Abstract

An analytical method based on the moment generating function (MGF) is proposed for assessing the performance of direct-detection (DD) orthogonal frequency division multiplexing (OFDM) optical receivers with radio-frequency (RF) demodulation. The MGF-based method is a generalization of the method previously reported in the literature for DD baseband OFDM optical receivers. The proposed method relies on the analytical derivation of equivalent filters that describe the combined effect of electrical filtering + RF demodulation + FFT operation + the equalizer of the OFDM receiver for the real and imaginary parts of the signal at the equalizer output. The method takes into account imperfections of the RF demodulator, namely, power and phase imbalance between the RF demodulator arms and different electrical filtering on its arms. Numerical results show excellent agreement between the bit error probability estimates provided by the proposed method and estimates obtained from Monte Carlo simulation, in the absence and presence of receiver imperfections.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription