Abstract

In this paper, we show numerically and experimentally that turbo equalization (TE) is an efficient technique to mitigate performance degradations stemming from optical fiber propagation effects in both optical fiber dispersion managed and unmanaged coherent detection links. The effectiveness of the proposed solution can be appreciated in both linear and nonlinear regimes for either scenario. We report on a system employing a polarization division multiplexing (PDM) 16-quadrature amplitude modulation (QAM) format for which we accomplish an increment in tolerance to link input power of up to 3 dB that represents a substantial improvement margin. The best bit error rate (BER) performances will therefore be guaranteed in a larger window, 6 dB, of link input power thanks to the implemented TE scheme. Moreover, our proposed approach is also proven to effectively mitigate interchannel impairments from surrounding amplitude shift-keying interfering channels in a dispersion managed link achieving also in this case an increment in power tolerance of 3 dB. Furthermore, in terms of BER performances, our proposed TE approach guarantees a gain of about a half order of magnitude at the best operational point. As TE can be included in the current coherent detection transceiver technologies and complement other equalization techniques, it has prospects for application in next-generation high-capacity and long-reach optical transmission links.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. van den Borne, V. Sleiffer, M. S. Alfiad, and S. L. Jansen, “Towards 400G and beyond: How to design the next generation of ultra-high capacity transmission systems,” in Proc. of OptoElectronics and Communications Conf., July 2011, pp. 429–432.
  2. P. J. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. vol.  48, no. 7, pp. 26–30, July 2010.
    [CrossRef]
  3. X. Zhou and L. E. Nelson, “400G WDM transmission on the 50  GHz grid for future optical networks,” J. Lightwave Technol., vol.  30, no. 24, pp. 3779–3792, Dec. 2012.
    [CrossRef]
  4. J. Yu, Z. Dong, H. C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200G PDM-CSRZ-QPSK and PDM-16QAM with a SE of 4  b/s/Hz,” J. Lightwave Technol., vol.  31, no. 4, pp. 515–522, Feb. 2013.
    [CrossRef]
  5. P. J. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol., vol.  30, no. 24, pp. 3824–3835, Dec. 2012.
    [CrossRef]
  6. S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron., vol.  16, no. 5, pp. 1164–1179, Sept.–Oct. 2010.
    [CrossRef]
  7. T. Inoue, E. Mateo, F. Yaman, T. Wang, Y. Inada, T. Ogata, and Y. Aoki, “Low complexity nonlinearity compensation for 100G DP-QPSK transmission over legacy NZ-DSF link with OOK channels,” in 38th European Conf. on Optical Communication, Sept. 2012, paper Mo.1.C.5.
  8. E. Ip and J. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol., vol.  26, no. 20, pp. 3416–3425, Oct. 2008.
    [CrossRef]
  9. A. Lau and J. Kahn, “Signal design and detection in presence of nonlinear phase noise,” J. Lightwave Technol., vol.  25, no. 10, pp. 3008–3016, Oct. 2007.
    [CrossRef]
  10. Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightwave Technol., vol.  29, no. 17, pp. 2570–2576, Sept. 2011.
    [CrossRef]
  11. N. Stojanovic, Y. Huang, F. N. Hauske, Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112  Gbit/s PDM-QPSK transmissions with digital coherent receiver,” in Proc. of Optical Fiber Communication Conf., 2011, paper OTu3C.5.
  12. D. Zibar, O. Winther, N. Franceschi, R. Borkowski, A. Caballero, V. Arlunno, M. N. Schmidt, N. Guerrero Gonzalez, B. Mao, Y. Ye, K. J. Larsen, and I. Tafur Monroy, “Nonlinear impairment compensation using expectation maximization for PDM 16-QAM systems,” Opt. Express, vol.  20, no. 26, pp. B181–B196, 2012.
    [CrossRef]
  13. E. Ip, P. Ji, E. Mateo, Y. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE, vol.  100, no. 5, pp. 1065–1078, 2012.
    [CrossRef]
  14. D. Rafique, J. Zhao, and A. D. Ellis, “Digital back-propagation for spectrally efficient WDM 112  Gbit/s PM m-ary QAM transmission,” Opt. Express, vol.  19, no. 6, pp. 5219–5224, 2011.
    [CrossRef]
  15. M. Jäger, T. Rankl, J. Speidel, H. Bülow, and F. Buchali, “Performance of turbo equalizers for optical PMD channel,” J. Lightwave Technol., vol  24, no. 3, pp. 1226–1236, Mar. 2006.
    [CrossRef]
  16. H. F. Haunstein, T. Schorr, A. Zottmann, W. Sauer-Greff, and R. Urbansky, “Performance comparison of MLSE and iterative equalization in FEC systems for PMD channels with respect to implementation complexity,” J. Lightwave Technol., vol.  24, no. 11, pp. 4047–4054, Nov. 2006.
    [CrossRef]
  17. I. B. Djordjevic, L. L. Minkov, and H. G. Batshon, “Mitigation of linear and nonlinear impairments in high-speed optical networks by using LDPC-coded turbo equalization,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 73–83, Aug. 2008.
    [CrossRef]
  18. L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “PMD compensation in polarization-multiplexed multilevel modulations by turbo equalization,” IEEE Photon. Technol. Lett., vol.  21, no. 23, pp. 1773–1775, Dec. 2009.
    [CrossRef]
  19. L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “Suppression of fiber nonlinearities and PMD in coded-modulation schemes with coherent detection by using turbo equalization,” J. Opt. Commun. Netw., vol.  1, no. 6, pp. 555–564, Nov. 2009.
    [CrossRef]
  20. S. Zhang, Y. Zhang, M. Huang, F. Yaman, E. Mateo, D. Qian, L. Xu, Y. Shao, and I. B. Djordjevic, “Transoceanic transmission of 40 × 117.6 Gb/s PDM-OFDM-16QAM over hybrid large-core/ultralow-loss fiber,” J. Lightwave Technol., vol.  31, no. 4, pp. 498–505, Feb. 2013.
    [CrossRef]
  21. M. N. Sakib, V. Mahalingam, W. J. Gross, and O. Liboiron-Ladouceur, “Optical front-end for soft-decision LDPC codes in optical communication systems,” J. Opt. Commun. Netw., vol.  3, no. 6, pp. 533–541, June 2011.
    [CrossRef]
  22. C. Douillard, M. Jézéquel, C. Berrou, A. Picart, P. Didier, and A. Glavieux, “Iterative correction of intersymbol interference: Turbo-equalization,” Eur. Trans. Telecommun., vol.  6, no. 5, pp. 507–511, 1995.
    [CrossRef]
  23. T. Wuth, E. Agrell, M. Karlsson, and M. Sköld, “Fiber communications using convolutional coding and bandwith-efficient modulation,” Opt. Express, vol.  14, no. 2, pp. 542–555, 2006.
    [CrossRef]
  24. F. Tosato and P. Bisaglia, “Simplified soft-output demapper for binary interleaved COFDM with application to HIPERLAN/2,” in Proc. of IEEE Int. Conf. on Communications, 2002, p. 664.

2013 (2)

2012 (4)

2011 (3)

2010 (2)

P. J. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. vol.  48, no. 7, pp. 26–30, July 2010.
[CrossRef]

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron., vol.  16, no. 5, pp. 1164–1179, Sept.–Oct. 2010.
[CrossRef]

2009 (2)

L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “PMD compensation in polarization-multiplexed multilevel modulations by turbo equalization,” IEEE Photon. Technol. Lett., vol.  21, no. 23, pp. 1773–1775, Dec. 2009.
[CrossRef]

L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “Suppression of fiber nonlinearities and PMD in coded-modulation schemes with coherent detection by using turbo equalization,” J. Opt. Commun. Netw., vol.  1, no. 6, pp. 555–564, Nov. 2009.
[CrossRef]

2008 (2)

I. B. Djordjevic, L. L. Minkov, and H. G. Batshon, “Mitigation of linear and nonlinear impairments in high-speed optical networks by using LDPC-coded turbo equalization,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 73–83, Aug. 2008.
[CrossRef]

E. Ip and J. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol., vol.  26, no. 20, pp. 3416–3425, Oct. 2008.
[CrossRef]

2007 (1)

2006 (3)

1995 (1)

C. Douillard, M. Jézéquel, C. Berrou, A. Picart, P. Didier, and A. Glavieux, “Iterative correction of intersymbol interference: Turbo-equalization,” Eur. Trans. Telecommun., vol.  6, no. 5, pp. 507–511, 1995.
[CrossRef]

Agrell, E.

Alfiad, M. S.

D. van den Borne, V. Sleiffer, M. S. Alfiad, and S. L. Jansen, “Towards 400G and beyond: How to design the next generation of ultra-high capacity transmission systems,” in Proc. of OptoElectronics and Communications Conf., July 2011, pp. 429–432.

Aoki, Y.

T. Inoue, E. Mateo, F. Yaman, T. Wang, Y. Inada, T. Ogata, and Y. Aoki, “Low complexity nonlinearity compensation for 100G DP-QPSK transmission over legacy NZ-DSF link with OOK channels,” in 38th European Conf. on Optical Communication, Sept. 2012, paper Mo.1.C.5.

Arlunno, V.

Bai, N.

E. Ip, P. Ji, E. Mateo, Y. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE, vol.  100, no. 5, pp. 1065–1078, 2012.
[CrossRef]

Batshon, H. G.

I. B. Djordjevic, L. L. Minkov, and H. G. Batshon, “Mitigation of linear and nonlinear impairments in high-speed optical networks by using LDPC-coded turbo equalization,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 73–83, Aug. 2008.
[CrossRef]

Berrou, C.

C. Douillard, M. Jézéquel, C. Berrou, A. Picart, P. Didier, and A. Glavieux, “Iterative correction of intersymbol interference: Turbo-equalization,” Eur. Trans. Telecommun., vol.  6, no. 5, pp. 507–511, 1995.
[CrossRef]

Bisaglia, P.

F. Tosato and P. Bisaglia, “Simplified soft-output demapper for binary interleaved COFDM with application to HIPERLAN/2,” in Proc. of IEEE Int. Conf. on Communications, 2002, p. 664.

Borkowski, R.

Buchali, F.

Bülow, H.

Caballero, A.

Chen, M.

N. Stojanovic, Y. Huang, F. N. Hauske, Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112  Gbit/s PDM-QPSK transmissions with digital coherent receiver,” in Proc. of Optical Fiber Communication Conf., 2011, paper OTu3C.5.

Chien, H. C.

Didier, P.

C. Douillard, M. Jézéquel, C. Berrou, A. Picart, P. Didier, and A. Glavieux, “Iterative correction of intersymbol interference: Turbo-equalization,” Eur. Trans. Telecommun., vol.  6, no. 5, pp. 507–511, 1995.
[CrossRef]

Djordjevic, I. B.

S. Zhang, Y. Zhang, M. Huang, F. Yaman, E. Mateo, D. Qian, L. Xu, Y. Shao, and I. B. Djordjevic, “Transoceanic transmission of 40 × 117.6 Gb/s PDM-OFDM-16QAM over hybrid large-core/ultralow-loss fiber,” J. Lightwave Technol., vol.  31, no. 4, pp. 498–505, Feb. 2013.
[CrossRef]

L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “PMD compensation in polarization-multiplexed multilevel modulations by turbo equalization,” IEEE Photon. Technol. Lett., vol.  21, no. 23, pp. 1773–1775, Dec. 2009.
[CrossRef]

L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “Suppression of fiber nonlinearities and PMD in coded-modulation schemes with coherent detection by using turbo equalization,” J. Opt. Commun. Netw., vol.  1, no. 6, pp. 555–564, Nov. 2009.
[CrossRef]

I. B. Djordjevic, L. L. Minkov, and H. G. Batshon, “Mitigation of linear and nonlinear impairments in high-speed optical networks by using LDPC-coded turbo equalization,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 73–83, Aug. 2008.
[CrossRef]

Dong, Z.

Dou, L.

Douillard, C.

C. Douillard, M. Jézéquel, C. Berrou, A. Picart, P. Didier, and A. Glavieux, “Iterative correction of intersymbol interference: Turbo-equalization,” Eur. Trans. Telecommun., vol.  6, no. 5, pp. 507–511, 1995.
[CrossRef]

Ellis, A. D.

Fang, Y.

N. Stojanovic, Y. Huang, F. N. Hauske, Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112  Gbit/s PDM-QPSK transmissions with digital coherent receiver,” in Proc. of Optical Fiber Communication Conf., 2011, paper OTu3C.5.

Franceschi, N.

Glavieux, A.

C. Douillard, M. Jézéquel, C. Berrou, A. Picart, P. Didier, and A. Glavieux, “Iterative correction of intersymbol interference: Turbo-equalization,” Eur. Trans. Telecommun., vol.  6, no. 5, pp. 507–511, 1995.
[CrossRef]

Gross, W. J.

Guerrero Gonzalez, N.

Gunkel, M.

Haunstein, H. F.

Hauske, F. N.

N. Stojanovic, Y. Huang, F. N. Hauske, Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112  Gbit/s PDM-QPSK transmissions with digital coherent receiver,” in Proc. of Optical Fiber Communication Conf., 2011, paper OTu3C.5.

Hoshida, T.

Huang, M.

Huang, Y.

E. Ip, P. Ji, E. Mateo, Y. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE, vol.  100, no. 5, pp. 1065–1078, 2012.
[CrossRef]

N. Stojanovic, Y. Huang, F. N. Hauske, Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112  Gbit/s PDM-QPSK transmissions with digital coherent receiver,” in Proc. of Optical Fiber Communication Conf., 2011, paper OTu3C.5.

Huo, D.

Inada, Y.

T. Inoue, E. Mateo, F. Yaman, T. Wang, Y. Inada, T. Ogata, and Y. Aoki, “Low complexity nonlinearity compensation for 100G DP-QPSK transmission over legacy NZ-DSF link with OOK channels,” in 38th European Conf. on Optical Communication, Sept. 2012, paper Mo.1.C.5.

Inoue, T.

T. Inoue, E. Mateo, F. Yaman, T. Wang, Y. Inada, T. Ogata, and Y. Aoki, “Low complexity nonlinearity compensation for 100G DP-QPSK transmission over legacy NZ-DSF link with OOK channels,” in 38th European Conf. on Optical Communication, Sept. 2012, paper Mo.1.C.5.

Ip, E.

E. Ip, P. Ji, E. Mateo, Y. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE, vol.  100, no. 5, pp. 1065–1078, 2012.
[CrossRef]

E. Ip and J. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol., vol.  26, no. 20, pp. 3416–3425, Oct. 2008.
[CrossRef]

Jäger, M.

Jansen, S. L.

D. van den Borne, V. Sleiffer, M. S. Alfiad, and S. L. Jansen, “Towards 400G and beyond: How to design the next generation of ultra-high capacity transmission systems,” in Proc. of OptoElectronics and Communications Conf., July 2011, pp. 429–432.

Jézéquel, M.

C. Douillard, M. Jézéquel, C. Berrou, A. Picart, P. Didier, and A. Glavieux, “Iterative correction of intersymbol interference: Turbo-equalization,” Eur. Trans. Telecommun., vol.  6, no. 5, pp. 507–511, 1995.
[CrossRef]

Ji, P.

E. Ip, P. Ji, E. Mateo, Y. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE, vol.  100, no. 5, pp. 1065–1078, 2012.
[CrossRef]

Jia, Z.

Kahn, J.

Karlsson, M.

Larsen, K. J.

Lau, A.

Li, L.

Li, X.

Liboiron-Ladouceur, O.

Mahalingam, V.

Mao, B.

Mateo, E.

S. Zhang, Y. Zhang, M. Huang, F. Yaman, E. Mateo, D. Qian, L. Xu, Y. Shao, and I. B. Djordjevic, “Transoceanic transmission of 40 × 117.6 Gb/s PDM-OFDM-16QAM over hybrid large-core/ultralow-loss fiber,” J. Lightwave Technol., vol.  31, no. 4, pp. 498–505, Feb. 2013.
[CrossRef]

E. Ip, P. Ji, E. Mateo, Y. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE, vol.  100, no. 5, pp. 1065–1078, 2012.
[CrossRef]

T. Inoue, E. Mateo, F. Yaman, T. Wang, Y. Inada, T. Ogata, and Y. Aoki, “Low complexity nonlinearity compensation for 100G DP-QPSK transmission over legacy NZ-DSF link with OOK channels,” in 38th European Conf. on Optical Communication, Sept. 2012, paper Mo.1.C.5.

Mayer, H.

Minkov, L. L.

L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “Suppression of fiber nonlinearities and PMD in coded-modulation schemes with coherent detection by using turbo equalization,” J. Opt. Commun. Netw., vol.  1, no. 6, pp. 555–564, Nov. 2009.
[CrossRef]

L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “PMD compensation in polarization-multiplexed multilevel modulations by turbo equalization,” IEEE Photon. Technol. Lett., vol.  21, no. 23, pp. 1773–1775, Dec. 2009.
[CrossRef]

I. B. Djordjevic, L. L. Minkov, and H. G. Batshon, “Mitigation of linear and nonlinear impairments in high-speed optical networks by using LDPC-coded turbo equalization,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 73–83, Aug. 2008.
[CrossRef]

Nelson, L. E.

Ogata, T.

T. Inoue, E. Mateo, F. Yaman, T. Wang, Y. Inada, T. Ogata, and Y. Aoki, “Low complexity nonlinearity compensation for 100G DP-QPSK transmission over legacy NZ-DSF link with OOK channels,” in 38th European Conf. on Optical Communication, Sept. 2012, paper Mo.1.C.5.

Picart, A.

C. Douillard, M. Jézéquel, C. Berrou, A. Picart, P. Didier, and A. Glavieux, “Iterative correction of intersymbol interference: Turbo-equalization,” Eur. Trans. Telecommun., vol.  6, no. 5, pp. 507–511, 1995.
[CrossRef]

Qian, D.

S. Zhang, Y. Zhang, M. Huang, F. Yaman, E. Mateo, D. Qian, L. Xu, Y. Shao, and I. B. Djordjevic, “Transoceanic transmission of 40 × 117.6 Gb/s PDM-OFDM-16QAM over hybrid large-core/ultralow-loss fiber,” J. Lightwave Technol., vol.  31, no. 4, pp. 498–505, Feb. 2013.
[CrossRef]

E. Ip, P. Ji, E. Mateo, Y. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE, vol.  100, no. 5, pp. 1065–1078, 2012.
[CrossRef]

Rafique, D.

Rankl, T.

Rasmussen, J. C.

Sakib, M. N.

Sauer-Greff, W.

Savory, S. J.

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron., vol.  16, no. 5, pp. 1164–1179, Sept.–Oct. 2010.
[CrossRef]

Schippel, A.

Schmidt, M. N.

Schorr, T.

Shao, Y.

Sköld, M.

Sleiffer, V.

D. van den Borne, V. Sleiffer, M. S. Alfiad, and S. L. Jansen, “Towards 400G and beyond: How to design the next generation of ultra-high capacity transmission systems,” in Proc. of OptoElectronics and Communications Conf., July 2011, pp. 429–432.

Speidel, J.

Stojanovic, N.

N. Stojanovic, Y. Huang, F. N. Hauske, Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112  Gbit/s PDM-QPSK transmissions with digital coherent receiver,” in Proc. of Optical Fiber Communication Conf., 2011, paper OTu3C.5.

Tafur Monroy, I.

Tao, Z.

Tosato, F.

F. Tosato and P. Bisaglia, “Simplified soft-output demapper for binary interleaved COFDM with application to HIPERLAN/2,” in Proc. of IEEE Int. Conf. on Communications, 2002, p. 664.

Urbansky, R.

van den Borne, D.

D. van den Borne, V. Sleiffer, M. S. Alfiad, and S. L. Jansen, “Towards 400G and beyond: How to design the next generation of ultra-high capacity transmission systems,” in Proc. of OptoElectronics and Communications Conf., July 2011, pp. 429–432.

Wagner, P.

Wang, T.

E. Ip, P. Ji, E. Mateo, Y. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE, vol.  100, no. 5, pp. 1065–1078, 2012.
[CrossRef]

L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “Suppression of fiber nonlinearities and PMD in coded-modulation schemes with coherent detection by using turbo equalization,” J. Opt. Commun. Netw., vol.  1, no. 6, pp. 555–564, Nov. 2009.
[CrossRef]

L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “PMD compensation in polarization-multiplexed multilevel modulations by turbo equalization,” IEEE Photon. Technol. Lett., vol.  21, no. 23, pp. 1773–1775, Dec. 2009.
[CrossRef]

T. Inoue, E. Mateo, F. Yaman, T. Wang, Y. Inada, T. Ogata, and Y. Aoki, “Low complexity nonlinearity compensation for 100G DP-QPSK transmission over legacy NZ-DSF link with OOK channels,” in 38th European Conf. on Optical Communication, Sept. 2012, paper Mo.1.C.5.

Winther, O.

Winzer, P. J.

Wuth, T.

Xie, C.

N. Stojanovic, Y. Huang, F. N. Hauske, Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112  Gbit/s PDM-QPSK transmissions with digital coherent receiver,” in Proc. of Optical Fiber Communication Conf., 2011, paper OTu3C.5.

Xiong, Q.

N. Stojanovic, Y. Huang, F. N. Hauske, Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112  Gbit/s PDM-QPSK transmissions with digital coherent receiver,” in Proc. of Optical Fiber Communication Conf., 2011, paper OTu3C.5.

Xu, L.

S. Zhang, Y. Zhang, M. Huang, F. Yaman, E. Mateo, D. Qian, L. Xu, Y. Shao, and I. B. Djordjevic, “Transoceanic transmission of 40 × 117.6 Gb/s PDM-OFDM-16QAM over hybrid large-core/ultralow-loss fiber,” J. Lightwave Technol., vol.  31, no. 4, pp. 498–505, Feb. 2013.
[CrossRef]

E. Ip, P. Ji, E. Mateo, Y. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE, vol.  100, no. 5, pp. 1065–1078, 2012.
[CrossRef]

L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “Suppression of fiber nonlinearities and PMD in coded-modulation schemes with coherent detection by using turbo equalization,” J. Opt. Commun. Netw., vol.  1, no. 6, pp. 555–564, Nov. 2009.
[CrossRef]

L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “PMD compensation in polarization-multiplexed multilevel modulations by turbo equalization,” IEEE Photon. Technol. Lett., vol.  21, no. 23, pp. 1773–1775, Dec. 2009.
[CrossRef]

Yaman, F.

S. Zhang, Y. Zhang, M. Huang, F. Yaman, E. Mateo, D. Qian, L. Xu, Y. Shao, and I. B. Djordjevic, “Transoceanic transmission of 40 × 117.6 Gb/s PDM-OFDM-16QAM over hybrid large-core/ultralow-loss fiber,” J. Lightwave Technol., vol.  31, no. 4, pp. 498–505, Feb. 2013.
[CrossRef]

T. Inoue, E. Mateo, F. Yaman, T. Wang, Y. Inada, T. Ogata, and Y. Aoki, “Low complexity nonlinearity compensation for 100G DP-QPSK transmission over legacy NZ-DSF link with OOK channels,” in 38th European Conf. on Optical Communication, Sept. 2012, paper Mo.1.C.5.

Yan, W.

Ye, Y.

Yu, J.

Zhang, S.

Zhang, Y.

Zhao, J.

Zhou, X.

Zibar, D.

Zottmann, A.

Eur. Trans. Telecommun. (1)

C. Douillard, M. Jézéquel, C. Berrou, A. Picart, P. Didier, and A. Glavieux, “Iterative correction of intersymbol interference: Turbo-equalization,” Eur. Trans. Telecommun., vol.  6, no. 5, pp. 507–511, 1995.
[CrossRef]

IEEE Commun. Mag. (1)

P. J. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. vol.  48, no. 7, pp. 26–30, July 2010.
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

I. B. Djordjevic, L. L. Minkov, and H. G. Batshon, “Mitigation of linear and nonlinear impairments in high-speed optical networks by using LDPC-coded turbo equalization,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 73–83, Aug. 2008.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron., vol.  16, no. 5, pp. 1164–1179, Sept.–Oct. 2010.
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “PMD compensation in polarization-multiplexed multilevel modulations by turbo equalization,” IEEE Photon. Technol. Lett., vol.  21, no. 23, pp. 1773–1775, Dec. 2009.
[CrossRef]

J. Lightwave Technol. (9)

M. Jäger, T. Rankl, J. Speidel, H. Bülow, and F. Buchali, “Performance of turbo equalizers for optical PMD channel,” J. Lightwave Technol., vol  24, no. 3, pp. 1226–1236, Mar. 2006.
[CrossRef]

H. F. Haunstein, T. Schorr, A. Zottmann, W. Sauer-Greff, and R. Urbansky, “Performance comparison of MLSE and iterative equalization in FEC systems for PMD channels with respect to implementation complexity,” J. Lightwave Technol., vol.  24, no. 11, pp. 4047–4054, Nov. 2006.
[CrossRef]

A. Lau and J. Kahn, “Signal design and detection in presence of nonlinear phase noise,” J. Lightwave Technol., vol.  25, no. 10, pp. 3008–3016, Oct. 2007.
[CrossRef]

E. Ip and J. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol., vol.  26, no. 20, pp. 3416–3425, Oct. 2008.
[CrossRef]

X. Zhou and L. E. Nelson, “400G WDM transmission on the 50  GHz grid for future optical networks,” J. Lightwave Technol., vol.  30, no. 24, pp. 3779–3792, Dec. 2012.
[CrossRef]

P. J. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol., vol.  30, no. 24, pp. 3824–3835, Dec. 2012.
[CrossRef]

S. Zhang, Y. Zhang, M. Huang, F. Yaman, E. Mateo, D. Qian, L. Xu, Y. Shao, and I. B. Djordjevic, “Transoceanic transmission of 40 × 117.6 Gb/s PDM-OFDM-16QAM over hybrid large-core/ultralow-loss fiber,” J. Lightwave Technol., vol.  31, no. 4, pp. 498–505, Feb. 2013.
[CrossRef]

J. Yu, Z. Dong, H. C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200G PDM-CSRZ-QPSK and PDM-16QAM with a SE of 4  b/s/Hz,” J. Lightwave Technol., vol.  31, no. 4, pp. 515–522, Feb. 2013.
[CrossRef]

Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightwave Technol., vol.  29, no. 17, pp. 2570–2576, Sept. 2011.
[CrossRef]

J. Opt. Commun. Netw. (2)

Opt. Express (3)

Proc. IEEE (1)

E. Ip, P. Ji, E. Mateo, Y. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE, vol.  100, no. 5, pp. 1065–1078, 2012.
[CrossRef]

Other (4)

D. van den Borne, V. Sleiffer, M. S. Alfiad, and S. L. Jansen, “Towards 400G and beyond: How to design the next generation of ultra-high capacity transmission systems,” in Proc. of OptoElectronics and Communications Conf., July 2011, pp. 429–432.

T. Inoue, E. Mateo, F. Yaman, T. Wang, Y. Inada, T. Ogata, and Y. Aoki, “Low complexity nonlinearity compensation for 100G DP-QPSK transmission over legacy NZ-DSF link with OOK channels,” in 38th European Conf. on Optical Communication, Sept. 2012, paper Mo.1.C.5.

N. Stojanovic, Y. Huang, F. N. Hauske, Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112  Gbit/s PDM-QPSK transmissions with digital coherent receiver,” in Proc. of Optical Fiber Communication Conf., 2011, paper OTu3C.5.

F. Tosato and P. Bisaglia, “Simplified soft-output demapper for binary interleaved COFDM with application to HIPERLAN/2,” in Proc. of IEEE Int. Conf. on Communications, 2002, p. 664.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Pre-encoding and receiver structure of the SISO turbo equalizer algorithm. CC, convolutional code; LO, local oscillator; PD, photodiode; A/D, analog-to-digital converter; DSP, digital signal processing; NLMS, normalized least mean square; LLR, log-likelihood ratio; SOVA, soft-output Viterbi algorithm; SO, soft output; SISO, soft-input soft-output; TE, turbo equalization.

Fig. 2.
Fig. 2.

Simulation setup. D/A, digital-to-analog converter; SP, single polarization; PBC, polarization beam combiner; PD, photodetector; A/D, analog-to-digital converter.

Fig. 3.
Fig. 3.

Experiment setup. PPG, pulse pattern generator; CC, convolutional code; ECL, external cavity laser; EDFA, erbium-doped fiber amplifier; A, launch power measurement point; OBPF, optical bandpass filter; VOA, variable optical attenuator.

Fig. 4.
Fig. 4.

BER as a function of link input power to the transmission span with and without TE for 1000, 1500, and 2000 km uncompensated SSMF transmission.

Fig. 5.
Fig. 5.

BER as a function of transmitter and local oscillator laser linewidth for back-to-back with a fixed OSNR value of 25 dB.

Fig. 6.
Fig. 6.

BER as a function of link input power to the transmission span with and without TE for 100 and 200 kHz linewidth for 1000 km uncompensated SSMF transmission.

Fig. 7.
Fig. 7.

Performance of single channel. BER as a function of link input power to the transmission span with and without TE for 240, 400, and 640 km compensated link.

Fig. 8.
Fig. 8.

Performance with interfering OOK channels. BER as a function of link input power to the transmission span with and without TE for 240, 400, and 640 km compensated link.

Fig. 9.
Fig. 9.

Gray, left side, and nongray, right side, mapping employed in the system.

Tables (2)

Tables Icon

TABLE I Summary of Transmission Results

Tables Icon

TABLE II LLR Formulas for b Re , 0 and b Re , 1

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

b ^ Re , k = β if P [ b Re , k = β | r ] > P [ b Re , k = ( 1 β ) | r ] , β = 0 , 1 ,
r = G ch · a + w ,
b ^ Re , k = 1 , if log P ( r | b Re , k = 1 ) P ( r | b Re , k = 0 ) > 0 .
P ( r | b Re , 0 = 1 ) P ( r | b Re , 0 = 0 ) = e ( y Re 1 ) 2 2 σ 2 + e ( y Re 3 ) 2 2 σ 2 e ( y Re + 1 ) 2 2 σ 2 + e ( y Re + 3 ) 2 2 σ 2 .
LLR Re , 0 = { 4 σ 2 ( y Re [ i ] + 1 ) , y Re [ i ] < 2 , region 1 2 σ 2 y Re [ i ] , | y Re [ i ] | 2 , regions 2 & 3 4 σ 2 ( y Re [ i ] 1 ) , y Re [ i ] > + 2 , region 4 .
P ( r | b Re , 1 = 1 ) P ( r | b Re , 1 = 0 ) = e ( y Re 3 ) 2 2 σ 2 + e ( y Re + 1 ) 2 2 σ 2 e ( y Re 1 ) 2 2 σ 2 + e ( y Re + 3 ) 2 2 σ 2 .
P ( r | b Re , 1 = 1 ) P ( r | b Re , 1 = 0 ) e ( y Re + 1 ) 2 2 σ 2 e ( y Re + 3 ) 2 2 σ 2 + e ( y Re 1 ) 2 2 σ 2 .
LLR ( b Re , 1 ) reg 2 = 2 σ 2 ( y Re ) .