Abstract

The authors report on a strongly filtered direct detected non-return-to-zero differential quadrature phase shift keying (NRZ-DQPSK) system, based on a multicarrier transmitter with a tunable free spectral range. Transmission of a 7×21.4Gb/s multichannel NRZ-DQPSK signal over a dispersion compensated optical link (legacy optical infrastructure) on a 15 GHz grid is investigated experimentally and by simulations. Further improvement of the spectral efficiency is demonstrated by simulating the same 7×21.4Gb/s system on a 12.5 GHz grid. Finally, the scalability of the proposed system is investigated by simulating the transmission of a Tb superchannel, composed of a 10-carrier polarization division multiplexed NRZ-DQPSK operating at 28 GBaud on 33 GHz channel spacing, over 320 km standard single-mode fiber.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription