Abstract

We investigate novel pilot-aided transmission of high-order quadrature amplitude modulation (QAM) modulation formats for optical packet-switched networks. The proposed modulation scheme employs a pilot tone operating at the baud rate for noncoherent reception that is highly immune to laser phase noise. The results show that the system performance equivalent to static operation is achieved 5 ns after wavelength switching of a sampled grating distributed Bragg reflector (SG-DBR) tunable laser.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE, vol.  100, pp. 1035–1055, 2012.
    [CrossRef]
  2. J. E. Simsarian, J. Gripp, A. H. Gnauck, G. Raybon, and P. J. Winzer, “Fast-tuning 224  Gb/s intradyne receiver for optical packet networks,” in OFC, 2010, paper PDPB5.
  3. S. Shinada, H. Furukawa, and N. Wada, “Huge capacity optical packet switching and buffering,” Opt. Express, vol.  19, no. 26, pp. B406–B414, 2011.
    [CrossRef]
  4. T. N. Huynh, K. Shi, F. Smyth, and L. P. Barry, “DQPSK optical packet switching using an SG-DBR laser,” in CLEO Europe, 2011, paper CI1.
  5. S. Shinada, M. Nakamura, Y. Kamio, and N. Wada, “16-QAM optical packet switching and the real-time self-homodyne detection using polarization-multiplexed pilot-carrier,” Opt. Express, vol.  20, pp. B535–B542, 2012.
    [CrossRef]
  6. T. N. Huynh, F. Smyth, L. Nguyen, and L. P. Barry, “Effects of phase noise of monolithic tunable laser on coherent communication systems,” Opt. Express, vol.  20, pp. B244–B249, 2012.
    [CrossRef]
  7. T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, K. Ishihara, K. Gustafson, and P. Kelley, “Nonlinear tolerant spectrally-efficient transmission using PDM 64-QAM single carrier FDM with digital pilot-tone,” J. Lightwave Technol., vol.  30, pp. 3805–3815, 2012.
    [CrossRef]
  8. J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett., vol.  18, pp. 565–567, 2006.
    [CrossRef]
  9. T. N. Huynh, L. Nguyen, and L. Barry, “Phase noise characterization of SGDBR lasers using phase modulation detection method with delayed self-heterodyne measurements,” J. Lightwave Technol., vol.  31, pp. 1300–1308, 2013.
    [CrossRef]

2013 (1)

2012 (4)

2011 (1)

2006 (1)

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett., vol.  18, pp. 565–567, 2006.
[CrossRef]

Barry, L.

Barry, L. P.

T. N. Huynh, F. Smyth, L. Nguyen, and L. P. Barry, “Effects of phase noise of monolithic tunable laser on coherent communication systems,” Opt. Express, vol.  20, pp. B244–B249, 2012.
[CrossRef]

T. N. Huynh, K. Shi, F. Smyth, and L. P. Barry, “DQPSK optical packet switching using an SG-DBR laser,” in CLEO Europe, 2011, paper CI1.

Essiambre, R. J.

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE, vol.  100, pp. 1035–1055, 2012.
[CrossRef]

Furukawa, H.

Garrett, H. E.

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett., vol.  18, pp. 565–567, 2006.
[CrossRef]

Gnauck, A. H.

J. E. Simsarian, J. Gripp, A. H. Gnauck, G. Raybon, and P. J. Winzer, “Fast-tuning 224  Gb/s intradyne receiver for optical packet networks,” in OFC, 2010, paper PDPB5.

Gripp, J.

J. E. Simsarian, J. Gripp, A. H. Gnauck, G. Raybon, and P. J. Winzer, “Fast-tuning 224  Gb/s intradyne receiver for optical packet networks,” in OFC, 2010, paper PDPB5.

Gustafson, K.

Huynh, T. N.

Ishihara, K.

Kamio, Y.

Kelley, P.

Kobayashi, T.

Larson, M. C.

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett., vol.  18, pp. 565–567, 2006.
[CrossRef]

Matsuura, A.

Miyamoto, Y.

Nakamura, M.

Nguyen, L.

Raybon, G.

J. E. Simsarian, J. Gripp, A. H. Gnauck, G. Raybon, and P. J. Winzer, “Fast-tuning 224  Gb/s intradyne receiver for optical packet networks,” in OFC, 2010, paper PDPB5.

Sano, A.

Shi, K.

T. N. Huynh, K. Shi, F. Smyth, and L. P. Barry, “DQPSK optical packet switching using an SG-DBR laser,” in CLEO Europe, 2011, paper CI1.

Shinada, S.

Simsarian, J. E.

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett., vol.  18, pp. 565–567, 2006.
[CrossRef]

J. E. Simsarian, J. Gripp, A. H. Gnauck, G. Raybon, and P. J. Winzer, “Fast-tuning 224  Gb/s intradyne receiver for optical packet networks,” in OFC, 2010, paper PDPB5.

Smyth, F.

T. N. Huynh, F. Smyth, L. Nguyen, and L. P. Barry, “Effects of phase noise of monolithic tunable laser on coherent communication systems,” Opt. Express, vol.  20, pp. B244–B249, 2012.
[CrossRef]

T. N. Huynh, K. Shi, F. Smyth, and L. P. Barry, “DQPSK optical packet switching using an SG-DBR laser,” in CLEO Europe, 2011, paper CI1.

Strand, T. A.

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett., vol.  18, pp. 565–567, 2006.
[CrossRef]

Tkach, R. W.

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE, vol.  100, pp. 1035–1055, 2012.
[CrossRef]

Wada, N.

Winzer, P. J.

J. E. Simsarian, J. Gripp, A. H. Gnauck, G. Raybon, and P. J. Winzer, “Fast-tuning 224  Gb/s intradyne receiver for optical packet networks,” in OFC, 2010, paper PDPB5.

Xu, H.

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett., vol.  18, pp. 565–567, 2006.
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett., vol.  18, pp. 565–567, 2006.
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (3)

Proc. IEEE (1)

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE, vol.  100, pp. 1035–1055, 2012.
[CrossRef]

Other (2)

J. E. Simsarian, J. Gripp, A. H. Gnauck, G. Raybon, and P. J. Winzer, “Fast-tuning 224  Gb/s intradyne receiver for optical packet networks,” in OFC, 2010, paper PDPB5.

T. N. Huynh, K. Shi, F. Smyth, and L. P. Barry, “DQPSK optical packet switching using an SG-DBR laser,” in CLEO Europe, 2011, paper CI1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) FM-noise spectrum of simulated laser phase noise; received symbol constellations (b) without and (c) with laser phase noise.

Fig. 2.
Fig. 2.

Impact of PSR for 16-QAM at 2.5 Gbaud (solid curve, BER performance; dashed curve, SNR).

Fig. 3.
Fig. 3.

(a) Experimental setup for the baud-rate-piloted-aided scheme for 16-QAM at 2.5 Gbaud (for both static and switching scenarios). (b) Optical spectrum of transmitted signal (optical resolution bandwidth: 0.16 pm).

Fig. 4.
Fig. 4.

Transceiver structure of baud-rate-pilot-aided scheme for QAM: (a) transmitter structure and (b) receiver structure including signal processing (in dashed lines). PD, photodiode; TIA, trans-impedance amplifier; LO, local oscillator.

Fig. 5.
Fig. 5.

Received constellations of pilot-aided 16-QAM at 2.5 Gbaud in the static scenario with three different lasers: (a) ECL (Δν=50KHz), (b) DFB laser (Δν=10MHz), and (c) SG-DBR laser biasing 4 sections.

Fig. 6.
Fig. 6.

BER of the three different lasers in the static scenario.

Fig. 7.
Fig. 7.

Emulated optical packet switching with SG-DBR lasers: (a) received optical packets, (b) received constellation with transient symbols, and (c) received constellation without transient symbols.

Fig. 8.
Fig. 8.

Aggregated BER versus OSNR of optical packets selected less than 5 ns after a switching event.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

s(t)=A(t)ej[ϕ(t)+θ(t)]+Cej[ωpt+θ(t)],
rpd(t)=s(t)s*(t)=[A2(t)+C2]+CA(t)ej[ωptϕ(t)]+CA(t)ej[ωpt+ϕ(t)].
rb(t)=rpd(t)ejωpt=CA(t)ejϕ(t)+[A2(t)+C2]ejωpt+CA(t)ej[2ωptϕ(t)].
rm(mT)=1T(m1)TmTrb(t)dt=1T(m1)TmTCA(t)ejϕ(t)dt+1T(m1)TmT[A2(t)+C2]ej2πtTdt+1T(m1)TmTCA(t)ejϕ(t)ej4πtTdt.
npd(t)=A(t)ej[ϕ(t)+θ(t)]+Cej[ωpt+θ(t)]×n*(t)+[A(t)ej[ϕ(t)+θ(t)]+Cej[ωpt+θ(t)]]×n(t)+n(t)×n*(t),nb(t)=npd(t)ejωpt=Cn(t)ejθ(t)+[n2(t)+2A(t)Re{n*(t)ej[ϕ(t)+θ(t)]}]ejωpt+Cn*(t)ejθ(t)ej2ωpt,
nm(mT)=1T(m1)TmTnb(t)dt=1T(m1)TmT[n0(t)+n1(t)+n2(t)]dt.