Abstract

In packet-optical integrated transport nodes for metropolitan networks, the wavelength data rate of the transponders has increased quickly to 10, 40, and 100 Gbps to reduce the cost of the transported bit. Meanwhile, the majority of the client data rate in routers and packet switches are still operating at 1, 2.5, and 10 Gbps. In this scenario, the introduction of optical transport network (OTN) switching technology enables an efficient wavelength bandwidth utilization and reduces the number of wavelengths, leading to reduced network costs. It has been shown that the use of integrated OTN/WDM switch architecture is cost effective because it reduces the number of short-reach client interfaces. The OTN/WDM also reduces the rack space and the power consumption compared to an architecture that uses a reconfigurable optical add–drop multiplexer and a separate standalone OTN switch or one that uses back-to-back muxponder connections to perform manual grooming. We introduce and investigate the performance of a new integrated OTN/WDN switching architecture in which the number of OTN switches is minimized. We propose an analytical model for the evaluation of the switch-blocking probability when two different OTN switch assignment policies are used. We show how the number of OTN switches can be reduced if a suitable dimensioning procedure is performed and depending on the traffic percentage needing OTN switching. As an example, if traffic is less than 45%, then the new proposed OTN/WDM switching architecture allows for 25% savings in OTN switching resources in the case of a switch with 4 input/output lines, 48 wavelengths, and 12×12 OTN switches.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Architecture of optical transport networks,” , 2001.
  2. “Characteristics of optical network hierarchy equipment functional blocks,” , 2004.
  3. “Interfaces for the optical transport network (OTN),” , 2009.
  4. J. Pedro, J. Santos, and R. M. Morais, “Dynamic setup of multi-granular services over next-generation OTN/WDM networks: Blocking versus add/drop port usage,” in Int. Conf. on Transparent Optical Networks, Warwick, UK, 2012.
  5. J. Santos, J. Pedro, P. Monteiro, and J. Pires, “Optimization framework for supporting 40 Gb/s and 100 Gb/s services over heterogeneous optical transport networks,” J. Netw., vol.  7, pp. 783–790, May 2012.
    [CrossRef]
  6. M. Carroll, J. Roese, and T. Ohara, “The operator’s view of OTN evolution,” IEEE Commun. Mag., vol.  48, no. 9, pp. 46–52, 2010.
    [CrossRef]
  7. J. Santos, J. Pedro, and J. Pires, “Optimized provisioning of 100-GbE services over OTN based on shared protection with collocated signal regeneration and differential delay compensation,” in Optical Fiber Communication Conf., San Francisco, CA, 2012.
  8. S. Zsigmond, M. Bertolini, G. Kang, and F. Leao, “Optical network transformation: The way to solve bandwidth limitation,” OptoElectronics & Communications Conf., Busan, South Korea, 2012.
  9. G. S. Zervas, M. De Leenheer, L. Sadeghioon, D. Klonidis, Y. Qin, R. Nejabati, D. Simeonidou, C. Develder, B. Dhoedt, and P. Demeester, “Multi-granular optical cross-connect: Design, analysis and demonstration,” J. Opt. Commun. Netw., vol.  1, pp. 69–84, 2009.
    [CrossRef]
  10. F. Rambach, B. Konrad, L. Dembeck, U. Gebhard, M. Gunkel, M. Quagliotti, L. Serra, and V. Lopez, “A multilayer cost model for metro/core networks,” J. Opt. Commun. Netw., vol.  5, pp. 210–225, 2013.
    [CrossRef]
  11. V. Eramo, M. Listanti, R. Sabella, and F. Testa, “Definition and performance evaluation of a low-cost/high-capacity scalable integrated OTN/WDM switch,” J. Opt. Commun. Netw., vol.  4, pp. 1033–1045, 2012.
    [CrossRef]
  12. P. Iovanna, F. Testa, R. Sabella, A. Bianchi, M. Puleri, M. R. Casanova, and A. Germoni, “Packet-optical integration nodes for next generation transport networks,” J. Opt. Commun. Netw., vol.  4, pp. 821–835, 2012.
    [CrossRef]
  13. S. Melle and V. Vusirikala, “Network planning and architecture analysis of wavelength blocking in optical and digital ROADM networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Anaheim, CA, Mar. 2007.
  14. A. Deore, O. Turkcu, S. Ahuja, S. J. Hand, and S. Melle, “Total cost of ownership of WDM and switching architectures for next-generation 100 Gb/s networks,” IEEE Commun. Mag., vol.  50, no. 11, pp. 179–187, 2012.
    [CrossRef]
  15. G. J. Eilenberger, “Integrated electrical/optical switching for future energy efficient packet networks,” in Optical Fiber Communication Conf., Los Angeles, CA, 2011.
  16. G. Zhang, Q. Xiong, and S. Shen, “Novel multi-granularity optical switching node with wavelength management pool resources,” in 4th Asia-Pacific Photonics Conf., Bejing, China, 2009.
  17. F. Naruse, Y. Yamada, H. Hasegawa, and K. Sato, “Evaluations of OXC hardware scale and network resource requirements of different optical path add/drop ratio restriction schemes,” J. Opt. Commun. Netw., vol.  4, pp. B26–B34, 2012.
    [CrossRef]
  18. Y. Li, L. Gao, G. Shen, and L. Peng, “Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance,” J. Opt. Commun. Netw., vol.  4, pp. B58–B67, 2012.
    [CrossRef]
  19. J. Pedro and S. Pato, “Impact of add/drop port utilization flexibility in DWDM networks,” J. Opt. Commun. Netw., vol.  4, pp. B142–B150, 2012.
    [CrossRef]
  20. A. N. Pinto, R. M. Morais, J. Pedro, and P. Monteiro, “Cost evaluation in optical networks: Node architecture and energy consumption,” in Int. Conf. on Transparent Optical Networks, Warwick, UK, 2012.
  21. G. Shen, Y. Lin, and L. Peng, “How much can colorless, directionless and contentionless (CDC) of ROADM help dynamic lightpath provisioning?” in Optical Fiber Communication Conf., San Francisco, CA, 2012.
  22. J. L. Strand, “Integrated route selection, transponder placement, wavelength, assignment, and restoration in an advanced ROADM architecture,” J. Opt. Commun. Netw., vol.  4, pp. 282–288, 2012.
    [CrossRef]
  23. S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, July 2010.
    [CrossRef]
  24. S. L. Woodward, M. D. Feuer, I. Kim, P. Palacharla, X. Wang, and D. Bihon, “Service velocity: Rapid provisioning strategies in optical ROADM networks,” J. Opt. Commun. Netw., vol.  4, no. 2, pp. 92–98, 2012.
    [CrossRef]
  25. P. Belotti, K. Kompella, L. Ceuppens, and L. Noronha, “Transport networks at a crossroads, the roles of MPLS and OTN in packet transport networks,” in Optical Fiber Communication Conf., Los Angeles, CA, 2011.
  26. F. A. Kish, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron., vol.  17, pp. 1470–1489, Mar./Apr. 2011.
    [CrossRef]
  27. D. F. Welch, F. A. Kish, R. Nagarajan, C. H. Joyner, R. P. Schneider, V. G. Dominic, M. L. Mitchell, S. G. Grubb, T. Chiang, D. D. Perkins, and A. C. Nilson, “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Lightwave Technol., vol.  24, pp. 4674–4683, 2006.
    [CrossRef]
  28. S. Melle, “Building agile optical networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, 2008.
  29. S. Melle and V. Vusirikala, “Analysis of wavelength blocking in large metro core network using optical and digital ROADM transport system,” in 33rd European Conf. and Exhibition on Optical Communication (ECOC), Berlin, Germany, 2007.
  30. NeoPhotonics products [Online]. Available: http://www.santurcorp.com/products/product_130.aspx .
  31. M. M. Hasan, F. Farahmand, J. P. Jue, and J. J. P. C. Rodrigues, “A study of energy-aware traffic grooming in optical networks: Static and dynamic cases,” IEEE Syst. J., vol.  7, no. 1, pp. 161–173 (2013).
    [CrossRef]

2013 (2)

F. Rambach, B. Konrad, L. Dembeck, U. Gebhard, M. Gunkel, M. Quagliotti, L. Serra, and V. Lopez, “A multilayer cost model for metro/core networks,” J. Opt. Commun. Netw., vol.  5, pp. 210–225, 2013.
[CrossRef]

M. M. Hasan, F. Farahmand, J. P. Jue, and J. J. P. C. Rodrigues, “A study of energy-aware traffic grooming in optical networks: Static and dynamic cases,” IEEE Syst. J., vol.  7, no. 1, pp. 161–173 (2013).
[CrossRef]

2012 (9)

J. Santos, J. Pedro, P. Monteiro, and J. Pires, “Optimization framework for supporting 40 Gb/s and 100 Gb/s services over heterogeneous optical transport networks,” J. Netw., vol.  7, pp. 783–790, May 2012.
[CrossRef]

S. L. Woodward, M. D. Feuer, I. Kim, P. Palacharla, X. Wang, and D. Bihon, “Service velocity: Rapid provisioning strategies in optical ROADM networks,” J. Opt. Commun. Netw., vol.  4, no. 2, pp. 92–98, 2012.
[CrossRef]

V. Eramo, M. Listanti, R. Sabella, and F. Testa, “Definition and performance evaluation of a low-cost/high-capacity scalable integrated OTN/WDM switch,” J. Opt. Commun. Netw., vol.  4, pp. 1033–1045, 2012.
[CrossRef]

P. Iovanna, F. Testa, R. Sabella, A. Bianchi, M. Puleri, M. R. Casanova, and A. Germoni, “Packet-optical integration nodes for next generation transport networks,” J. Opt. Commun. Netw., vol.  4, pp. 821–835, 2012.
[CrossRef]

A. Deore, O. Turkcu, S. Ahuja, S. J. Hand, and S. Melle, “Total cost of ownership of WDM and switching architectures for next-generation 100 Gb/s networks,” IEEE Commun. Mag., vol.  50, no. 11, pp. 179–187, 2012.
[CrossRef]

F. Naruse, Y. Yamada, H. Hasegawa, and K. Sato, “Evaluations of OXC hardware scale and network resource requirements of different optical path add/drop ratio restriction schemes,” J. Opt. Commun. Netw., vol.  4, pp. B26–B34, 2012.
[CrossRef]

Y. Li, L. Gao, G. Shen, and L. Peng, “Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance,” J. Opt. Commun. Netw., vol.  4, pp. B58–B67, 2012.
[CrossRef]

J. Pedro and S. Pato, “Impact of add/drop port utilization flexibility in DWDM networks,” J. Opt. Commun. Netw., vol.  4, pp. B142–B150, 2012.
[CrossRef]

J. L. Strand, “Integrated route selection, transponder placement, wavelength, assignment, and restoration in an advanced ROADM architecture,” J. Opt. Commun. Netw., vol.  4, pp. 282–288, 2012.
[CrossRef]

2011 (1)

F. A. Kish, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron., vol.  17, pp. 1470–1489, Mar./Apr. 2011.
[CrossRef]

2010 (2)

M. Carroll, J. Roese, and T. Ohara, “The operator’s view of OTN evolution,” IEEE Commun. Mag., vol.  48, no. 9, pp. 46–52, 2010.
[CrossRef]

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, July 2010.
[CrossRef]

2009 (1)

2006 (1)

Ahuja, S.

A. Deore, O. Turkcu, S. Ahuja, S. J. Hand, and S. Melle, “Total cost of ownership of WDM and switching architectures for next-generation 100 Gb/s networks,” IEEE Commun. Mag., vol.  50, no. 11, pp. 179–187, 2012.
[CrossRef]

Basch, B.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, July 2010.
[CrossRef]

Belotti, P.

P. Belotti, K. Kompella, L. Ceuppens, and L. Noronha, “Transport networks at a crossroads, the roles of MPLS and OTN in packet transport networks,” in Optical Fiber Communication Conf., Los Angeles, CA, 2011.

Bertolini, M.

S. Zsigmond, M. Bertolini, G. Kang, and F. Leao, “Optical network transformation: The way to solve bandwidth limitation,” OptoElectronics & Communications Conf., Busan, South Korea, 2012.

Bianchi, A.

Bihon, D.

Carroll, M.

M. Carroll, J. Roese, and T. Ohara, “The operator’s view of OTN evolution,” IEEE Commun. Mag., vol.  48, no. 9, pp. 46–52, 2010.
[CrossRef]

Casanova, M. R.

Ceuppens, L.

P. Belotti, K. Kompella, L. Ceuppens, and L. Noronha, “Transport networks at a crossroads, the roles of MPLS and OTN in packet transport networks,” in Optical Fiber Communication Conf., Los Angeles, CA, 2011.

Chiang, T.

De Leenheer, M.

Dembeck, L.

Demeester, P.

Deore, A.

A. Deore, O. Turkcu, S. Ahuja, S. J. Hand, and S. Melle, “Total cost of ownership of WDM and switching architectures for next-generation 100 Gb/s networks,” IEEE Commun. Mag., vol.  50, no. 11, pp. 179–187, 2012.
[CrossRef]

Develder, C.

Dhoedt, B.

Dominic, V. G.

Egorov, R.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, July 2010.
[CrossRef]

Eilenberger, G. J.

G. J. Eilenberger, “Integrated electrical/optical switching for future energy efficient packet networks,” in Optical Fiber Communication Conf., Los Angeles, CA, 2011.

Eramo, V.

Farahmand, F.

M. M. Hasan, F. Farahmand, J. P. Jue, and J. J. P. C. Rodrigues, “A study of energy-aware traffic grooming in optical networks: Static and dynamic cases,” IEEE Syst. J., vol.  7, no. 1, pp. 161–173 (2013).
[CrossRef]

Feuer, M. D.

Gao, L.

Gebhard, U.

Germoni, A.

Gringeri, S.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, July 2010.
[CrossRef]

Grubb, S. G.

Gunkel, M.

Hand, S. J.

A. Deore, O. Turkcu, S. Ahuja, S. J. Hand, and S. Melle, “Total cost of ownership of WDM and switching architectures for next-generation 100 Gb/s networks,” IEEE Commun. Mag., vol.  50, no. 11, pp. 179–187, 2012.
[CrossRef]

Hasan, M. M.

M. M. Hasan, F. Farahmand, J. P. Jue, and J. J. P. C. Rodrigues, “A study of energy-aware traffic grooming in optical networks: Static and dynamic cases,” IEEE Syst. J., vol.  7, no. 1, pp. 161–173 (2013).
[CrossRef]

Hasegawa, H.

Iovanna, P.

Joyner, C. H.

Jue, J. P.

M. M. Hasan, F. Farahmand, J. P. Jue, and J. J. P. C. Rodrigues, “A study of energy-aware traffic grooming in optical networks: Static and dynamic cases,” IEEE Syst. J., vol.  7, no. 1, pp. 161–173 (2013).
[CrossRef]

Kang, G.

S. Zsigmond, M. Bertolini, G. Kang, and F. Leao, “Optical network transformation: The way to solve bandwidth limitation,” OptoElectronics & Communications Conf., Busan, South Korea, 2012.

Kim, I.

Kish, F. A.

Klonidis, D.

Kompella, K.

P. Belotti, K. Kompella, L. Ceuppens, and L. Noronha, “Transport networks at a crossroads, the roles of MPLS and OTN in packet transport networks,” in Optical Fiber Communication Conf., Los Angeles, CA, 2011.

Konrad, B.

Leao, F.

S. Zsigmond, M. Bertolini, G. Kang, and F. Leao, “Optical network transformation: The way to solve bandwidth limitation,” OptoElectronics & Communications Conf., Busan, South Korea, 2012.

Li, Y.

Lin, Y.

G. Shen, Y. Lin, and L. Peng, “How much can colorless, directionless and contentionless (CDC) of ROADM help dynamic lightpath provisioning?” in Optical Fiber Communication Conf., San Francisco, CA, 2012.

Listanti, M.

Lopez, V.

Melle, S.

A. Deore, O. Turkcu, S. Ahuja, S. J. Hand, and S. Melle, “Total cost of ownership of WDM and switching architectures for next-generation 100 Gb/s networks,” IEEE Commun. Mag., vol.  50, no. 11, pp. 179–187, 2012.
[CrossRef]

S. Melle and V. Vusirikala, “Network planning and architecture analysis of wavelength blocking in optical and digital ROADM networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Anaheim, CA, Mar. 2007.

S. Melle, “Building agile optical networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, 2008.

S. Melle and V. Vusirikala, “Analysis of wavelength blocking in large metro core network using optical and digital ROADM transport system,” in 33rd European Conf. and Exhibition on Optical Communication (ECOC), Berlin, Germany, 2007.

Mitchell, M. L.

Monteiro, P.

J. Santos, J. Pedro, P. Monteiro, and J. Pires, “Optimization framework for supporting 40 Gb/s and 100 Gb/s services over heterogeneous optical transport networks,” J. Netw., vol.  7, pp. 783–790, May 2012.
[CrossRef]

A. N. Pinto, R. M. Morais, J. Pedro, and P. Monteiro, “Cost evaluation in optical networks: Node architecture and energy consumption,” in Int. Conf. on Transparent Optical Networks, Warwick, UK, 2012.

Morais, R. M.

A. N. Pinto, R. M. Morais, J. Pedro, and P. Monteiro, “Cost evaluation in optical networks: Node architecture and energy consumption,” in Int. Conf. on Transparent Optical Networks, Warwick, UK, 2012.

J. Pedro, J. Santos, and R. M. Morais, “Dynamic setup of multi-granular services over next-generation OTN/WDM networks: Blocking versus add/drop port usage,” in Int. Conf. on Transparent Optical Networks, Warwick, UK, 2012.

Nagarajan, R.

Naruse, F.

Nejabati, R.

Nilson, A. C.

Noronha, L.

P. Belotti, K. Kompella, L. Ceuppens, and L. Noronha, “Transport networks at a crossroads, the roles of MPLS and OTN in packet transport networks,” in Optical Fiber Communication Conf., Los Angeles, CA, 2011.

Ohara, T.

M. Carroll, J. Roese, and T. Ohara, “The operator’s view of OTN evolution,” IEEE Commun. Mag., vol.  48, no. 9, pp. 46–52, 2010.
[CrossRef]

Palacharla, P.

Pato, S.

Pedro, J.

J. Santos, J. Pedro, P. Monteiro, and J. Pires, “Optimization framework for supporting 40 Gb/s and 100 Gb/s services over heterogeneous optical transport networks,” J. Netw., vol.  7, pp. 783–790, May 2012.
[CrossRef]

J. Pedro and S. Pato, “Impact of add/drop port utilization flexibility in DWDM networks,” J. Opt. Commun. Netw., vol.  4, pp. B142–B150, 2012.
[CrossRef]

A. N. Pinto, R. M. Morais, J. Pedro, and P. Monteiro, “Cost evaluation in optical networks: Node architecture and energy consumption,” in Int. Conf. on Transparent Optical Networks, Warwick, UK, 2012.

J. Santos, J. Pedro, and J. Pires, “Optimized provisioning of 100-GbE services over OTN based on shared protection with collocated signal regeneration and differential delay compensation,” in Optical Fiber Communication Conf., San Francisco, CA, 2012.

J. Pedro, J. Santos, and R. M. Morais, “Dynamic setup of multi-granular services over next-generation OTN/WDM networks: Blocking versus add/drop port usage,” in Int. Conf. on Transparent Optical Networks, Warwick, UK, 2012.

Peng, L.

Y. Li, L. Gao, G. Shen, and L. Peng, “Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance,” J. Opt. Commun. Netw., vol.  4, pp. B58–B67, 2012.
[CrossRef]

G. Shen, Y. Lin, and L. Peng, “How much can colorless, directionless and contentionless (CDC) of ROADM help dynamic lightpath provisioning?” in Optical Fiber Communication Conf., San Francisco, CA, 2012.

Perkins, D. D.

Pinto, A. N.

A. N. Pinto, R. M. Morais, J. Pedro, and P. Monteiro, “Cost evaluation in optical networks: Node architecture and energy consumption,” in Int. Conf. on Transparent Optical Networks, Warwick, UK, 2012.

Pires, J.

J. Santos, J. Pedro, P. Monteiro, and J. Pires, “Optimization framework for supporting 40 Gb/s and 100 Gb/s services over heterogeneous optical transport networks,” J. Netw., vol.  7, pp. 783–790, May 2012.
[CrossRef]

J. Santos, J. Pedro, and J. Pires, “Optimized provisioning of 100-GbE services over OTN based on shared protection with collocated signal regeneration and differential delay compensation,” in Optical Fiber Communication Conf., San Francisco, CA, 2012.

Puleri, M.

Qin, Y.

Quagliotti, M.

Rambach, F.

Rodrigues, J. J. P. C.

M. M. Hasan, F. Farahmand, J. P. Jue, and J. J. P. C. Rodrigues, “A study of energy-aware traffic grooming in optical networks: Static and dynamic cases,” IEEE Syst. J., vol.  7, no. 1, pp. 161–173 (2013).
[CrossRef]

Roese, J.

M. Carroll, J. Roese, and T. Ohara, “The operator’s view of OTN evolution,” IEEE Commun. Mag., vol.  48, no. 9, pp. 46–52, 2010.
[CrossRef]

Sabella, R.

Sadeghioon, L.

Santos, J.

J. Santos, J. Pedro, P. Monteiro, and J. Pires, “Optimization framework for supporting 40 Gb/s and 100 Gb/s services over heterogeneous optical transport networks,” J. Netw., vol.  7, pp. 783–790, May 2012.
[CrossRef]

J. Pedro, J. Santos, and R. M. Morais, “Dynamic setup of multi-granular services over next-generation OTN/WDM networks: Blocking versus add/drop port usage,” in Int. Conf. on Transparent Optical Networks, Warwick, UK, 2012.

J. Santos, J. Pedro, and J. Pires, “Optimized provisioning of 100-GbE services over OTN based on shared protection with collocated signal regeneration and differential delay compensation,” in Optical Fiber Communication Conf., San Francisco, CA, 2012.

Sato, K.

Schneider, R. P.

Serra, L.

Shen, G.

Y. Li, L. Gao, G. Shen, and L. Peng, “Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance,” J. Opt. Commun. Netw., vol.  4, pp. B58–B67, 2012.
[CrossRef]

G. Shen, Y. Lin, and L. Peng, “How much can colorless, directionless and contentionless (CDC) of ROADM help dynamic lightpath provisioning?” in Optical Fiber Communication Conf., San Francisco, CA, 2012.

Shen, S.

G. Zhang, Q. Xiong, and S. Shen, “Novel multi-granularity optical switching node with wavelength management pool resources,” in 4th Asia-Pacific Photonics Conf., Bejing, China, 2009.

Shukla, V.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, July 2010.
[CrossRef]

Simeonidou, D.

Strand, J. L.

Testa, F.

Turkcu, O.

A. Deore, O. Turkcu, S. Ahuja, S. J. Hand, and S. Melle, “Total cost of ownership of WDM and switching architectures for next-generation 100 Gb/s networks,” IEEE Commun. Mag., vol.  50, no. 11, pp. 179–187, 2012.
[CrossRef]

Vusirikala, V.

S. Melle and V. Vusirikala, “Network planning and architecture analysis of wavelength blocking in optical and digital ROADM networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Anaheim, CA, Mar. 2007.

S. Melle and V. Vusirikala, “Analysis of wavelength blocking in large metro core network using optical and digital ROADM transport system,” in 33rd European Conf. and Exhibition on Optical Communication (ECOC), Berlin, Germany, 2007.

Wang, X.

Welch, D. F.

Woodward, S. L.

Xia, T. J.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, July 2010.
[CrossRef]

Xiong, Q.

G. Zhang, Q. Xiong, and S. Shen, “Novel multi-granularity optical switching node with wavelength management pool resources,” in 4th Asia-Pacific Photonics Conf., Bejing, China, 2009.

Yamada, Y.

Zervas, G. S.

Zhang, G.

G. Zhang, Q. Xiong, and S. Shen, “Novel multi-granularity optical switching node with wavelength management pool resources,” in 4th Asia-Pacific Photonics Conf., Bejing, China, 2009.

Zsigmond, S.

S. Zsigmond, M. Bertolini, G. Kang, and F. Leao, “Optical network transformation: The way to solve bandwidth limitation,” OptoElectronics & Communications Conf., Busan, South Korea, 2012.

IEEE Commun. Mag. (3)

M. Carroll, J. Roese, and T. Ohara, “The operator’s view of OTN evolution,” IEEE Commun. Mag., vol.  48, no. 9, pp. 46–52, 2010.
[CrossRef]

A. Deore, O. Turkcu, S. Ahuja, S. J. Hand, and S. Melle, “Total cost of ownership of WDM and switching architectures for next-generation 100 Gb/s networks,” IEEE Commun. Mag., vol.  50, no. 11, pp. 179–187, 2012.
[CrossRef]

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, July 2010.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

F. A. Kish, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron., vol.  17, pp. 1470–1489, Mar./Apr. 2011.
[CrossRef]

IEEE Syst. J. (1)

M. M. Hasan, F. Farahmand, J. P. Jue, and J. J. P. C. Rodrigues, “A study of energy-aware traffic grooming in optical networks: Static and dynamic cases,” IEEE Syst. J., vol.  7, no. 1, pp. 161–173 (2013).
[CrossRef]

J. Lightwave Technol. (1)

J. Netw. (1)

J. Santos, J. Pedro, P. Monteiro, and J. Pires, “Optimization framework for supporting 40 Gb/s and 100 Gb/s services over heterogeneous optical transport networks,” J. Netw., vol.  7, pp. 783–790, May 2012.
[CrossRef]

J. Opt. Commun. Netw. (9)

J. L. Strand, “Integrated route selection, transponder placement, wavelength, assignment, and restoration in an advanced ROADM architecture,” J. Opt. Commun. Netw., vol.  4, pp. 282–288, 2012.
[CrossRef]

S. L. Woodward, M. D. Feuer, I. Kim, P. Palacharla, X. Wang, and D. Bihon, “Service velocity: Rapid provisioning strategies in optical ROADM networks,” J. Opt. Commun. Netw., vol.  4, no. 2, pp. 92–98, 2012.
[CrossRef]

F. Naruse, Y. Yamada, H. Hasegawa, and K. Sato, “Evaluations of OXC hardware scale and network resource requirements of different optical path add/drop ratio restriction schemes,” J. Opt. Commun. Netw., vol.  4, pp. B26–B34, 2012.
[CrossRef]

Y. Li, L. Gao, G. Shen, and L. Peng, “Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance,” J. Opt. Commun. Netw., vol.  4, pp. B58–B67, 2012.
[CrossRef]

J. Pedro and S. Pato, “Impact of add/drop port utilization flexibility in DWDM networks,” J. Opt. Commun. Netw., vol.  4, pp. B142–B150, 2012.
[CrossRef]

G. S. Zervas, M. De Leenheer, L. Sadeghioon, D. Klonidis, Y. Qin, R. Nejabati, D. Simeonidou, C. Develder, B. Dhoedt, and P. Demeester, “Multi-granular optical cross-connect: Design, analysis and demonstration,” J. Opt. Commun. Netw., vol.  1, pp. 69–84, 2009.
[CrossRef]

F. Rambach, B. Konrad, L. Dembeck, U. Gebhard, M. Gunkel, M. Quagliotti, L. Serra, and V. Lopez, “A multilayer cost model for metro/core networks,” J. Opt. Commun. Netw., vol.  5, pp. 210–225, 2013.
[CrossRef]

V. Eramo, M. Listanti, R. Sabella, and F. Testa, “Definition and performance evaluation of a low-cost/high-capacity scalable integrated OTN/WDM switch,” J. Opt. Commun. Netw., vol.  4, pp. 1033–1045, 2012.
[CrossRef]

P. Iovanna, F. Testa, R. Sabella, A. Bianchi, M. Puleri, M. R. Casanova, and A. Germoni, “Packet-optical integration nodes for next generation transport networks,” J. Opt. Commun. Netw., vol.  4, pp. 821–835, 2012.
[CrossRef]

Other (15)

S. Melle and V. Vusirikala, “Network planning and architecture analysis of wavelength blocking in optical and digital ROADM networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Anaheim, CA, Mar. 2007.

“Architecture of optical transport networks,” , 2001.

“Characteristics of optical network hierarchy equipment functional blocks,” , 2004.

“Interfaces for the optical transport network (OTN),” , 2009.

J. Pedro, J. Santos, and R. M. Morais, “Dynamic setup of multi-granular services over next-generation OTN/WDM networks: Blocking versus add/drop port usage,” in Int. Conf. on Transparent Optical Networks, Warwick, UK, 2012.

A. N. Pinto, R. M. Morais, J. Pedro, and P. Monteiro, “Cost evaluation in optical networks: Node architecture and energy consumption,” in Int. Conf. on Transparent Optical Networks, Warwick, UK, 2012.

G. Shen, Y. Lin, and L. Peng, “How much can colorless, directionless and contentionless (CDC) of ROADM help dynamic lightpath provisioning?” in Optical Fiber Communication Conf., San Francisco, CA, 2012.

G. J. Eilenberger, “Integrated electrical/optical switching for future energy efficient packet networks,” in Optical Fiber Communication Conf., Los Angeles, CA, 2011.

G. Zhang, Q. Xiong, and S. Shen, “Novel multi-granularity optical switching node with wavelength management pool resources,” in 4th Asia-Pacific Photonics Conf., Bejing, China, 2009.

J. Santos, J. Pedro, and J. Pires, “Optimized provisioning of 100-GbE services over OTN based on shared protection with collocated signal regeneration and differential delay compensation,” in Optical Fiber Communication Conf., San Francisco, CA, 2012.

S. Zsigmond, M. Bertolini, G. Kang, and F. Leao, “Optical network transformation: The way to solve bandwidth limitation,” OptoElectronics & Communications Conf., Busan, South Korea, 2012.

P. Belotti, K. Kompella, L. Ceuppens, and L. Noronha, “Transport networks at a crossroads, the roles of MPLS and OTN in packet transport networks,” in Optical Fiber Communication Conf., Los Angeles, CA, 2011.

S. Melle, “Building agile optical networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, 2008.

S. Melle and V. Vusirikala, “Analysis of wavelength blocking in large metro core network using optical and digital ROADM transport system,” in 33rd European Conf. and Exhibition on Optical Communication (ECOC), Berlin, Germany, 2007.

NeoPhotonics products [Online]. Available: http://www.santurcorp.com/products/product_130.aspx .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Implementation of an OTN/WDM switching node.

Fig. 2.
Fig. 2.

OTN/WDM switching architecture. The meaning of the switch parameters N, W, K, H, and F is reported in Table I.

Fig. 3.
Fig. 3.

(a) RAP’s operation mode and (b) FFAP’s operation mode.

Fig. 4.
Fig. 4.

(a) Operational mode of the scheduling algorithm in the case of a switch with N=2, W=6, F=10, and equipped with H=13×3 OTN switches per IL. DF(i) denotes a direct flow toward the ith (i=1,2) OL; SF denotes a switched flow; and ai,j,kOTN denotes the number of SSFs offered to the IOSi,j and directed to the kth OL. (b) Operational mode of Phase-1 and Phase-2 of the algorithm in which the DFs are forwarded and some SFs are discarded. (c) Operational mode of Phase-3 of the algorithm in which the full high-capacity links are set up and ai,j,kOTN,r denotes the number of remaining SSFs to be directed after Phase-3. (d) Operational mode of Phase-4 of the algorithm in which the random high-capacity links are set up.

Fig. 5.
Fig. 5.

Assignment of the input OTN switches in an IL according to FFAP. (a) The IL is equipped with H=34×4 OTN switches, and i=9 SFs and j=5 DFs are offered to the IL. (b) The input channels of the first nOTN=2 OTN switches carry all SFs; the input channels of the third OTN switch carry nSF=1 SF, nDF=1 DF; and the remaining ones are free.

Fig. 6.
Fig. 6.

Analytical and simulation results of the blocking probability Pb,SSF as a function of the probability β that an input channel carries direct traffic for N=2, W=16, K=8, H=2, F=10, qs=0.4, and 0.2α0.8. FFAP is adopted.

Fig. 7.
Fig. 7.

Analytical and simulation results of the blocking probability Pb,SSF as a function of the probability β that an input channel carries direct traffic for N=2, W=16, K=8, H=2, F=10, qs=0.8, and 0.2α0.8. FFAP is adopted.

Fig. 8.
Fig. 8.

Analytical and simulation results of the blocking probability Pb,SSF as a function of the probability β that an input channel carries direct traffic for N=2, W=16, K=8, H=1, F=10, qs=0.7, and 0.2α0.8. FFAP is adopted.

Fig. 9.
Fig. 9.

Analytical and simulation results of the blocking probability Pb,SSF as a function of the probability β that an input channel carries direct traffic for W=16, K=8, H=2, F=10, qs=0.4, α=0.2, and 2N5. FFAP is adopted.

Fig. 10.
Fig. 10.

Blocking probability Pb,SSF as a function of the probability α that an input channel carries switched traffic for N=4, W=48, K=12, H=4, F=10, qs=0.6, and 0γ0.3. Results for both RAP and FFAP are reported.

Fig. 11.
Fig. 11.

High-capacity link utilization coefficient θHlink as a function of the probability α that an input channel carries switched traffic for N=4, W=48, K=12, H=4, F=10, qs=0.6, and 0γ0.3. Results for both RAP and FFAP are reported.

Fig. 12.
Fig. 12.

IOS isolation probability PODUisol as a function of the probability α that an input channel carries switched traffic for N=4, W=48, K=12, H=4, F=10, qs=0.6, and 0γ0.3. Results for both RAP and FFAP are reported.

Fig. 13.
Fig. 13.

Blocking probability Pb,SSF as a function of the probability γ that an input channel is free for N=4, W=48, K=12, H=4, F=10, qs=0.6, and 0.1α0.4. Results for both RAP and FFAP are reported.

Fig. 14.
Fig. 14.

Blocking probability Pb,SSF as a function of the probability α that an input channel carries switched traffic for N=4, W=48, K=12, F=10, qs=0.6, and γ=0. The number H of OTN switches used in each IL is varied from 1 to 4. FFAP is adopted.

Fig. 15.
Fig. 15.

Blocking probability Pb,SSF as a function of the probability α that an input channel carries switched traffic for N=4, W=48, K=12, F=10, qs=0.6, and γ=0.2. The number H of OTN switches used in each IL is varied from 1 to 4. FFAP is adopted.

Fig. 16.
Fig. 16.

Blocking probability Pb,SSF as a function of the probability α that an input channel carries switched traffic for N=4, W=48, K=12, F=10, qs=0.6, and γ=0.4. The number H of OTN switches used in each IL is varied from 1 to 4. FFAP is adopted.

Fig. 17.
Fig. 17.

Blocking probability Pb,SSF as a function of α for N=4, W=48, K=12, qs=0.6, and γ=0.4. The considered values of F are 4 and 8. The number H of OTN switches used in each IL is varied from 1 to 4. FFAP is adopted.

Tables (2)

Tables Icon

TABLE I Switch Parameters

Tables Icon

TABLE II Main Variables Used in the Analytical Model Introduced to Evaluate the Blocking Probability Pb,SSF

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Pb,SSF=E[Nb,SSFIL]E[No,SSFIL],
E[Nb,SSFIL]=i=0Wj=0WiE[Nb,SSFIL,i,j]Pr(ISF=i,IDF=j),
Pr(ISF=i,IDF=j)=(Wi)(Wij)αiβjγWij.
E[Nb,SSFIL,i,j,(1)]=(1+qs(F1))max(0,iHK).
E[Nb,SSFIL,i,j,(2)]={HE[Nb,SSFOTN,K,0]i>HKnOTNE[Nb,SSFOTN,K,0]+E[Nb,SSFOTN,nSF,nDF]iHK,
Pr(D=d|S=s)=(s(F1)ds)qsds(1qs)(sFd).
μs,d,qh={δ(qdF)h=1Σu=0qΣj=uF(u+1)F1ηs,d,jhμs,dj,quh12hN,
ηs,d,jh=t=0Wi=0(h1)W(tFj)(iFdj)((i+t)Fd)l=0s(Wl)((h1)Wsl)(hWs)γl,tWγsl,i(h1)Wh=2,,N;s=0,,K;d=s,,sF;j=0,,min(d,tF).
γv,zhW={00zv1;1hN(hWvzv)αzv(1α)hWzvzhW;1hN.
E[Nb,SSFOTN,s,p]=d=ssFq=0dF(dqFmin(N,K(p+q))dqFN)ζs,d,qPr(D=d|S=s).
ϑϑHlink=E[Na,SSFIL]FE[NϑHlinkIL],
E[NHlinkIL]=i=0HKj=0Wi(nOTNE[NHlinkOTN,K,0]+E[NHlinkOTN,nSF,nDF])Pr(ISF=i,IDF=j)+nOTNE[NHlinkOTN,K,0]i=HK+1Wj=0WiPr(ISF=i,IDF=j),
E[NHlinkOTN,s,p]=d=ssFq=0dF(q+min(N,K(p+q)))ζs,d,q(s(F1)ds)qsds(1qs)(sFd).
PIOSisol=Pr(ξ)=i=0HKj=0WiPr(ξ|ISF=i,IDF=j)Pr(ISF=i,IDF=j).
Pr(ξ|ISF=i,IDF=j)={1if(iiKK>0)and(K+max(0,j(W(iK+1)K)))<N)0otherwise.