 7.
Fig. 7.

Relationship between FNR and FPR.

Fig. 8.
Fig. 8.

Initial virtual network used in our evaluation.

Fig. 9.
Fig. 9.

Comparison of virtual networks: FIRM values.

Fig. 10.
Fig. 10.

Comparison of virtual networks: average number of additional paths.

Fig. 11.
Fig. 11.

Comparison of virtual networks: distribution of number of added paths.

Tables (3)

Tables Icon

TABLE I Change in FIRM After Adding an Optical Path

Tables Icon

TABLE II FIRM Versus Number of Nodes in a Grid Topology

Tables Icon

TABLE III FIRM of the Typical Topologies

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q=gG[12mi,jNg(Aijkikj2m)],
FNR=mfnmp,
FPR=mfpmn,