Abstract

In this paper, we experimentally demonstrate the seamless integration of full duplex system frequency division duplex (FDD) long-term evolution (LTE) technology with radio over fiber (RoF) for eNodeB (eNB) coverage extension. LTE is composed of quadrature phase-shift keying (QPSK), 16-quadrature amplitude modulation (16-QAM) and 64-QAM, modulated onto orthogonal frequency division multiplexing (OFDM) and single-carrier-frequency division multiplexing for downlink (DL) and uplink (UL) transmissions, respectively. The RoF system is composed of dedicated directly modulated lasers for DL and UL with dense wavelength division multiplexing (DWDM) for instantaneous connections and for Rayleigh backscattering and nonlinear interference mitigation. DL and UL signals have varying carrier frequencies and are categorized as broad frequency spacing (BFS), intermediate frequency spacing (IFS), and narrow frequency spacing (NFS). The adjacent channel leakage ratio (ACLR) for DL and UL with 64-QAM are similar for all frequency spacings while cross talk is observed for NFS. For the best case scenario for DL and UL transmissions we achieve error vector magnitude (EVM) values of 2.30%, 2.33%, and 2.39% for QPSK, 16-QAM, and 64-QAM, respectively, while for the worst case scenario with a NFS EVM is increased by 0.40% for all schemes.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wirth, L. Thiele, T. Haustein, O. Braz, and J. Stefanik, “LTE amplify and forward relaying for indoor coverage extension,” in IEEE 72nd Vehicular Technology Conf. Fall (VTC 2010-Fall), 2010, pp. 1–5.
  2. 3GPP, “3rd Generation Partnership Project; Technical Specification Group radio access network; evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN),” , 2011.
  3. T. Wirth, V. Venkatkumar, T. Haustein, E. Schulz, and R. Halfmann, “LTE-advanced relaying for outdoor range extension,” in IEEE 70th Vehicular Technology Conf. Fall (VTC 2009-Fall), 2009, pp. 1–4.
  4. A. Nagate, K. Hoshino, M. Mikami, and T. Fujii, “A field trial of multi-cell cooperative transmission over LTE system,” in IEEE Int. Conf. on Communications (ICC), 2011, pp. 1–5.
  5. T. Kanesan, W. P. Ng, Z. Ghassemlooy, and J. Perez, “Optimization of optical modulator for LTE RoF in nonlinear fiber propagation,” IEEE Photon. Technol. Lett., vol.  24, pp. 617–619, 2012.
    [CrossRef]
  6. W. P. Ng, T. Kanesan, Z. Ghassemlooy, and C. Lu, “Theoretical and experimental optimum system design for LTE-RoF over varying transmission span and identification of system nonlinear limit,” IEEE Photon. J., vol.  4, pp. 1560–1571, 2012.
    [CrossRef]
  7. R. Letian, S. E. Elayoubi, and O. B. Haddada, “Impact of relays on LTE-advanced performance,” in IEEE Int. Conf. on Communications (ICC), 2010, pp. 1–6.
  8. P.-T. Shih, A. Ng’oma, C.-T. Lin, F. Annunziata, J. Chen, J. George, M. Sauer, and S. Chi, “2×21  Gbps symmetrical full-duplex transmission of OFDM wireless signals over a bidirectional IMDD radio-over-fiber system at 60  GHz,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.
  9. M. Milosavljevic, M. P. Thakur, P. Kourtessis, J. E. Mitchell, and J. M. Senior, “Demonstration of wireless backhauling over long-reach PONs,” J. Lightwave Technol., vol.  30, pp. 811–817, 2012.
    [CrossRef]
  10. H.-C. Ji, K. Hoon, and C. C. Yun, “Full-duplex radio-over-fiber system using phase-modulated downlink and intensity-modulated uplink,” IEEE Photon. Technol. Lett., vol.  21, pp. 9–11, 2009.
    [CrossRef]
  11. H.-J. Kim and J.-I. Song, “Full-duplex WDM-based RoF system using all-optical SSB frequency upconversion and wavelength re-use techniques,” IEEE Trans. Microwave Theory Tech., vol.  58, pp. 3175–3180, 2010.
    [CrossRef]
  12. J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett., vol.  19, pp. 1499–1501, 2007.
    [CrossRef]
  13. M. Bakaul, A. Nirmalathas, and C. Lim, “Multifunctional WDM optical interface for millimeter-wave fiber-radio antenna base station,” J. Lightwave Technol., vol.  23, pp. 1210–1218, 2005.
    [CrossRef]
  14. J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express, vol.  18, pp. 9791–9808, 2010.
    [CrossRef]
  15. C. Arellano, K. D. Langer, and J. Prat, “Reflections and multiple Rayleigh backscattering in WDM single-fiber loopback access networks,” J. Lightwave Technol., vol.  27, pp. 12–18, 2009.
    [CrossRef]
  16. A. Chowdhury, H.-C. Chien, M.-F. Huang, J. Yu, and G.-K. Chang, “Rayleigh backscattering noise-eliminated 115-km long-reach bidirectional centralized WDM-PON with 10-Gb/s DPSK downstream and remodulated 2.5-Gb/s OCS-SCM upstream signal,” IEEE Photon. Technol. Lett., vol.  20, pp. 2081–2083, 2008.
    [CrossRef]
  17. P. J. Winzer, F. Fidler, M. J. Matthews, L. E. Nelson, S. Chandrasekhar, L. L. Buhl, M. Winter, and D. Castagnozzi, “Electronic equalization and FEC enable bidirectional CWDM capacities of 9.6  Tb/s-km,” in Optical Fiber Communication Conf. (OFC), 2004, vol. 2, p. 3.
  18. J. Prat, V. Polo, C. Bock, C. Arellano, and J. J. V. Olmos, “Full-duplex single fiber transmission using FSK downstream and IM remote upstream modulations for fiber-to-the-home,” IEEE Photon. Technol. Lett., vol.  17, pp. 702–704, 2005.
    [CrossRef]
  19. I. Papagiannakis, M. Omella, D. Klonidis, J. A. L. Villa, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10  Gb/s using low bandwidth RSOA,” J. Lightwave Technol., vol.  28, pp. 1094–1101, 2010.
    [CrossRef]
  20. G. L. Li and P. K. L. Yu, “Optical intensity modulators for digital and analog applications,” J. Lightwave Technol., vol.  21, pp. 2010–2030, 2003.
    [CrossRef]
  21. T. Kanesan, W. P. Ng, Z. Ghassemlooy, and C. Lu, “Impact of optical modulators in LTE RoF system with nonlinear compensator for enhanced power budget,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2013, pp. 1–3.
  22. 3GPP, “Evolved universal terrestrial radio access (E-UTRA); physical channels and modulation,” , 2011.
  23. 3GPP, “Evolved universal terrestrial radio access (E-UTRA); user equipment (UE) radio transmission and reception,” , 2011.
  24. X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibers,” IEEE Photon. J., vol.  2, pp. 532–542, 2010.
    [CrossRef]
  25. F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett., vol.  10, pp. 1473–1475, 1998.
    [CrossRef]
  26. R. Negi and J. Cioffi, “Pilot tone selection for channel estimation in a mobile OFDM system,” IEEE Trans. Consum. Electron., vol.  44, pp. 1122–1128, 1998.
    [CrossRef]
  27. X. Zheng, J. L. Wei, and J. M. Tang, “Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks,” Opt. Express, vol.  16, pp. 20427–20440, 2008.
    [CrossRef]
  28. 3GPP, “Evolved universal terrestrial radio access (E-UTRA); base station (BS) radio transmission and reception,” , 2010.
  29. C. Masse, “A 2.4  GHz direct conversion transmitter for Wimax applications,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp., 2006.
  30. L. Zhansheng, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett., vol.  23, pp. 576–578, 2011.
    [CrossRef]
  31. D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightwave Technol., vol.  26, pp. 2484–2491, 2008.
    [CrossRef]
  32. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett., vol.  24, pp. 61–63, 2012.
    [CrossRef]
  33. 3GPP, “LTE; evolved universal terrestrial radio access (E-UTRA); FDD repeater radio transmission and reception,” , 2011.
  34. R. Bouziane, R. Koutsoyannis, P. Milder, Y. Benlachtar, J. C. Hoe, M. Glick, and R. I. Killey, “Optimizing FFT precision in optical OFDM transceivers,” IEEE Photon. Technol. Lett., vol.  23, pp. 1550–1552, 2011.
    [CrossRef]

2012 (4)

T. Kanesan, W. P. Ng, Z. Ghassemlooy, and J. Perez, “Optimization of optical modulator for LTE RoF in nonlinear fiber propagation,” IEEE Photon. Technol. Lett., vol.  24, pp. 617–619, 2012.
[CrossRef]

W. P. Ng, T. Kanesan, Z. Ghassemlooy, and C. Lu, “Theoretical and experimental optimum system design for LTE-RoF over varying transmission span and identification of system nonlinear limit,” IEEE Photon. J., vol.  4, pp. 1560–1571, 2012.
[CrossRef]

M. Milosavljevic, M. P. Thakur, P. Kourtessis, J. E. Mitchell, and J. M. Senior, “Demonstration of wireless backhauling over long-reach PONs,” J. Lightwave Technol., vol.  30, pp. 811–817, 2012.
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett., vol.  24, pp. 61–63, 2012.
[CrossRef]

2011 (2)

R. Bouziane, R. Koutsoyannis, P. Milder, Y. Benlachtar, J. C. Hoe, M. Glick, and R. I. Killey, “Optimizing FFT precision in optical OFDM transceivers,” IEEE Photon. Technol. Lett., vol.  23, pp. 1550–1552, 2011.
[CrossRef]

L. Zhansheng, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett., vol.  23, pp. 576–578, 2011.
[CrossRef]

2010 (4)

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibers,” IEEE Photon. J., vol.  2, pp. 532–542, 2010.
[CrossRef]

H.-J. Kim and J.-I. Song, “Full-duplex WDM-based RoF system using all-optical SSB frequency upconversion and wavelength re-use techniques,” IEEE Trans. Microwave Theory Tech., vol.  58, pp. 3175–3180, 2010.
[CrossRef]

I. Papagiannakis, M. Omella, D. Klonidis, J. A. L. Villa, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10  Gb/s using low bandwidth RSOA,” J. Lightwave Technol., vol.  28, pp. 1094–1101, 2010.
[CrossRef]

J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express, vol.  18, pp. 9791–9808, 2010.
[CrossRef]

2009 (2)

C. Arellano, K. D. Langer, and J. Prat, “Reflections and multiple Rayleigh backscattering in WDM single-fiber loopback access networks,” J. Lightwave Technol., vol.  27, pp. 12–18, 2009.
[CrossRef]

H.-C. Ji, K. Hoon, and C. C. Yun, “Full-duplex radio-over-fiber system using phase-modulated downlink and intensity-modulated uplink,” IEEE Photon. Technol. Lett., vol.  21, pp. 9–11, 2009.
[CrossRef]

2008 (3)

2007 (1)

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett., vol.  19, pp. 1499–1501, 2007.
[CrossRef]

2005 (2)

M. Bakaul, A. Nirmalathas, and C. Lim, “Multifunctional WDM optical interface for millimeter-wave fiber-radio antenna base station,” J. Lightwave Technol., vol.  23, pp. 1210–1218, 2005.
[CrossRef]

J. Prat, V. Polo, C. Bock, C. Arellano, and J. J. V. Olmos, “Full-duplex single fiber transmission using FSK downstream and IM remote upstream modulations for fiber-to-the-home,” IEEE Photon. Technol. Lett., vol.  17, pp. 702–704, 2005.
[CrossRef]

2003 (1)

1998 (2)

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett., vol.  10, pp. 1473–1475, 1998.
[CrossRef]

R. Negi and J. Cioffi, “Pilot tone selection for channel estimation in a mobile OFDM system,” IEEE Trans. Consum. Electron., vol.  44, pp. 1122–1128, 1998.
[CrossRef]

Annunziata, F.

P.-T. Shih, A. Ng’oma, C.-T. Lin, F. Annunziata, J. Chen, J. George, M. Sauer, and S. Chi, “2×21  Gbps symmetrical full-duplex transmission of OFDM wireless signals over a bidirectional IMDD radio-over-fiber system at 60  GHz,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.

Arellano, C.

C. Arellano, K. D. Langer, and J. Prat, “Reflections and multiple Rayleigh backscattering in WDM single-fiber loopback access networks,” J. Lightwave Technol., vol.  27, pp. 12–18, 2009.
[CrossRef]

J. Prat, V. Polo, C. Bock, C. Arellano, and J. J. V. Olmos, “Full-duplex single fiber transmission using FSK downstream and IM remote upstream modulations for fiber-to-the-home,” IEEE Photon. Technol. Lett., vol.  17, pp. 702–704, 2005.
[CrossRef]

Bakaul, M.

Becker, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett., vol.  24, pp. 61–63, 2012.
[CrossRef]

Benlachtar, Y.

R. Bouziane, R. Koutsoyannis, P. Milder, Y. Benlachtar, J. C. Hoe, M. Glick, and R. I. Killey, “Optimizing FFT precision in optical OFDM transceivers,” IEEE Photon. Technol. Lett., vol.  23, pp. 1550–1552, 2011.
[CrossRef]

Birbas, A. N.

Bock, C.

J. Prat, V. Polo, C. Bock, C. Arellano, and J. J. V. Olmos, “Full-duplex single fiber transmission using FSK downstream and IM remote upstream modulations for fiber-to-the-home,” IEEE Photon. Technol. Lett., vol.  17, pp. 702–704, 2005.
[CrossRef]

Bouziane, R.

R. Bouziane, R. Koutsoyannis, P. Milder, Y. Benlachtar, J. C. Hoe, M. Glick, and R. I. Killey, “Optimizing FFT precision in optical OFDM transceivers,” IEEE Photon. Technol. Lett., vol.  23, pp. 1550–1552, 2011.
[CrossRef]

Braz, O.

T. Wirth, L. Thiele, T. Haustein, O. Braz, and J. Stefanik, “LTE amplify and forward relaying for indoor coverage extension,” in IEEE 72nd Vehicular Technology Conf. Fall (VTC 2010-Fall), 2010, pp. 1–5.

Brenot, R.

L. Zhansheng, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett., vol.  23, pp. 576–578, 2011.
[CrossRef]

Buhl, L. L.

P. J. Winzer, F. Fidler, M. J. Matthews, L. E. Nelson, S. Chandrasekhar, L. L. Buhl, M. Winter, and D. Castagnozzi, “Electronic equalization and FEC enable bidirectional CWDM capacities of 9.6  Tb/s-km,” in Optical Fiber Communication Conf. (OFC), 2004, vol. 2, p. 3.

Castagnozzi, D.

P. J. Winzer, F. Fidler, M. J. Matthews, L. E. Nelson, S. Chandrasekhar, L. L. Buhl, M. Winter, and D. Castagnozzi, “Electronic equalization and FEC enable bidirectional CWDM capacities of 9.6  Tb/s-km,” in Optical Fiber Communication Conf. (OFC), 2004, vol. 2, p. 3.

Chandrasekhar, S.

P. J. Winzer, F. Fidler, M. J. Matthews, L. E. Nelson, S. Chandrasekhar, L. L. Buhl, M. Winter, and D. Castagnozzi, “Electronic equalization and FEC enable bidirectional CWDM capacities of 9.6  Tb/s-km,” in Optical Fiber Communication Conf. (OFC), 2004, vol. 2, p. 3.

Chang, G. K.

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett., vol.  19, pp. 1499–1501, 2007.
[CrossRef]

Chang, G.-K.

A. Chowdhury, H.-C. Chien, M.-F. Huang, J. Yu, and G.-K. Chang, “Rayleigh backscattering noise-eliminated 115-km long-reach bidirectional centralized WDM-PON with 10-Gb/s DPSK downstream and remodulated 2.5-Gb/s OCS-SCM upstream signal,” IEEE Photon. Technol. Lett., vol.  20, pp. 2081–2083, 2008.
[CrossRef]

Chen, J.

P.-T. Shih, A. Ng’oma, C.-T. Lin, F. Annunziata, J. Chen, J. George, M. Sauer, and S. Chi, “2×21  Gbps symmetrical full-duplex transmission of OFDM wireless signals over a bidirectional IMDD radio-over-fiber system at 60  GHz,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.

Chi, S.

P.-T. Shih, A. Ng’oma, C.-T. Lin, F. Annunziata, J. Chen, J. George, M. Sauer, and S. Chi, “2×21  Gbps symmetrical full-duplex transmission of OFDM wireless signals over a bidirectional IMDD radio-over-fiber system at 60  GHz,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.

Chien, H.-C.

A. Chowdhury, H.-C. Chien, M.-F. Huang, J. Yu, and G.-K. Chang, “Rayleigh backscattering noise-eliminated 115-km long-reach bidirectional centralized WDM-PON with 10-Gb/s DPSK downstream and remodulated 2.5-Gb/s OCS-SCM upstream signal,” IEEE Photon. Technol. Lett., vol.  20, pp. 2081–2083, 2008.
[CrossRef]

Chowdhury, A.

A. Chowdhury, H.-C. Chien, M.-F. Huang, J. Yu, and G.-K. Chang, “Rayleigh backscattering noise-eliminated 115-km long-reach bidirectional centralized WDM-PON with 10-Gb/s DPSK downstream and remodulated 2.5-Gb/s OCS-SCM upstream signal,” IEEE Photon. Technol. Lett., vol.  20, pp. 2081–2083, 2008.
[CrossRef]

Cioffi, J.

R. Negi and J. Cioffi, “Pilot tone selection for channel estimation in a mobile OFDM system,” IEEE Trans. Consum. Electron., vol.  44, pp. 1122–1128, 1998.
[CrossRef]

de Valicourt, G.

L. Zhansheng, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett., vol.  23, pp. 576–578, 2011.
[CrossRef]

Dreschmann, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett., vol.  24, pp. 61–63, 2012.
[CrossRef]

Elayoubi, S. E.

R. Letian, S. E. Elayoubi, and O. B. Haddada, “Impact of relays on LTE-advanced performance,” in IEEE Int. Conf. on Communications (ICC), 2010, pp. 1–6.

Fidler, F.

P. J. Winzer, F. Fidler, M. J. Matthews, L. E. Nelson, S. Chandrasekhar, L. L. Buhl, M. Winter, and D. Castagnozzi, “Electronic equalization and FEC enable bidirectional CWDM capacities of 9.6  Tb/s-km,” in Optical Fiber Communication Conf. (OFC), 2004, vol. 2, p. 3.

Freude, W.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett., vol.  24, pp. 61–63, 2012.
[CrossRef]

Fujii, T.

A. Nagate, K. Hoshino, M. Mikami, and T. Fujii, “A field trial of multi-cell cooperative transmission over LTE system,” in IEEE Int. Conf. on Communications (ICC), 2011, pp. 1–5.

Fuster, J. M.

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett., vol.  10, pp. 1473–1475, 1998.
[CrossRef]

George, J.

P.-T. Shih, A. Ng’oma, C.-T. Lin, F. Annunziata, J. Chen, J. George, M. Sauer, and S. Chi, “2×21  Gbps symmetrical full-duplex transmission of OFDM wireless signals over a bidirectional IMDD radio-over-fiber system at 60  GHz,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.

Ghassemlooy, Z.

W. P. Ng, T. Kanesan, Z. Ghassemlooy, and C. Lu, “Theoretical and experimental optimum system design for LTE-RoF over varying transmission span and identification of system nonlinear limit,” IEEE Photon. J., vol.  4, pp. 1560–1571, 2012.
[CrossRef]

T. Kanesan, W. P. Ng, Z. Ghassemlooy, and J. Perez, “Optimization of optical modulator for LTE RoF in nonlinear fiber propagation,” IEEE Photon. Technol. Lett., vol.  24, pp. 617–619, 2012.
[CrossRef]

T. Kanesan, W. P. Ng, Z. Ghassemlooy, and C. Lu, “Impact of optical modulators in LTE RoF system with nonlinear compensator for enhanced power budget,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2013, pp. 1–3.

Giddings, R. P.

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibers,” IEEE Photon. J., vol.  2, pp. 532–542, 2010.
[CrossRef]

J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express, vol.  18, pp. 9791–9808, 2010.
[CrossRef]

Glick, M.

R. Bouziane, R. Koutsoyannis, P. Milder, Y. Benlachtar, J. C. Hoe, M. Glick, and R. I. Killey, “Optimizing FFT precision in optical OFDM transceivers,” IEEE Photon. Technol. Lett., vol.  23, pp. 1550–1552, 2011.
[CrossRef]

Gomes, N. J.

Haddada, O. B.

R. Letian, S. E. Elayoubi, and O. B. Haddada, “Impact of relays on LTE-advanced performance,” in IEEE Int. Conf. on Communications (ICC), 2010, pp. 1–6.

Halfmann, R.

T. Wirth, V. Venkatkumar, T. Haustein, E. Schulz, and R. Halfmann, “LTE-advanced relaying for outdoor range extension,” in IEEE 70th Vehicular Technology Conf. Fall (VTC 2009-Fall), 2009, pp. 1–4.

Haustein, T.

T. Wirth, L. Thiele, T. Haustein, O. Braz, and J. Stefanik, “LTE amplify and forward relaying for indoor coverage extension,” in IEEE 72nd Vehicular Technology Conf. Fall (VTC 2010-Fall), 2010, pp. 1–5.

T. Wirth, V. Venkatkumar, T. Haustein, E. Schulz, and R. Halfmann, “LTE-advanced relaying for outdoor range extension,” in IEEE 70th Vehicular Technology Conf. Fall (VTC 2009-Fall), 2009, pp. 1–4.

Hillerkuss, D.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett., vol.  24, pp. 61–63, 2012.
[CrossRef]

Hoe, J. C.

R. Bouziane, R. Koutsoyannis, P. Milder, Y. Benlachtar, J. C. Hoe, M. Glick, and R. I. Killey, “Optimizing FFT precision in optical OFDM transceivers,” IEEE Photon. Technol. Lett., vol.  23, pp. 1550–1552, 2011.
[CrossRef]

Hong, Y. H.

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibers,” IEEE Photon. J., vol.  2, pp. 532–542, 2010.
[CrossRef]

Hoon, K.

H.-C. Ji, K. Hoon, and C. C. Yun, “Full-duplex radio-over-fiber system using phase-modulated downlink and intensity-modulated uplink,” IEEE Photon. Technol. Lett., vol.  21, pp. 9–11, 2009.
[CrossRef]

Hoshino, K.

A. Nagate, K. Hoshino, M. Mikami, and T. Fujii, “A field trial of multi-cell cooperative transmission over LTE system,” in IEEE Int. Conf. on Communications (ICC), 2011, pp. 1–5.

Huang, M.-F.

A. Chowdhury, H.-C. Chien, M.-F. Huang, J. Yu, and G.-K. Chang, “Rayleigh backscattering noise-eliminated 115-km long-reach bidirectional centralized WDM-PON with 10-Gb/s DPSK downstream and remodulated 2.5-Gb/s OCS-SCM upstream signal,” IEEE Photon. Technol. Lett., vol.  20, pp. 2081–2083, 2008.
[CrossRef]

Huebner, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett., vol.  24, pp. 61–63, 2012.
[CrossRef]

Hugues-Salas, E.

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibers,” IEEE Photon. J., vol.  2, pp. 532–542, 2010.
[CrossRef]

J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express, vol.  18, pp. 9791–9808, 2010.
[CrossRef]

Ji, H.-C.

H.-C. Ji, K. Hoon, and C. C. Yun, “Full-duplex radio-over-fiber system using phase-modulated downlink and intensity-modulated uplink,” IEEE Photon. Technol. Lett., vol.  21, pp. 9–11, 2009.
[CrossRef]

Jia, Z.

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett., vol.  19, pp. 1499–1501, 2007.
[CrossRef]

Jin, X. Q.

J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express, vol.  18, pp. 9791–9808, 2010.
[CrossRef]

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibers,” IEEE Photon. J., vol.  2, pp. 532–542, 2010.
[CrossRef]

Josten, A.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett., vol.  24, pp. 61–63, 2012.
[CrossRef]

Kanesan, T.

T. Kanesan, W. P. Ng, Z. Ghassemlooy, and J. Perez, “Optimization of optical modulator for LTE RoF in nonlinear fiber propagation,” IEEE Photon. Technol. Lett., vol.  24, pp. 617–619, 2012.
[CrossRef]

W. P. Ng, T. Kanesan, Z. Ghassemlooy, and C. Lu, “Theoretical and experimental optimum system design for LTE-RoF over varying transmission span and identification of system nonlinear limit,” IEEE Photon. J., vol.  4, pp. 1560–1571, 2012.
[CrossRef]

T. Kanesan, W. P. Ng, Z. Ghassemlooy, and C. Lu, “Impact of optical modulators in LTE RoF system with nonlinear compensator for enhanced power budget,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2013, pp. 1–3.

Kikidis, J.

Killey, R. I.

R. Bouziane, R. Koutsoyannis, P. Milder, Y. Benlachtar, J. C. Hoe, M. Glick, and R. I. Killey, “Optimizing FFT precision in optical OFDM transceivers,” IEEE Photon. Technol. Lett., vol.  23, pp. 1550–1552, 2011.
[CrossRef]

Kim, H.-J.

H.-J. Kim and J.-I. Song, “Full-duplex WDM-based RoF system using all-optical SSB frequency upconversion and wavelength re-use techniques,” IEEE Trans. Microwave Theory Tech., vol.  58, pp. 3175–3180, 2010.
[CrossRef]

Klonidis, D.

Koenig, S.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett., vol.  24, pp. 61–63, 2012.
[CrossRef]

Koos, C.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett., vol.  24, pp. 61–63, 2012.
[CrossRef]

Kourtessis, P.

Koutsoyannis, R.

R. Bouziane, R. Koutsoyannis, P. Milder, Y. Benlachtar, J. C. Hoe, M. Glick, and R. I. Killey, “Optimizing FFT precision in optical OFDM transceivers,” IEEE Photon. Technol. Lett., vol.  23, pp. 1550–1552, 2011.
[CrossRef]

Langer, K. D.

Lethien, C.

Letian, R.

R. Letian, S. E. Elayoubi, and O. B. Haddada, “Impact of relays on LTE-advanced performance,” in IEEE Int. Conf. on Communications (ICC), 2010, pp. 1–6.

Leuthold, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett., vol.  24, pp. 61–63, 2012.
[CrossRef]

Li, G. L.

Lim, C.

Lin, C.-T.

P.-T. Shih, A. Ng’oma, C.-T. Lin, F. Annunziata, J. Chen, J. George, M. Sauer, and S. Chi, “2×21  Gbps symmetrical full-duplex transmission of OFDM wireless signals over a bidirectional IMDD radio-over-fiber system at 60  GHz,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.

Lu, C.

W. P. Ng, T. Kanesan, Z. Ghassemlooy, and C. Lu, “Theoretical and experimental optimum system design for LTE-RoF over varying transmission span and identification of system nonlinear limit,” IEEE Photon. J., vol.  4, pp. 1560–1571, 2012.
[CrossRef]

T. Kanesan, W. P. Ng, Z. Ghassemlooy, and C. Lu, “Impact of optical modulators in LTE RoF system with nonlinear compensator for enhanced power budget,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2013, pp. 1–3.

Mansoor, S.

Marti, J.

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett., vol.  10, pp. 1473–1475, 1998.
[CrossRef]

Masse, C.

C. Masse, “A 2.4  GHz direct conversion transmitter for Wimax applications,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp., 2006.

Matthews, M. J.

P. J. Winzer, F. Fidler, M. J. Matthews, L. E. Nelson, S. Chandrasekhar, L. L. Buhl, M. Winter, and D. Castagnozzi, “Electronic equalization and FEC enable bidirectional CWDM capacities of 9.6  Tb/s-km,” in Optical Fiber Communication Conf. (OFC), 2004, vol. 2, p. 3.

Meyer, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett., vol.  24, pp. 61–63, 2012.
[CrossRef]

Mikami, M.

A. Nagate, K. Hoshino, M. Mikami, and T. Fujii, “A field trial of multi-cell cooperative transmission over LTE system,” in IEEE Int. Conf. on Communications (ICC), 2011, pp. 1–5.

Milder, P.

R. Bouziane, R. Koutsoyannis, P. Milder, Y. Benlachtar, J. C. Hoe, M. Glick, and R. I. Killey, “Optimizing FFT precision in optical OFDM transceivers,” IEEE Photon. Technol. Lett., vol.  23, pp. 1550–1552, 2011.
[CrossRef]

Milosavljevic, M.

Mitchell, J. E.

Nagate, A.

A. Nagate, K. Hoshino, M. Mikami, and T. Fujii, “A field trial of multi-cell cooperative transmission over LTE system,” in IEEE Int. Conf. on Communications (ICC), 2011, pp. 1–5.

Nebendahl, B.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett., vol.  24, pp. 61–63, 2012.
[CrossRef]

Negi, R.

R. Negi and J. Cioffi, “Pilot tone selection for channel estimation in a mobile OFDM system,” IEEE Trans. Consum. Electron., vol.  44, pp. 1122–1128, 1998.
[CrossRef]

Nelson, L. E.

P. J. Winzer, F. Fidler, M. J. Matthews, L. E. Nelson, S. Chandrasekhar, L. L. Buhl, M. Winter, and D. Castagnozzi, “Electronic equalization and FEC enable bidirectional CWDM capacities of 9.6  Tb/s-km,” in Optical Fiber Communication Conf. (OFC), 2004, vol. 2, p. 3.

Ng, W. P.

T. Kanesan, W. P. Ng, Z. Ghassemlooy, and J. Perez, “Optimization of optical modulator for LTE RoF in nonlinear fiber propagation,” IEEE Photon. Technol. Lett., vol.  24, pp. 617–619, 2012.
[CrossRef]

W. P. Ng, T. Kanesan, Z. Ghassemlooy, and C. Lu, “Theoretical and experimental optimum system design for LTE-RoF over varying transmission span and identification of system nonlinear limit,” IEEE Photon. J., vol.  4, pp. 1560–1571, 2012.
[CrossRef]

T. Kanesan, W. P. Ng, Z. Ghassemlooy, and C. Lu, “Impact of optical modulators in LTE RoF system with nonlinear compensator for enhanced power budget,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2013, pp. 1–3.

Ng’oma, A.

P.-T. Shih, A. Ng’oma, C.-T. Lin, F. Annunziata, J. Chen, J. George, M. Sauer, and S. Chi, “2×21  Gbps symmetrical full-duplex transmission of OFDM wireless signals over a bidirectional IMDD radio-over-fiber system at 60  GHz,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.

Nirmalathas, A.

Nkansah, A.

Olmos, J. J. V.

J. Prat, V. Polo, C. Bock, C. Arellano, and J. J. V. Olmos, “Full-duplex single fiber transmission using FSK downstream and IM remote upstream modulations for fiber-to-the-home,” IEEE Photon. Technol. Lett., vol.  17, pp. 702–704, 2005.
[CrossRef]

Omella, M.

Papagiannakis, I.

Perez, J.

T. Kanesan, W. P. Ng, Z. Ghassemlooy, and J. Perez, “Optimization of optical modulator for LTE RoF in nonlinear fiber propagation,” IEEE Photon. Technol. Lett., vol.  24, pp. 617–619, 2012.
[CrossRef]

Polo, V.

J. Prat, V. Polo, C. Bock, C. Arellano, and J. J. V. Olmos, “Full-duplex single fiber transmission using FSK downstream and IM remote upstream modulations for fiber-to-the-home,” IEEE Photon. Technol. Lett., vol.  17, pp. 702–704, 2005.
[CrossRef]

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett., vol.  10, pp. 1473–1475, 1998.
[CrossRef]

Prat, J.

Ramos, F.

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett., vol.  10, pp. 1473–1475, 1998.
[CrossRef]

Sadeghi, M.

L. Zhansheng, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett., vol.  23, pp. 576–578, 2011.
[CrossRef]

Sauer, M.

P.-T. Shih, A. Ng’oma, C.-T. Lin, F. Annunziata, J. Chen, J. George, M. Sauer, and S. Chi, “2×21  Gbps symmetrical full-duplex transmission of OFDM wireless signals over a bidirectional IMDD radio-over-fiber system at 60  GHz,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.

Schmogrow, R.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett., vol.  24, pp. 61–63, 2012.
[CrossRef]

Schulz, E.

T. Wirth, V. Venkatkumar, T. Haustein, E. Schulz, and R. Halfmann, “LTE-advanced relaying for outdoor range extension,” in IEEE 70th Vehicular Technology Conf. Fall (VTC 2009-Fall), 2009, pp. 1–4.

Senior, J. M.

Shih, P.-T.

P.-T. Shih, A. Ng’oma, C.-T. Lin, F. Annunziata, J. Chen, J. George, M. Sauer, and S. Chi, “2×21  Gbps symmetrical full-duplex transmission of OFDM wireless signals over a bidirectional IMDD radio-over-fiber system at 60  GHz,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.

Sion, C.

Song, J.-I.

H.-J. Kim and J.-I. Song, “Full-duplex WDM-based RoF system using all-optical SSB frequency upconversion and wavelength re-use techniques,” IEEE Trans. Microwave Theory Tech., vol.  58, pp. 3175–3180, 2010.
[CrossRef]

Stefanik, J.

T. Wirth, L. Thiele, T. Haustein, O. Braz, and J. Stefanik, “LTE amplify and forward relaying for indoor coverage extension,” in IEEE 72nd Vehicular Technology Conf. Fall (VTC 2010-Fall), 2010, pp. 1–5.

Tang, J. M.

Thakur, M. P.

Thiele, L.

T. Wirth, L. Thiele, T. Haustein, O. Braz, and J. Stefanik, “LTE amplify and forward relaying for indoor coverage extension,” in IEEE 72nd Vehicular Technology Conf. Fall (VTC 2010-Fall), 2010, pp. 1–5.

Tomkos, I.

Venkatkumar, V.

T. Wirth, V. Venkatkumar, T. Haustein, E. Schulz, and R. Halfmann, “LTE-advanced relaying for outdoor range extension,” in IEEE 70th Vehicular Technology Conf. Fall (VTC 2009-Fall), 2009, pp. 1–4.

Vilcot, J. P.

Villa, J. A. L.

Violas, M.

L. Zhansheng, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett., vol.  23, pp. 576–578, 2011.
[CrossRef]

Wake, D.

Wang, T.

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett., vol.  19, pp. 1499–1501, 2007.
[CrossRef]

Wei, J. L.

Winter, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett., vol.  24, pp. 61–63, 2012.
[CrossRef]

P. J. Winzer, F. Fidler, M. J. Matthews, L. E. Nelson, S. Chandrasekhar, L. L. Buhl, M. Winter, and D. Castagnozzi, “Electronic equalization and FEC enable bidirectional CWDM capacities of 9.6  Tb/s-km,” in Optical Fiber Communication Conf. (OFC), 2004, vol. 2, p. 3.

Winzer, P. J.

P. J. Winzer, F. Fidler, M. J. Matthews, L. E. Nelson, S. Chandrasekhar, L. L. Buhl, M. Winter, and D. Castagnozzi, “Electronic equalization and FEC enable bidirectional CWDM capacities of 9.6  Tb/s-km,” in Optical Fiber Communication Conf. (OFC), 2004, vol. 2, p. 3.

Wirth, T.

T. Wirth, L. Thiele, T. Haustein, O. Braz, and J. Stefanik, “LTE amplify and forward relaying for indoor coverage extension,” in IEEE 72nd Vehicular Technology Conf. Fall (VTC 2010-Fall), 2010, pp. 1–5.

T. Wirth, V. Venkatkumar, T. Haustein, E. Schulz, and R. Halfmann, “LTE-advanced relaying for outdoor range extension,” in IEEE 70th Vehicular Technology Conf. Fall (VTC 2009-Fall), 2009, pp. 1–4.

Yu, J.

A. Chowdhury, H.-C. Chien, M.-F. Huang, J. Yu, and G.-K. Chang, “Rayleigh backscattering noise-eliminated 115-km long-reach bidirectional centralized WDM-PON with 10-Gb/s DPSK downstream and remodulated 2.5-Gb/s OCS-SCM upstream signal,” IEEE Photon. Technol. Lett., vol.  20, pp. 2081–2083, 2008.
[CrossRef]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett., vol.  19, pp. 1499–1501, 2007.
[CrossRef]

Yu, P. K. L.

Yun, C. C.

H.-C. Ji, K. Hoon, and C. C. Yun, “Full-duplex radio-over-fiber system using phase-modulated downlink and intensity-modulated uplink,” IEEE Photon. Technol. Lett., vol.  21, pp. 9–11, 2009.
[CrossRef]

Zhansheng, L.

L. Zhansheng, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett., vol.  23, pp. 576–578, 2011.
[CrossRef]

Zheng, X.

IEEE Photon. J. (2)

W. P. Ng, T. Kanesan, Z. Ghassemlooy, and C. Lu, “Theoretical and experimental optimum system design for LTE-RoF over varying transmission span and identification of system nonlinear limit,” IEEE Photon. J., vol.  4, pp. 1560–1571, 2012.
[CrossRef]

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibers,” IEEE Photon. J., vol.  2, pp. 532–542, 2010.
[CrossRef]

IEEE Photon. Technol. Lett. (9)

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett., vol.  10, pp. 1473–1475, 1998.
[CrossRef]

A. Chowdhury, H.-C. Chien, M.-F. Huang, J. Yu, and G.-K. Chang, “Rayleigh backscattering noise-eliminated 115-km long-reach bidirectional centralized WDM-PON with 10-Gb/s DPSK downstream and remodulated 2.5-Gb/s OCS-SCM upstream signal,” IEEE Photon. Technol. Lett., vol.  20, pp. 2081–2083, 2008.
[CrossRef]

L. Zhansheng, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett., vol.  23, pp. 576–578, 2011.
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett., vol.  24, pp. 61–63, 2012.
[CrossRef]

R. Bouziane, R. Koutsoyannis, P. Milder, Y. Benlachtar, J. C. Hoe, M. Glick, and R. I. Killey, “Optimizing FFT precision in optical OFDM transceivers,” IEEE Photon. Technol. Lett., vol.  23, pp. 1550–1552, 2011.
[CrossRef]

T. Kanesan, W. P. Ng, Z. Ghassemlooy, and J. Perez, “Optimization of optical modulator for LTE RoF in nonlinear fiber propagation,” IEEE Photon. Technol. Lett., vol.  24, pp. 617–619, 2012.
[CrossRef]

H.-C. Ji, K. Hoon, and C. C. Yun, “Full-duplex radio-over-fiber system using phase-modulated downlink and intensity-modulated uplink,” IEEE Photon. Technol. Lett., vol.  21, pp. 9–11, 2009.
[CrossRef]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett., vol.  19, pp. 1499–1501, 2007.
[CrossRef]

J. Prat, V. Polo, C. Bock, C. Arellano, and J. J. V. Olmos, “Full-duplex single fiber transmission using FSK downstream and IM remote upstream modulations for fiber-to-the-home,” IEEE Photon. Technol. Lett., vol.  17, pp. 702–704, 2005.
[CrossRef]

IEEE Trans. Consum. Electron. (1)

R. Negi and J. Cioffi, “Pilot tone selection for channel estimation in a mobile OFDM system,” IEEE Trans. Consum. Electron., vol.  44, pp. 1122–1128, 1998.
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

H.-J. Kim and J.-I. Song, “Full-duplex WDM-based RoF system using all-optical SSB frequency upconversion and wavelength re-use techniques,” IEEE Trans. Microwave Theory Tech., vol.  58, pp. 3175–3180, 2010.
[CrossRef]

J. Lightwave Technol. (6)

Opt. Express (2)

Other (13)

T. Kanesan, W. P. Ng, Z. Ghassemlooy, and C. Lu, “Impact of optical modulators in LTE RoF system with nonlinear compensator for enhanced power budget,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2013, pp. 1–3.

3GPP, “Evolved universal terrestrial radio access (E-UTRA); physical channels and modulation,” , 2011.

3GPP, “Evolved universal terrestrial radio access (E-UTRA); user equipment (UE) radio transmission and reception,” , 2011.

R. Letian, S. E. Elayoubi, and O. B. Haddada, “Impact of relays on LTE-advanced performance,” in IEEE Int. Conf. on Communications (ICC), 2010, pp. 1–6.

P.-T. Shih, A. Ng’oma, C.-T. Lin, F. Annunziata, J. Chen, J. George, M. Sauer, and S. Chi, “2×21  Gbps symmetrical full-duplex transmission of OFDM wireless signals over a bidirectional IMDD radio-over-fiber system at 60  GHz,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.

T. Wirth, L. Thiele, T. Haustein, O. Braz, and J. Stefanik, “LTE amplify and forward relaying for indoor coverage extension,” in IEEE 72nd Vehicular Technology Conf. Fall (VTC 2010-Fall), 2010, pp. 1–5.

3GPP, “3rd Generation Partnership Project; Technical Specification Group radio access network; evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN),” , 2011.

T. Wirth, V. Venkatkumar, T. Haustein, E. Schulz, and R. Halfmann, “LTE-advanced relaying for outdoor range extension,” in IEEE 70th Vehicular Technology Conf. Fall (VTC 2009-Fall), 2009, pp. 1–4.

A. Nagate, K. Hoshino, M. Mikami, and T. Fujii, “A field trial of multi-cell cooperative transmission over LTE system,” in IEEE Int. Conf. on Communications (ICC), 2011, pp. 1–5.

3GPP, “Evolved universal terrestrial radio access (E-UTRA); base station (BS) radio transmission and reception,” , 2010.

C. Masse, “A 2.4  GHz direct conversion transmitter for Wimax applications,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp., 2006.

P. J. Winzer, F. Fidler, M. J. Matthews, L. E. Nelson, S. Chandrasekhar, L. L. Buhl, M. Winter, and D. Castagnozzi, “Electronic equalization and FEC enable bidirectional CWDM capacities of 9.6  Tb/s-km,” in Optical Fiber Communication Conf. (OFC), 2004, vol. 2, p. 3.

3GPP, “LTE; evolved universal terrestrial radio access (E-UTRA); FDD repeater radio transmission and reception,” , 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Full duplex LTE radio access network structure (a) without RNs and (b) with RNs in an urban area.

Fig. 2.
Fig. 2.

Full duplex LTE experimental setup.

Fig. 3.
Fig. 3.

ACLR for a half-duplex system of DL and UL after 10 km transmission.

Fig. 4.
Fig. 4.

ACLR of a full duplex system with DL transmission and interfering UL signal for a 64-QAM system.

Fig. 5.
Fig. 5.

ACLR of a full duplex system with UL transmission and interfering DL signal for a 64-QAM system.

Fig. 6.
Fig. 6.

ACLR of (a) DL and (b) UL with respect to the interfering UL and DL RF transmit power. DL, fDL at 2.62 GHz and UL, fUL at 2.57 GHz.

Fig. 7.
Fig. 7.

Received spectral response of DL, fDL=2.62GHz, and UL, fUL=2.57GHz, with varying UL RF transmit power: (a) 2 dBm and (b) 10dBm.

Fig. 8.
Fig. 8.

Received spectral response of UL- fUL 2.57 GHz and DL- fDL 2.62 GHz with varying DL RF transmit power: (a) 2 dBm and (b) 10dBm.

Fig. 9.
Fig. 9.

Multiple EVM combinations of (a) DL and (b) UL RF transmit power with respect to the interfering UL and DL RF transmit power, respectively. DL signal is transmitted at 2.62 GHz and UL signal is transmitted at 2.57 GHz.

Fig. 10.
Fig. 10.

EVM against RF transmit power for BC and WC transmission condition of (a) QPSK, (b) 16-QAM, and (c) 64-QAM. OLPs for all three modulation schemes are 1.06dBm for DL and 1.19dBm for UL.

Tables (4)

Tables Icon

TABLE I System Parameters

Tables Icon

TABLE II DL and UL Frequency Spacing

Tables Icon

TABLE III Frequency Spacing ACLR Penalty Product

Tables Icon

TABLE IV EVM Impact Based on Interfering Signal Power

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

SDL(n)=1Nm=0N1XDL(m)ej2πmn/N,
SRFDL(t)=Re{SDL(t)}*cos(ωRFDL(t))+Im{SDL(t)}*sin(ωRFDL(t)),
ωRFDL=2πfDL,
XUL(k)=p=0M1XUL(p)ej2πpk/M,
XUL(l)={XUL(k),0kM10,MkN1.
SUL(n)=1Nl=0N1XUL(l)ej2πnl/N,
SRFUL(t)=Re{SUL(t)}*cos(ωRFUL(t))+Im{SUL(t)}*sin(ωRFUL(t)),
ωRFUL=2πfUL,
ACLR1=fDL/UL3B/2fDL/ULB/2RRFDL/RFUL(f)df+fDL/UL+B/2fDL/UL+3B/2RRFDL/RFUL(f)dffDL/ULB/2fDL/UL+B/2RRFDL/RFUL(f)dfACLR2=fDL/UL5B/2fDL/UL3B/2RRFDL/RFUL(f)df+fDL/UL+3B/2fDL/UL+5B/2RRFDL/RFUL(f)dffDL/ULB/2fDL/UL+B/2RRFDL/RFUL(f)df,
EVM=1Nn=1N|RDL/UL(n)SDL/UL(n)|2Rmax,