Abstract

The technical superiority of spectral-amplitude coding optical code-division multiple-access (SAC-OCDMA) systems over traditional wavelength division multiplexing (WDM) systems in optical burst switched (OBS) networks is mainly attributed to the former’s better medium access control (MAC) layer performance. Nevertheless, in order to conduct an accurate comparison, a thorough study of the physical layer performance should be involved, especially because in many cases the physical layer noise would affect the maximum achievable number of simultaneously active users. Hence, in this work, we develop a novel assessment approach that combines both MAC and physical layer capabilities by introducing a new burst error loss rate parameter. In particular, the approach targets cases with limitations on the number of simultaneous active users. Next, as an example of a noisy physical layer, the effect of phase-induced intensity noise on the number of active users in OBS/SAC-OCDMA systems is analyzed. Our analysis shows that this effect introduces a burst error rate (BurstER) in the multiple-access interference cancellation operation (not investigated before). This BurstER is an increasing function of the number of active users and hence would suppress the system MAC layer performance. Finally, assuming an ideal WDM physical layer, we employ the developed approach to present an illustrative performance comparison between OBS/SAC-OCDMA and OBS/WDM systems. The results show that OBS/SAC-OCDMA performance outperforms that of OBS/WDM when the number of tolerated bits in error per burst exceeds a certain value.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Qiao and M. Yoo, “Optical burst switching (OBS)—A new paradigm for an optical Internet,” J. High Speed Netw., vol.  8, no. 1, pp. 69–84, Jan. 1999.
  2. T. Battestilli and H. Perros, “An introduction to optical burst switching,” IEEE Commun. Mag., vol.  41, no. 8, pp. S10–S15, Aug. 2003.
    [CrossRef]
  3. X. Yu, J. Li, X. Cao, Y. Chen, and C. Qiao, “Traffic statistics and performance evaluation in optical burst switched networks,” J. Lightwave Technol., vol.  22, no. 12, pp. 2722–2738, Dec. 2004.
    [CrossRef]
  4. X. Yu, Y. Chen, and C. Qiao, “Study of traffic statistics of assembled burst traffic in optical burst switched networks,” Proc. SPIE, vol.  4874, pp. 149–159, 2002.
  5. I. Baldine, G. N. Rouskas, H. G. Perros, and D. Stevenson, “Jump-start: A just-in-time signaling architecture for WDM burst-switched networks,” IEEE Commun. Mag., vol.  40, no. 2, pp. 82–89, Feb. 2002.
    [CrossRef]
  6. J. Y. Wei and J. R. I. McFarland, “Just-in-time signaling for WDM optical burst switching networks,” J. Lightwave Technol., vol.  18, no. 12, pp. 2019–2037, Dec. 2000.
    [CrossRef]
  7. A. I. A. El-Rahman, S. I. Rabia, and H. M. H. Shalaby, “MAC layer performance enhancement using control packet buffering in optical burst switched networks,” J. Lightwave Technol., vol.  30, no. 11, pp. 1578–1586, June 2012.
    [CrossRef]
  8. K. Kamakura, O. Kabranov, D. Makrakis, and I. Sasase, “OBS networks using optical code division multiple access techniques,” in IEEE Int. Conf. on Communications (ICC), Paris, France, June 2004, pp. 1725–1729.
  9. M. Y. S. Sowailem, M. H. S. Morsy, and H. M. H. Shalaby, “Employing code domain for contention resolution in optical burst switched networks with detailed performance analysis,” J. Lightwave Technol., vol.  27, no. 23, pp. 5284–5294, Dec. 2009.
    [CrossRef]
  10. B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” J. Lightwave Technol., vol.  4, no. 11, pp. 1704–1710, Nov. 1986.
    [CrossRef]
  11. M. M. Rad and J. A. Salehi, “Phase-induced intensity noise in digital incoherent all-optical tapped-delay line systems,” J. Lightwave Technol., vol.  24, no. 8, pp. 3059–3072, Aug. 2006.
    [CrossRef]
  12. M. Arie and M. Tur, “Phase-induced intensity noise in optical interferometers excited by semiconductor lasers with non-Lorentzian lineshapes,” J. Lightwave Technol., vol.  8, no. 1, pp. 1–6, Jan. 1990.
    [CrossRef]
  13. E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol.  46, no. 9, pp. 1176–1185, Sept. 1998.
    [CrossRef]
  14. Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” J. Lightwave Technol., vol.  19, no. 9, pp. 1274–1281, Sept. 2001.
    [CrossRef]
  15. Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “New code families for fiber-Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” IEEE Photon. Technol. Lett., vol.  13, no. 8, pp. 890–892, Aug. 2001.
    [CrossRef]
  16. M. Izal, J. Aracil, D. Morat, and E. Magaa, “Delay-throughput curves for timer-based OBS burstifiers with light load,” J. Lightwave Technol., vol.  24, no. 1, pp. 277–285, Jan. 2006.
    [CrossRef]
  17. D. Gross and C. M. Harris, Fundamentals of Queueing Theory, 3rd ed. Wiley, 1998.
  18. N. Akar, E. Karasan, and K. Dogan, “Wavelength converter sharing in asynchronous optical packet/burst switching: An exact blocking analysis for Markovian arrivals,” IEEE J. Sel. Areas Commun., vol.  24, no. 12, pp. 69–80, Dec. 2006.
    [CrossRef]
  19. A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes. McGraw-Hill, 2002.
  20. L. Kleinrock, Queueing Systems, vol. 1. Wiley, 1975.
  21. R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Coherence coding for photonic code-division multiple access networks,” J. Lightwave Technol., vol.  13, no. 9, pp. 1826–1837, Sept. 1995.
    [CrossRef]
  22. K. W. Chu and F. M. Dickey, “Optical coherence multiplexing for interprocessor communications,” Opt. Eng., vol.  30, no. 3, pp. 337–344, May 1991.
    [CrossRef]
  23. X. Zhou, H. M. H. Shalaby, and C. Lu, “Design and performance analysis of a new code for spectral amplitude coding optical CDMA systems,” in Proc. IEEE Sixth Int. Symp. on Spread Spectrum Techniques and Applications (ISSSTA), Sept. 2000, pp. 174–178.
  24. J. W. Goodman, Statistical Optics. New York: Wiley, 1985.
  25. S. B. Sun and M. S. Leeson, “Spectrum-sliced WDM and incoherent optical CDMA: A performance comparison,” in Ninth Annu. Postgraduate Symp. on the Convergence of Telecommunications, Networking and Broadcasting, Liverpool, UK, June 2008.

2012

2009

2006

2004

2003

T. Battestilli and H. Perros, “An introduction to optical burst switching,” IEEE Commun. Mag., vol.  41, no. 8, pp. S10–S15, Aug. 2003.
[CrossRef]

2002

X. Yu, Y. Chen, and C. Qiao, “Study of traffic statistics of assembled burst traffic in optical burst switched networks,” Proc. SPIE, vol.  4874, pp. 149–159, 2002.

I. Baldine, G. N. Rouskas, H. G. Perros, and D. Stevenson, “Jump-start: A just-in-time signaling architecture for WDM burst-switched networks,” IEEE Commun. Mag., vol.  40, no. 2, pp. 82–89, Feb. 2002.
[CrossRef]

2001

Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” J. Lightwave Technol., vol.  19, no. 9, pp. 1274–1281, Sept. 2001.
[CrossRef]

Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “New code families for fiber-Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” IEEE Photon. Technol. Lett., vol.  13, no. 8, pp. 890–892, Aug. 2001.
[CrossRef]

2000

1999

C. Qiao and M. Yoo, “Optical burst switching (OBS)—A new paradigm for an optical Internet,” J. High Speed Netw., vol.  8, no. 1, pp. 69–84, Jan. 1999.

1998

E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol.  46, no. 9, pp. 1176–1185, Sept. 1998.
[CrossRef]

1995

R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Coherence coding for photonic code-division multiple access networks,” J. Lightwave Technol., vol.  13, no. 9, pp. 1826–1837, Sept. 1995.
[CrossRef]

1991

K. W. Chu and F. M. Dickey, “Optical coherence multiplexing for interprocessor communications,” Opt. Eng., vol.  30, no. 3, pp. 337–344, May 1991.
[CrossRef]

1990

M. Arie and M. Tur, “Phase-induced intensity noise in optical interferometers excited by semiconductor lasers with non-Lorentzian lineshapes,” J. Lightwave Technol., vol.  8, no. 1, pp. 1–6, Jan. 1990.
[CrossRef]

1986

B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” J. Lightwave Technol., vol.  4, no. 11, pp. 1704–1710, Nov. 1986.
[CrossRef]

Akar, N.

N. Akar, E. Karasan, and K. Dogan, “Wavelength converter sharing in asynchronous optical packet/burst switching: An exact blocking analysis for Markovian arrivals,” IEEE J. Sel. Areas Commun., vol.  24, no. 12, pp. 69–80, Dec. 2006.
[CrossRef]

Aracil, J.

Arie, M.

M. Arie and M. Tur, “Phase-induced intensity noise in optical interferometers excited by semiconductor lasers with non-Lorentzian lineshapes,” J. Lightwave Technol., vol.  8, no. 1, pp. 1–6, Jan. 1990.
[CrossRef]

Baldine, I.

I. Baldine, G. N. Rouskas, H. G. Perros, and D. Stevenson, “Jump-start: A just-in-time signaling architecture for WDM burst-switched networks,” IEEE Commun. Mag., vol.  40, no. 2, pp. 82–89, Feb. 2002.
[CrossRef]

Battestilli, T.

T. Battestilli and H. Perros, “An introduction to optical burst switching,” IEEE Commun. Mag., vol.  41, no. 8, pp. S10–S15, Aug. 2003.
[CrossRef]

Blaikie, R. J.

E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol.  46, no. 9, pp. 1176–1185, Sept. 1998.
[CrossRef]

Cao, X.

Chen, Y.

X. Yu, J. Li, X. Cao, Y. Chen, and C. Qiao, “Traffic statistics and performance evaluation in optical burst switched networks,” J. Lightwave Technol., vol.  22, no. 12, pp. 2722–2738, Dec. 2004.
[CrossRef]

X. Yu, Y. Chen, and C. Qiao, “Study of traffic statistics of assembled burst traffic in optical burst switched networks,” Proc. SPIE, vol.  4874, pp. 149–159, 2002.

Chu, K. W.

K. W. Chu and F. M. Dickey, “Optical coherence multiplexing for interprocessor communications,” Opt. Eng., vol.  30, no. 3, pp. 337–344, May 1991.
[CrossRef]

Dickey, F. M.

K. W. Chu and F. M. Dickey, “Optical coherence multiplexing for interprocessor communications,” Opt. Eng., vol.  30, no. 3, pp. 337–344, May 1991.
[CrossRef]

Dogan, K.

N. Akar, E. Karasan, and K. Dogan, “Wavelength converter sharing in asynchronous optical packet/burst switching: An exact blocking analysis for Markovian arrivals,” IEEE J. Sel. Areas Commun., vol.  24, no. 12, pp. 69–80, Dec. 2006.
[CrossRef]

El-Rahman, A. I. A.

Ghafouri-Shiraz, H.

Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” J. Lightwave Technol., vol.  19, no. 9, pp. 1274–1281, Sept. 2001.
[CrossRef]

Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “New code families for fiber-Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” IEEE Photon. Technol. Lett., vol.  13, no. 8, pp. 890–892, Aug. 2001.
[CrossRef]

Goodman, J. W.

J. W. Goodman, Statistical Optics. New York: Wiley, 1985.

Griffin, R. A.

R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Coherence coding for photonic code-division multiple access networks,” J. Lightwave Technol., vol.  13, no. 9, pp. 1826–1837, Sept. 1995.
[CrossRef]

Gross, D.

D. Gross and C. M. Harris, Fundamentals of Queueing Theory, 3rd ed. Wiley, 1998.

Harris, C. M.

D. Gross and C. M. Harris, Fundamentals of Queueing Theory, 3rd ed. Wiley, 1998.

Izal, M.

Jackson, D. A.

R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Coherence coding for photonic code-division multiple access networks,” J. Lightwave Technol., vol.  13, no. 9, pp. 1826–1837, Sept. 1995.
[CrossRef]

Kabranov, O.

K. Kamakura, O. Kabranov, D. Makrakis, and I. Sasase, “OBS networks using optical code division multiple access techniques,” in IEEE Int. Conf. on Communications (ICC), Paris, France, June 2004, pp. 1725–1729.

Kamakura, K.

K. Kamakura, O. Kabranov, D. Makrakis, and I. Sasase, “OBS networks using optical code division multiple access techniques,” in IEEE Int. Conf. on Communications (ICC), Paris, France, June 2004, pp. 1725–1729.

Karasan, E.

N. Akar, E. Karasan, and K. Dogan, “Wavelength converter sharing in asynchronous optical packet/burst switching: An exact blocking analysis for Markovian arrivals,” IEEE J. Sel. Areas Commun., vol.  24, no. 12, pp. 69–80, Dec. 2006.
[CrossRef]

Kleinrock, L.

L. Kleinrock, Queueing Systems, vol. 1. Wiley, 1975.

Leeson, M. S.

S. B. Sun and M. S. Leeson, “Spectrum-sliced WDM and incoherent optical CDMA: A performance comparison,” in Ninth Annu. Postgraduate Symp. on the Convergence of Telecommunications, Networking and Broadcasting, Liverpool, UK, June 2008.

Li, J.

Lu, C.

X. Zhou, H. M. H. Shalaby, and C. Lu, “Design and performance analysis of a new code for spectral amplitude coding optical CDMA systems,” in Proc. IEEE Sixth Int. Symp. on Spread Spectrum Techniques and Applications (ISSSTA), Sept. 2000, pp. 174–178.

Magaa, E.

Makrakis, D.

K. Kamakura, O. Kabranov, D. Makrakis, and I. Sasase, “OBS networks using optical code division multiple access techniques,” in IEEE Int. Conf. on Communications (ICC), Paris, France, June 2004, pp. 1725–1729.

McFarland, J. R. I.

Morat, D.

Morsy, M. H. S.

Moslehi, B.

B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” J. Lightwave Technol., vol.  4, no. 11, pp. 1704–1710, Nov. 1986.
[CrossRef]

Papoulis, A.

A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes. McGraw-Hill, 2002.

Perros, H.

T. Battestilli and H. Perros, “An introduction to optical burst switching,” IEEE Commun. Mag., vol.  41, no. 8, pp. S10–S15, Aug. 2003.
[CrossRef]

Perros, H. G.

I. Baldine, G. N. Rouskas, H. G. Perros, and D. Stevenson, “Jump-start: A just-in-time signaling architecture for WDM burst-switched networks,” IEEE Commun. Mag., vol.  40, no. 2, pp. 82–89, Feb. 2002.
[CrossRef]

Pillai, S. U.

A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes. McGraw-Hill, 2002.

Qiao, C.

X. Yu, J. Li, X. Cao, Y. Chen, and C. Qiao, “Traffic statistics and performance evaluation in optical burst switched networks,” J. Lightwave Technol., vol.  22, no. 12, pp. 2722–2738, Dec. 2004.
[CrossRef]

X. Yu, Y. Chen, and C. Qiao, “Study of traffic statistics of assembled burst traffic in optical burst switched networks,” Proc. SPIE, vol.  4874, pp. 149–159, 2002.

C. Qiao and M. Yoo, “Optical burst switching (OBS)—A new paradigm for an optical Internet,” J. High Speed Netw., vol.  8, no. 1, pp. 69–84, Jan. 1999.

Rabia, S. I.

Rad, M. M.

Rouskas, G. N.

I. Baldine, G. N. Rouskas, H. G. Perros, and D. Stevenson, “Jump-start: A just-in-time signaling architecture for WDM burst-switched networks,” IEEE Commun. Mag., vol.  40, no. 2, pp. 82–89, Feb. 2002.
[CrossRef]

Salehi, J. A.

Sampson, D. D.

R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Coherence coding for photonic code-division multiple access networks,” J. Lightwave Technol., vol.  13, no. 9, pp. 1826–1837, Sept. 1995.
[CrossRef]

Sasase, I.

K. Kamakura, O. Kabranov, D. Makrakis, and I. Sasase, “OBS networks using optical code division multiple access techniques,” in IEEE Int. Conf. on Communications (ICC), Paris, France, June 2004, pp. 1725–1729.

Shalaby, H. M. H.

Smith, E. D. J.

E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol.  46, no. 9, pp. 1176–1185, Sept. 1998.
[CrossRef]

Sowailem, M. Y. S.

Stevenson, D.

I. Baldine, G. N. Rouskas, H. G. Perros, and D. Stevenson, “Jump-start: A just-in-time signaling architecture for WDM burst-switched networks,” IEEE Commun. Mag., vol.  40, no. 2, pp. 82–89, Feb. 2002.
[CrossRef]

Sun, S. B.

S. B. Sun and M. S. Leeson, “Spectrum-sliced WDM and incoherent optical CDMA: A performance comparison,” in Ninth Annu. Postgraduate Symp. on the Convergence of Telecommunications, Networking and Broadcasting, Liverpool, UK, June 2008.

Taylor, D. P.

E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol.  46, no. 9, pp. 1176–1185, Sept. 1998.
[CrossRef]

Tur, M.

M. Arie and M. Tur, “Phase-induced intensity noise in optical interferometers excited by semiconductor lasers with non-Lorentzian lineshapes,” J. Lightwave Technol., vol.  8, no. 1, pp. 1–6, Jan. 1990.
[CrossRef]

Wei, J. Y.

Wei, Z.

Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “New code families for fiber-Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” IEEE Photon. Technol. Lett., vol.  13, no. 8, pp. 890–892, Aug. 2001.
[CrossRef]

Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” J. Lightwave Technol., vol.  19, no. 9, pp. 1274–1281, Sept. 2001.
[CrossRef]

Yoo, M.

C. Qiao and M. Yoo, “Optical burst switching (OBS)—A new paradigm for an optical Internet,” J. High Speed Netw., vol.  8, no. 1, pp. 69–84, Jan. 1999.

Yu, X.

X. Yu, J. Li, X. Cao, Y. Chen, and C. Qiao, “Traffic statistics and performance evaluation in optical burst switched networks,” J. Lightwave Technol., vol.  22, no. 12, pp. 2722–2738, Dec. 2004.
[CrossRef]

X. Yu, Y. Chen, and C. Qiao, “Study of traffic statistics of assembled burst traffic in optical burst switched networks,” Proc. SPIE, vol.  4874, pp. 149–159, 2002.

Zhou, X.

X. Zhou, H. M. H. Shalaby, and C. Lu, “Design and performance analysis of a new code for spectral amplitude coding optical CDMA systems,” in Proc. IEEE Sixth Int. Symp. on Spread Spectrum Techniques and Applications (ISSSTA), Sept. 2000, pp. 174–178.

IEEE Commun. Mag.

I. Baldine, G. N. Rouskas, H. G. Perros, and D. Stevenson, “Jump-start: A just-in-time signaling architecture for WDM burst-switched networks,” IEEE Commun. Mag., vol.  40, no. 2, pp. 82–89, Feb. 2002.
[CrossRef]

T. Battestilli and H. Perros, “An introduction to optical burst switching,” IEEE Commun. Mag., vol.  41, no. 8, pp. S10–S15, Aug. 2003.
[CrossRef]

IEEE J. Sel. Areas Commun.

N. Akar, E. Karasan, and K. Dogan, “Wavelength converter sharing in asynchronous optical packet/burst switching: An exact blocking analysis for Markovian arrivals,” IEEE J. Sel. Areas Commun., vol.  24, no. 12, pp. 69–80, Dec. 2006.
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “New code families for fiber-Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” IEEE Photon. Technol. Lett., vol.  13, no. 8, pp. 890–892, Aug. 2001.
[CrossRef]

IEEE Trans. Commun.

E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol.  46, no. 9, pp. 1176–1185, Sept. 1998.
[CrossRef]

J. High Speed Netw.

C. Qiao and M. Yoo, “Optical burst switching (OBS)—A new paradigm for an optical Internet,” J. High Speed Netw., vol.  8, no. 1, pp. 69–84, Jan. 1999.

J. Lightwave Technol.

R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Coherence coding for photonic code-division multiple access networks,” J. Lightwave Technol., vol.  13, no. 9, pp. 1826–1837, Sept. 1995.
[CrossRef]

J. Y. Wei and J. R. I. McFarland, “Just-in-time signaling for WDM optical burst switching networks,” J. Lightwave Technol., vol.  18, no. 12, pp. 2019–2037, Dec. 2000.
[CrossRef]

Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” J. Lightwave Technol., vol.  19, no. 9, pp. 1274–1281, Sept. 2001.
[CrossRef]

X. Yu, J. Li, X. Cao, Y. Chen, and C. Qiao, “Traffic statistics and performance evaluation in optical burst switched networks,” J. Lightwave Technol., vol.  22, no. 12, pp. 2722–2738, Dec. 2004.
[CrossRef]

M. Izal, J. Aracil, D. Morat, and E. Magaa, “Delay-throughput curves for timer-based OBS burstifiers with light load,” J. Lightwave Technol., vol.  24, no. 1, pp. 277–285, Jan. 2006.
[CrossRef]

M. M. Rad and J. A. Salehi, “Phase-induced intensity noise in digital incoherent all-optical tapped-delay line systems,” J. Lightwave Technol., vol.  24, no. 8, pp. 3059–3072, Aug. 2006.
[CrossRef]

M. Y. S. Sowailem, M. H. S. Morsy, and H. M. H. Shalaby, “Employing code domain for contention resolution in optical burst switched networks with detailed performance analysis,” J. Lightwave Technol., vol.  27, no. 23, pp. 5284–5294, Dec. 2009.
[CrossRef]

A. I. A. El-Rahman, S. I. Rabia, and H. M. H. Shalaby, “MAC layer performance enhancement using control packet buffering in optical burst switched networks,” J. Lightwave Technol., vol.  30, no. 11, pp. 1578–1586, June 2012.
[CrossRef]

B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” J. Lightwave Technol., vol.  4, no. 11, pp. 1704–1710, Nov. 1986.
[CrossRef]

M. Arie and M. Tur, “Phase-induced intensity noise in optical interferometers excited by semiconductor lasers with non-Lorentzian lineshapes,” J. Lightwave Technol., vol.  8, no. 1, pp. 1–6, Jan. 1990.
[CrossRef]

Opt. Eng.

K. W. Chu and F. M. Dickey, “Optical coherence multiplexing for interprocessor communications,” Opt. Eng., vol.  30, no. 3, pp. 337–344, May 1991.
[CrossRef]

Proc. SPIE

X. Yu, Y. Chen, and C. Qiao, “Study of traffic statistics of assembled burst traffic in optical burst switched networks,” Proc. SPIE, vol.  4874, pp. 149–159, 2002.

Other

A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes. McGraw-Hill, 2002.

L. Kleinrock, Queueing Systems, vol. 1. Wiley, 1975.

X. Zhou, H. M. H. Shalaby, and C. Lu, “Design and performance analysis of a new code for spectral amplitude coding optical CDMA systems,” in Proc. IEEE Sixth Int. Symp. on Spread Spectrum Techniques and Applications (ISSSTA), Sept. 2000, pp. 174–178.

J. W. Goodman, Statistical Optics. New York: Wiley, 1985.

S. B. Sun and M. S. Leeson, “Spectrum-sliced WDM and incoherent optical CDMA: A performance comparison,” in Ninth Annu. Postgraduate Symp. on the Convergence of Telecommunications, Networking and Broadcasting, Liverpool, UK, June 2008.

K. Kamakura, O. Kabranov, D. Makrakis, and I. Sasase, “OBS networks using optical code division multiple access techniques,” in IEEE Int. Conf. on Communications (ICC), Paris, France, June 2004, pp. 1725–1729.

D. Gross and C. M. Harris, Fundamentals of Queueing Theory, 3rd ed. Wiley, 1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Illustration of an output link with limited number of active users. (b) System state diagram.

Fig. 2.
Fig. 2.

All-optical multiple-access interference canceler.

Fig. 3.
Fig. 3.

BL rate versus the offered load ρ for SAC-OCDMA ideal and practical cases. The overall MAI canceler BER can be found as in Eq. (6).

Fig. 4.
Fig. 4.

BL rate versus the offered load ρ for SAC-OCDMA ideal and practical cases in the presence of code converters, C.

Fig. 5.
Fig. 5.

BELR versus the offered load ρ for WDM and SAC-OCDMA under different values of K.

Fig. 6.
Fig. 6.

BELR versus the offered load ρ for WDM and SAC-OCDMA under different values of K and C.

Fig. 7.
Fig. 7.

BELR versus the ratio of the number of tolerated bits in error per burst to the burst length, le/L.

Fig. 8.
Fig. 8.

BELR versus the ratio of the number of tolerated bits in error per burst to the burst length, le/L, for different values of C.

Fig. 9.
Fig. 9.

Probability of bit error versus the number of hops H for different values of K.

Equations (48)

Equations on this page are rendered with MathJax. Learn more.

PNode-Loss=ρ/N1+ρ/N,
πk=π0i=1kλ((Ni+1)/N)iμ=π0(λNμ)k(Nk),
π0=[1+k=1K(λNμ)k(Nk)]1.
PNode-Loss=πK+i=1K1πi×iN.
PNode-Loss=ρK/K!i=0Kρi/i.
PNode-Loss=j=0CπK,j+i=CK1πi,C×iN.
BERH=1(1BER)H,
BurstER(lB)=i=le+1lB(lBi)(BERH)i(1BERH)lBi.
BurstER(lB)=e(lB·BERH)i=le+1lB(lB·BERH)ii!.
PLB(lB)=μRbeμRb(lB100).
BurstER=lB=100e(lB·BERH)i=le+1lB(lB·BERH)ii!×μRbeμRb(lB100)dlB.
BELR=1(1BLH)(1BurstER),
BLH=1(1PNode-Loss)H.
Pout=Pr,forPupperPth,Pout=0,forPupper<Pth.
σP212P2τcB,
meanP,
i=1Lcm(i)cn(i)={p+1,m=n1,mn,
i=1Lcm(i)cn(i)={0,m=np,mn.
L=p2+p,
Pupper|1=PrL(p+k+1),
Pupper|0=Plower=PrkL.
τc=0S2(f)df[0S(f)df]2,
S(f)upper|1=PrΔfm=1k+1i=1Lcm(i)c1(i)rect(i),
S(f)upper|0=PrΔfm=2k+1i=1Lcm(i)c1(i)rect(i),
S(f)lower=PrΔfpm=2k+1i=1Lcm(i)c1(i)rect(i),
rect(i)=u(ffoΔf2L(L+2i2))u(ffoΔf2L(L+2i)),
P=0S(f)df.
σP2=12B0S2(f)df.
0[S(f)upper|1]2df=Pr2LΔfi=1Lc1(i)·[m=1k+1cm(i)]·[n=1k+1cn(i)].
0[S(f)upper|1]2df=Pr2LΔf[p+3k+1+k(k1)p].
0[S(f)upper|0]2df=Pr2LΔf[k+k(k1)p],
0[S(f)lower]2df=Pr2Lp2Δf[kp+k(k1)(11p)].
σc,upper|12=BPr22LΔf[p+3k+1+k(k1)p],
σc,upper|02=BPr2k2LΔf[1+k1p],
σc,lower2=BPr2k2Lp2Δf[p+(k1)(11p)].
PX|b(x)=e(xxo|b)22σx|b22πσx|b2,
xo|0=PrLk,forb=0,xo|1=PrL(p+k+1),forb=1,
PY(y)=e(yyo)22σy22πσy2.
yo=Pr2L(p+2k+1),
BERMAI=12Pe|0+12Pe|1.
BERMAI=12k=0KyPX|0(x)·PY(y)·PK(k)dxdy+12k=0KyPX|1(x)·PY(y)·PK(k)dxdy,
BERMAI=(12)K+1k=0K(Kk)×[ye(xxo|0)22σx|02σx|02π·e(yyo)22σy2σy2πdxdy]+(12)K+1k=0K(Kk)×[ye(xxo|1)22σx|12σx|12π·e(yyo)22σy2σy2πdxdy],
BERMAI=(12)K+2k=0K(Kk)×e(yyo)22σy2σy2π·erfc(yxo|0σxo|02)dy+(12)K+2k=0K(Kk)×e(yyo)22σy2σy2π·erfc(xo|1yσx|12)dy.
e(αx+β)2erfc(γx+δ)dx=[παerfc(αδβγα2+γ2)].
BERMAI=(12)K+2k=0K(Kk)·erfc[xo|0+yo2(σx|02+σy2)]+(12)K+2k=0K(Kk)·erfc[xo|1+yo2(σx|12+σy2)].
BERMAI=(12)K+2k=0K(Kk)×[erfc(Δf(p+1)M)12+erfc(Δf(3p+4k+3)2Q)12],
M=4Bk[p+k+(k1)p2(p1)],
Q=4BL[p+3k+1+k2p+k(k1)p3(p1)].