Abstract

We consider the design of compact multisubcarrier constellations for intensity-modulated direct-detected optical systems. The constellations are designed to minimize the average electrical, average optical, and peak optical power for a given minimum distance between constellation points. We formulate the constellation design as a nonconvex optimization problem with second-order cone constraints, (nonconvex) quadratic constraints, and a convex objective function. We show that this problem can be relaxed to a (convex) second-order cone programming (SOCP) problem. We introduce a simple iterative method in which the SOCP relaxation is improved in each iteration. Several numerical simulation examples are provided to illustrate the effectiveness of our method. For the single-subcarrier case, the new constellations are compared with the best known formats in terms of power and spectral efficiency. Our new constellations outperform the corresponding face-centered cubic lattice and quadrature-amplitude-modulation-based constellations, with average electrical and optical power gains in the vicinity of 0.5 dB, for low symbol error rates. The corresponding peak optical power gains are also in the vicinity of 0.5 dB. By studying the mutual information inherent to the new constellations, we show that the potentials are still valid for coded systems. For the two-subcarrier case, we still outperform two-subcarrier schemes based on conventional constellations and optimized single-subcarrier constellations with the same dimensions.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (8)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription