Abstract

We report the power-saving effectiveness of an optical network unit (ONU) sleep technique by performing numerical calculations using an ONU sleep simulator that we developed, which complies with the IEEE Std 1904.1 (SIEPON) Package B. We reveal that reducing the transmission interval of GATE messages to about 10 ms is effective in securing both power-efficiency and low-latency characteristics when an early wakeup function is implemented.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Miki and K. Okada, “Access flexibility with passive double star systems,” in Proc. IEEE 5th Conf. Optical/Hybrid Access Networks, Montreal, ON, Canada, 1993, p. 2.0.4.
  2. IEEE Std 802.3-2012.
  3. ITU-T Recommendation G.984 series.
  4. H. Nakamura, “NG-PON2 technologies,” in Proc. OFC/NFOEC, Anaheim, CA, Mar. 2013, paper NTh4F.5.
  5. ITU-T Recommendation G.987 series.
  6. IEEE Std 1904.1-2013.
  7. G. Kramer, L. Khermosh, F. Daido, A. Brown, H. Yoon, K.-I. Suzuki, and W. Bo, “The IEEE 1904.1 Standard: SIEPON architecture and model,” IEEE Commun. Mag., vol.  50, no. 9, pp. 98–108, Sept. 2012.
    [CrossRef]
  8. Joint Research Centre, Institute of Energy and Transport, “Code of conduct on energy consumption of broadband equipment,” Feb.2011 [Online]. Available: http://re.jrc.ec.europa.eu/energyefficiency/html/standby_initiative.htm .
  9. “Ecology guideline for the ICT industry” [Online]. Available: http://www.tca.or.jp/information/pdf/ecoguideline/guideline_eng_3.pdf .
  10. C. Shen, “FTTx in China—Current status and future prospects” [Online]. Available: http://www.itu.int/dms_pub/itu-t/oth/06/5B/T065B0000320003PPTE.ppt .
  11. M. Carrol, “FTTx access in North America, Europe, and other regions—Status and perspectives” [Online]. Available: http://www.itu.int/dms_pub/itu-t/oth/06/5B/T065B0000320004PPTE.ppt .
  12. S. Nishihara, M. Hajduczenia, H. Mukai, H. El Bakoury, R. Hirth, M. Kimura, and M. Kato, “Power-saving methods with guaranteed service interoperability in Ethernet passive optical networks,” IEEE Commun. Mag., vol.  50, no. 9, pp. 110–117, Sept. 2012.
    [CrossRef]
  13. H. Mukai, F. Tano, and J. Nakagawa, “Energy efficient 10G-EPON system,” in Proc. OFC/NFOEC, Anaheim, CA, Mar. 2013, paper OW3G.1.
  14. E. Igawa, M. Nogami, and J. Nakagawa, “Symmetric 10G-EPON ONU burst-mode transceiver employing dynamic power save control circuit,” in Proc. OFC/NFOEC, Los Angeles, Mar. 2011, paper NTuD5.
  15. S. Nishihara, H. Nomura, H. Ujikawa, T. Sakamoto, M. Tadokoro, and N. Yoshimoto, “Highly-efficient ONU power-saving technique with HGW-determined sleep pattern toward next-generation optical access systems,” in Proc. OFC/NFOEC, Los Angeles, CA, Mar.2012, paper NM2K.2.
  16. R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, and H. Hadama, “Study and demonstration of sleep and adaptive rate control mechanisms for energy efficient 10G-EPON,” J. Opt. Commun. Netw., vol.  2, no. 9, pp. 716–729, Sept. 2010.
    [CrossRef]
  17. IEEE Std 802.3bk-2013.

2012

G. Kramer, L. Khermosh, F. Daido, A. Brown, H. Yoon, K.-I. Suzuki, and W. Bo, “The IEEE 1904.1 Standard: SIEPON architecture and model,” IEEE Commun. Mag., vol.  50, no. 9, pp. 98–108, Sept. 2012.
[CrossRef]

S. Nishihara, M. Hajduczenia, H. Mukai, H. El Bakoury, R. Hirth, M. Kimura, and M. Kato, “Power-saving methods with guaranteed service interoperability in Ethernet passive optical networks,” IEEE Commun. Mag., vol.  50, no. 9, pp. 110–117, Sept. 2012.
[CrossRef]

2010

Bo, W.

G. Kramer, L. Khermosh, F. Daido, A. Brown, H. Yoon, K.-I. Suzuki, and W. Bo, “The IEEE 1904.1 Standard: SIEPON architecture and model,” IEEE Commun. Mag., vol.  50, no. 9, pp. 98–108, Sept. 2012.
[CrossRef]

Brown, A.

G. Kramer, L. Khermosh, F. Daido, A. Brown, H. Yoon, K.-I. Suzuki, and W. Bo, “The IEEE 1904.1 Standard: SIEPON architecture and model,” IEEE Commun. Mag., vol.  50, no. 9, pp. 98–108, Sept. 2012.
[CrossRef]

Daido, F.

G. Kramer, L. Khermosh, F. Daido, A. Brown, H. Yoon, K.-I. Suzuki, and W. Bo, “The IEEE 1904.1 Standard: SIEPON architecture and model,” IEEE Commun. Mag., vol.  50, no. 9, pp. 98–108, Sept. 2012.
[CrossRef]

El Bakoury, H.

S. Nishihara, M. Hajduczenia, H. Mukai, H. El Bakoury, R. Hirth, M. Kimura, and M. Kato, “Power-saving methods with guaranteed service interoperability in Ethernet passive optical networks,” IEEE Commun. Mag., vol.  50, no. 9, pp. 110–117, Sept. 2012.
[CrossRef]

Fujimoto, Y.

Hadama, H.

Hajduczenia, M.

S. Nishihara, M. Hajduczenia, H. Mukai, H. El Bakoury, R. Hirth, M. Kimura, and M. Kato, “Power-saving methods with guaranteed service interoperability in Ethernet passive optical networks,” IEEE Commun. Mag., vol.  50, no. 9, pp. 110–117, Sept. 2012.
[CrossRef]

Hirth, R.

S. Nishihara, M. Hajduczenia, H. Mukai, H. El Bakoury, R. Hirth, M. Kimura, and M. Kato, “Power-saving methods with guaranteed service interoperability in Ethernet passive optical networks,” IEEE Commun. Mag., vol.  50, no. 9, pp. 110–117, Sept. 2012.
[CrossRef]

Igawa, E.

E. Igawa, M. Nogami, and J. Nakagawa, “Symmetric 10G-EPON ONU burst-mode transceiver employing dynamic power save control circuit,” in Proc. OFC/NFOEC, Los Angeles, Mar. 2011, paper NTuD5.

Kani, J.

Kato, M.

S. Nishihara, M. Hajduczenia, H. Mukai, H. El Bakoury, R. Hirth, M. Kimura, and M. Kato, “Power-saving methods with guaranteed service interoperability in Ethernet passive optical networks,” IEEE Commun. Mag., vol.  50, no. 9, pp. 110–117, Sept. 2012.
[CrossRef]

Khermosh, L.

G. Kramer, L. Khermosh, F. Daido, A. Brown, H. Yoon, K.-I. Suzuki, and W. Bo, “The IEEE 1904.1 Standard: SIEPON architecture and model,” IEEE Commun. Mag., vol.  50, no. 9, pp. 98–108, Sept. 2012.
[CrossRef]

Kimura, M.

S. Nishihara, M. Hajduczenia, H. Mukai, H. El Bakoury, R. Hirth, M. Kimura, and M. Kato, “Power-saving methods with guaranteed service interoperability in Ethernet passive optical networks,” IEEE Commun. Mag., vol.  50, no. 9, pp. 110–117, Sept. 2012.
[CrossRef]

Kramer, G.

G. Kramer, L. Khermosh, F. Daido, A. Brown, H. Yoon, K.-I. Suzuki, and W. Bo, “The IEEE 1904.1 Standard: SIEPON architecture and model,” IEEE Commun. Mag., vol.  50, no. 9, pp. 98–108, Sept. 2012.
[CrossRef]

Kubo, R.

Miki, N.

N. Miki and K. Okada, “Access flexibility with passive double star systems,” in Proc. IEEE 5th Conf. Optical/Hybrid Access Networks, Montreal, ON, Canada, 1993, p. 2.0.4.

Mukai, H.

S. Nishihara, M. Hajduczenia, H. Mukai, H. El Bakoury, R. Hirth, M. Kimura, and M. Kato, “Power-saving methods with guaranteed service interoperability in Ethernet passive optical networks,” IEEE Commun. Mag., vol.  50, no. 9, pp. 110–117, Sept. 2012.
[CrossRef]

H. Mukai, F. Tano, and J. Nakagawa, “Energy efficient 10G-EPON system,” in Proc. OFC/NFOEC, Anaheim, CA, Mar. 2013, paper OW3G.1.

Nakagawa, J.

H. Mukai, F. Tano, and J. Nakagawa, “Energy efficient 10G-EPON system,” in Proc. OFC/NFOEC, Anaheim, CA, Mar. 2013, paper OW3G.1.

E. Igawa, M. Nogami, and J. Nakagawa, “Symmetric 10G-EPON ONU burst-mode transceiver employing dynamic power save control circuit,” in Proc. OFC/NFOEC, Los Angeles, Mar. 2011, paper NTuD5.

Nakamura, H.

H. Nakamura, “NG-PON2 technologies,” in Proc. OFC/NFOEC, Anaheim, CA, Mar. 2013, paper NTh4F.5.

Nishihara, S.

S. Nishihara, M. Hajduczenia, H. Mukai, H. El Bakoury, R. Hirth, M. Kimura, and M. Kato, “Power-saving methods with guaranteed service interoperability in Ethernet passive optical networks,” IEEE Commun. Mag., vol.  50, no. 9, pp. 110–117, Sept. 2012.
[CrossRef]

S. Nishihara, H. Nomura, H. Ujikawa, T. Sakamoto, M. Tadokoro, and N. Yoshimoto, “Highly-efficient ONU power-saving technique with HGW-determined sleep pattern toward next-generation optical access systems,” in Proc. OFC/NFOEC, Los Angeles, CA, Mar.2012, paper NM2K.2.

Nogami, M.

E. Igawa, M. Nogami, and J. Nakagawa, “Symmetric 10G-EPON ONU burst-mode transceiver employing dynamic power save control circuit,” in Proc. OFC/NFOEC, Los Angeles, Mar. 2011, paper NTuD5.

Nomura, H.

S. Nishihara, H. Nomura, H. Ujikawa, T. Sakamoto, M. Tadokoro, and N. Yoshimoto, “Highly-efficient ONU power-saving technique with HGW-determined sleep pattern toward next-generation optical access systems,” in Proc. OFC/NFOEC, Los Angeles, CA, Mar.2012, paper NM2K.2.

Okada, K.

N. Miki and K. Okada, “Access flexibility with passive double star systems,” in Proc. IEEE 5th Conf. Optical/Hybrid Access Networks, Montreal, ON, Canada, 1993, p. 2.0.4.

Sakamoto, T.

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, and H. Hadama, “Study and demonstration of sleep and adaptive rate control mechanisms for energy efficient 10G-EPON,” J. Opt. Commun. Netw., vol.  2, no. 9, pp. 716–729, Sept. 2010.
[CrossRef]

S. Nishihara, H. Nomura, H. Ujikawa, T. Sakamoto, M. Tadokoro, and N. Yoshimoto, “Highly-efficient ONU power-saving technique with HGW-determined sleep pattern toward next-generation optical access systems,” in Proc. OFC/NFOEC, Los Angeles, CA, Mar.2012, paper NM2K.2.

Suzuki, K.-I.

G. Kramer, L. Khermosh, F. Daido, A. Brown, H. Yoon, K.-I. Suzuki, and W. Bo, “The IEEE 1904.1 Standard: SIEPON architecture and model,” IEEE Commun. Mag., vol.  50, no. 9, pp. 98–108, Sept. 2012.
[CrossRef]

Tadokoro, M.

S. Nishihara, H. Nomura, H. Ujikawa, T. Sakamoto, M. Tadokoro, and N. Yoshimoto, “Highly-efficient ONU power-saving technique with HGW-determined sleep pattern toward next-generation optical access systems,” in Proc. OFC/NFOEC, Los Angeles, CA, Mar.2012, paper NM2K.2.

Tano, F.

H. Mukai, F. Tano, and J. Nakagawa, “Energy efficient 10G-EPON system,” in Proc. OFC/NFOEC, Anaheim, CA, Mar. 2013, paper OW3G.1.

Ujikawa, H.

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, and H. Hadama, “Study and demonstration of sleep and adaptive rate control mechanisms for energy efficient 10G-EPON,” J. Opt. Commun. Netw., vol.  2, no. 9, pp. 716–729, Sept. 2010.
[CrossRef]

S. Nishihara, H. Nomura, H. Ujikawa, T. Sakamoto, M. Tadokoro, and N. Yoshimoto, “Highly-efficient ONU power-saving technique with HGW-determined sleep pattern toward next-generation optical access systems,” in Proc. OFC/NFOEC, Los Angeles, CA, Mar.2012, paper NM2K.2.

Yoon, H.

G. Kramer, L. Khermosh, F. Daido, A. Brown, H. Yoon, K.-I. Suzuki, and W. Bo, “The IEEE 1904.1 Standard: SIEPON architecture and model,” IEEE Commun. Mag., vol.  50, no. 9, pp. 98–108, Sept. 2012.
[CrossRef]

Yoshimoto, N.

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, and H. Hadama, “Study and demonstration of sleep and adaptive rate control mechanisms for energy efficient 10G-EPON,” J. Opt. Commun. Netw., vol.  2, no. 9, pp. 716–729, Sept. 2010.
[CrossRef]

S. Nishihara, H. Nomura, H. Ujikawa, T. Sakamoto, M. Tadokoro, and N. Yoshimoto, “Highly-efficient ONU power-saving technique with HGW-determined sleep pattern toward next-generation optical access systems,” in Proc. OFC/NFOEC, Los Angeles, CA, Mar.2012, paper NM2K.2.

IEEE Commun. Mag.

G. Kramer, L. Khermosh, F. Daido, A. Brown, H. Yoon, K.-I. Suzuki, and W. Bo, “The IEEE 1904.1 Standard: SIEPON architecture and model,” IEEE Commun. Mag., vol.  50, no. 9, pp. 98–108, Sept. 2012.
[CrossRef]

S. Nishihara, M. Hajduczenia, H. Mukai, H. El Bakoury, R. Hirth, M. Kimura, and M. Kato, “Power-saving methods with guaranteed service interoperability in Ethernet passive optical networks,” IEEE Commun. Mag., vol.  50, no. 9, pp. 110–117, Sept. 2012.
[CrossRef]

J. Opt. Commun. Netw.

Other

H. Mukai, F. Tano, and J. Nakagawa, “Energy efficient 10G-EPON system,” in Proc. OFC/NFOEC, Anaheim, CA, Mar. 2013, paper OW3G.1.

E. Igawa, M. Nogami, and J. Nakagawa, “Symmetric 10G-EPON ONU burst-mode transceiver employing dynamic power save control circuit,” in Proc. OFC/NFOEC, Los Angeles, Mar. 2011, paper NTuD5.

S. Nishihara, H. Nomura, H. Ujikawa, T. Sakamoto, M. Tadokoro, and N. Yoshimoto, “Highly-efficient ONU power-saving technique with HGW-determined sleep pattern toward next-generation optical access systems,” in Proc. OFC/NFOEC, Los Angeles, CA, Mar.2012, paper NM2K.2.

IEEE Std 802.3bk-2013.

Joint Research Centre, Institute of Energy and Transport, “Code of conduct on energy consumption of broadband equipment,” Feb.2011 [Online]. Available: http://re.jrc.ec.europa.eu/energyefficiency/html/standby_initiative.htm .

“Ecology guideline for the ICT industry” [Online]. Available: http://www.tca.or.jp/information/pdf/ecoguideline/guideline_eng_3.pdf .

C. Shen, “FTTx in China—Current status and future prospects” [Online]. Available: http://www.itu.int/dms_pub/itu-t/oth/06/5B/T065B0000320003PPTE.ppt .

M. Carrol, “FTTx access in North America, Europe, and other regions—Status and perspectives” [Online]. Available: http://www.itu.int/dms_pub/itu-t/oth/06/5B/T065B0000320004PPTE.ppt .

N. Miki and K. Okada, “Access flexibility with passive double star systems,” in Proc. IEEE 5th Conf. Optical/Hybrid Access Networks, Montreal, ON, Canada, 1993, p. 2.0.4.

IEEE Std 802.3-2012.

ITU-T Recommendation G.984 series.

H. Nakamura, “NG-PON2 technologies,” in Proc. OFC/NFOEC, Anaheim, CA, Mar. 2013, paper NTh4F.5.

ITU-T Recommendation G.987 series.

IEEE Std 1904.1-2013.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

(a) Terminology used in power-saving mechanism, (b) basic operation principle of ONU sleep mechanism, and (c) basic operation principle of early wakeup function.

Fig. 2.
Fig. 2.

Part of ONU state diagram for ONU sleep in SIEPON Package B.

Fig. 3.
Fig. 3.

Power efficiency dependence on sleep duration.

Fig. 4.
Fig. 4.

Configuration of ONU sleep simulator.

Fig. 5.
Fig. 5.

Performance of ONU power saving with the early wakeup function disabled in TRx mode.

Fig. 6.
Fig. 6.

Performance of ONU power saving with the early wakeup function enabled in Tx mode.

Fig. 7.
Fig. 7.

Performance of ONU power saving with the early wakeup function enabled in TRx mode.

Fig. 8.
Fig. 8.

Upstream efficiency and latency characteristics for the Tx mode for an input throughput of 10 kbits / s .

Fig. 9.
Fig. 9.

Upstream efficiency and latency characteristics for the Tx mode for an input throughput of 200 kbits / s .

Fig. 10.
Fig. 10.

Upstream efficiency and latency characteristics for the TRx mode for an input throughput of 10 kbits / s .

Fig. 11.
Fig. 11.

Upstream efficiency and latency characteristics for the TRx mode for an input throughput of 200 kbits / s .

Fig. 12.
Fig. 12.

Power efficiency dependence on the GATE cycle for the Tx mode for input throughputs of 10 and 200 kbits / s .

Fig. 13.
Fig. 13.

Power efficiency dependence on the GATE cycle for the TRx mode for input throughputs of 10 and 200 kbits / s .

Tables (2)

Tables Icon

TABLE I Parameters for ONU Sleep

Tables Icon

TABLE II Parameters Used To Calculate Transmission Efficiency

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P PS = P ACT · t A + t D t A + t S + P SLP · t S t D t A + t S ,
E = t sim t Loss t sim ,
t Loss = n ONU · n LostGATE · ( t OH + t Data ) ,
t OH = t on + t off + t CDR + t settling + t dlmtr ,