Abstract

Long-reach hybrid wavelength-division multiplexing (WDM) and time-division multiplexing (TDM) passive optical networks (PONs) allow deploying access networks for remote service areas with thousands of customers. Typically, several long fiber cables are run between the central office (CO) of the service provider and each service area in order to feed the service area with data flows. In the service area, array waveguide gratings (AWGs) multiplex and demultiplex wavelengths; then, splitters split wavelengths in order to serve multiple optical network units. This paper proposes use of a mesh topology in service areas, i.e., AWGs can feed each other. This architecture has two main advantages. First, mesh linkages between AWGs make the network structure more robust with a high possibility of integrating survivable schemes. Second, fewer fibers are required between the CO and service areas, leading to a reduction of total length of fiber deployment, with a corresponding reduction of fiber installation and maintenance costs. We support this proposal by showing that i) the proposed architecture is feasible with some modification/combination of conventional PON devices, and ii) while using our optimal and heuristic algorithms for designing survivable long-reach hybrid WDM-TDM PONs, most of these PONs should use the mesh topology in order to minimize the total length of fiber deployment.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Bock, J. Prat, and S. Walker, “Hybrid WDM/TDM PON using the AWG FSR and featuring centralized light generation and dynamic bandwidth allocation,” J. Lightwave Technol., vol.  23, no. 12, pp. 3981–3988, Dec. 2005.
    [CrossRef]
  2. H. Venghaus, Ed., Wavelength Filters in Fibre Optics, Springer Series in Optical Sciences (Springer, 2010).
  3. G. Talli and P. D. Townsend, “Hybrid DWDM—TDM long-reach PON for next-generation optical access,” J. Lightwave Technol., vol.  24, no. 7, pp. 2827–2834, July 2006.
    [CrossRef]
  4. D. Shea and J. Mitchell, “Long-reach optical access technologies,” IEEE Network, vol.  21, no. 5, pp. 5–11, 2007.
    [CrossRef]
  5. F.-T. An, K. S. Kim, D. Gutierrez, S. Yam, E. S.-T. Hu, and F. I. F. Osa, “SUCCESS: A next-generation hybrid WDM/TDM optical access network architecture,” J. Lightwave Technol., vol.  22, no. 11, pp. 2557–2569, 2004.
    [CrossRef]
  6. A. Gumaste, D. Diwakar, A. Agrawal, A. Lodha, and N. Ghani, “Light-mesh—a pragmatic optical access network architecture for IP-centric service oriented communication,” Opt. Switching Networking, vol.  5, no. 2–3, pp. 63–74, 2008.
    [CrossRef]
  7. D.-L. Truong and A. T. Pham, “A model for designing survivable mesh optical access networks,” in Int. Conf. Advanced Technologies for Communications (ATC), Aug. 2011, pp. 156–160.
  8. C. Dragone, “An N*N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett., vol.  3, no. 9, pp. 812–815, 1991.
    [CrossRef]
  9. S. Kakehashi, H. Hasegawa, K. Sato, O. Moriwaki, S. Kamei, Y. Jinnouchi, and M. Okuno, “Performance of waveband MUX/DEMUX using concatenated AWGs,” IEEE Photon. Technol. Lett., vol.  19, no. 16, pp. 1197–1199, Aug. 2007.
    [CrossRef]
  10. S. Kakehashi, H. Hasegawa, K.-i. Sato, O. Moriwaki, and S. Kamei, “Analysis and development of fixed and variable waveband MUX/DEMUX utilizing AWG routing functions,” J. Lightwave Technol., vol.  27, no. 1, pp. 30–40, Jan. 2009.
    [CrossRef]
  11. M. Ruffini, D. Mehta, B. O’Sullivan, L. Quesada, L. Doyle, and D. B. Payne, “Deployment strategies for protected long-reach PON,” J. Opt. Commun. Netw., vol.  4, no. 2, pp. 118–129, Feb. 2012.
    [CrossRef]
  12. U.S. Department of Transportation Research and Innovative Technology Administration, “ITS unit costs database,” Oct. 2010.
  13. U. S. Department of Transportation Research and Innovative Technology Administration, “Intelligent transportation systems benefits, costs, deployment, and lessons learned: 2011 update,” Oct. 2010.
  14. J. Li and G. Shen, “Cost minimization planning for greenfield passive optical networks,” J. Opt. Commun. Netw., vol.  1, pp. 17–29, 2009.
    [CrossRef]
  15. AliExpress website, 2013, http://www.aliexpress.com .
  16. G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol., vol.  18, no. 2, pp. 125–143, 2000.
    [CrossRef]
  17. J. Zhang and B. Mukherjee, “A review of fault management in WDM mesh networks: Basic concept and research challenges,” IEEE Network, vol.  18, no. 2, pp. 41–48, Mar. 2004.
  18. D.-L. Truong and B. Jaumard, “Recent progress in dynamic routing for shared protection in multidomain networks,” IEEE Commun. Mag., vol.  46, no. 6, pp. 112–119, 2008.
    [CrossRef]
  19. H. Liu and F. Tobagi, “Physical topology design for all-optical networks,” in Int. Conf. Broadband Communications, Networks and Systems (BROADNETS), Oct. 2006.
  20. Y. Xin, G. Rouskas, and H. Perros, “On the physical and logical topology design of large-scale optical networks,” J. Lightwave Technol., vol.  21, no. 4, pp. 904–915, 2003.
    [CrossRef]
  21. R. M. Krishnaswamy and K. N. Sivarajan, “Design of logical topologies: A linear formulation for wavelength-routed optical networks with no wavelength changers,” IEEE/ACM Trans. Netw., vol.  9, no. 2, pp. 186–198, 2001.
    [CrossRef]
  22. B. Lakic and M. Hajduczenia, “On optimized passive optical network (PON) deployment,” in Second Int. Conf. Access Networks and Workshops, Ottawa, Canada, Aug. 2007.
  23. A. Agata and Y. Horiuchi, “PON network designing algorithm for suboptimal deployment of optical fiber cables,” in Asia Communications and Photonics Conf. and Exhibition, Shanghai, China, Nov. 2009.
  24. B. Kantarci and H. Mouftah, “Optimization models for reliable long-reach PON deployment,” in IEEE Symp. on Computers and Communications (ISCC), July 2011, pp. 506–511.
  25. E. Wong and K.-L. Lee, “Automatic protection, restoration, and survivability of long-reach passive optical networks,” in IEEE Int. Conf. Communications (ICC), July 2011.
  26. J. Zhang and N. Ansari, “Minimizing the arrayed waveguide grating cost and the optical cable cost in deploying WDM passive optical networks,” J. Opt. Commun. Netw., vol.  1, no. 5, pp. 352–365, 2009.
    [CrossRef]
  27. B. Jaumard and R. Chowdhury, “Location and allocation of switching equipment (splitters/AWGS) in a WDM PON network,” in Proc. 20th Int. Conf. Computer Communications and Networks (ICCCN), July 2011, pp. 1–8.
  28. B. Glance, I. Kaminow, and R. Wilson, “Applications of the integrated waveguide grating router,” J. Lightwave Technol., vol.  12, no. 6, pp. 957–962, 1994.
    [CrossRef]
  29. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: A review,” J. Opt. Netw., vol.  4, no. 11, pp. 737–758, Nov. 2005.
    [CrossRef]
  30. H. Kimura, T. Matsumoto, S. Shimazu, S. Yamashita, and J. Yamasaki, “Optical power budget enhancement technologies for long-reach GE-PON system,” NTT Tech. Rev., vol.  9, no. 10, pp. 1–5, 2011.
  31. H. Song, B.-W. Kim, and B. Mukherjee, “Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms,” IEEE Commun. Surv. Tutorials, vol.  12, no. 1, pp. 112–123, 2010.
    [CrossRef]
  32. IBM Academic Initiative, “ILOG CPLEX Optimization Studio” [Online]. Available: http://www-03.ibm.com/ibm/university/academic/pub/page/ban_ilog_programming .

2012 (1)

2011 (1)

H. Kimura, T. Matsumoto, S. Shimazu, S. Yamashita, and J. Yamasaki, “Optical power budget enhancement technologies for long-reach GE-PON system,” NTT Tech. Rev., vol.  9, no. 10, pp. 1–5, 2011.

2010 (1)

H. Song, B.-W. Kim, and B. Mukherjee, “Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms,” IEEE Commun. Surv. Tutorials, vol.  12, no. 1, pp. 112–123, 2010.
[CrossRef]

2009 (3)

2008 (2)

D.-L. Truong and B. Jaumard, “Recent progress in dynamic routing for shared protection in multidomain networks,” IEEE Commun. Mag., vol.  46, no. 6, pp. 112–119, 2008.
[CrossRef]

A. Gumaste, D. Diwakar, A. Agrawal, A. Lodha, and N. Ghani, “Light-mesh—a pragmatic optical access network architecture for IP-centric service oriented communication,” Opt. Switching Networking, vol.  5, no. 2–3, pp. 63–74, 2008.
[CrossRef]

2007 (2)

S. Kakehashi, H. Hasegawa, K. Sato, O. Moriwaki, S. Kamei, Y. Jinnouchi, and M. Okuno, “Performance of waveband MUX/DEMUX using concatenated AWGs,” IEEE Photon. Technol. Lett., vol.  19, no. 16, pp. 1197–1199, Aug. 2007.
[CrossRef]

D. Shea and J. Mitchell, “Long-reach optical access technologies,” IEEE Network, vol.  21, no. 5, pp. 5–11, 2007.
[CrossRef]

2006 (1)

2005 (2)

2004 (2)

J. Zhang and B. Mukherjee, “A review of fault management in WDM mesh networks: Basic concept and research challenges,” IEEE Network, vol.  18, no. 2, pp. 41–48, Mar. 2004.

F.-T. An, K. S. Kim, D. Gutierrez, S. Yam, E. S.-T. Hu, and F. I. F. Osa, “SUCCESS: A next-generation hybrid WDM/TDM optical access network architecture,” J. Lightwave Technol., vol.  22, no. 11, pp. 2557–2569, 2004.
[CrossRef]

2003 (1)

2001 (1)

R. M. Krishnaswamy and K. N. Sivarajan, “Design of logical topologies: A linear formulation for wavelength-routed optical networks with no wavelength changers,” IEEE/ACM Trans. Netw., vol.  9, no. 2, pp. 186–198, 2001.
[CrossRef]

2000 (1)

1994 (1)

B. Glance, I. Kaminow, and R. Wilson, “Applications of the integrated waveguide grating router,” J. Lightwave Technol., vol.  12, no. 6, pp. 957–962, 1994.
[CrossRef]

1991 (1)

C. Dragone, “An N*N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett., vol.  3, no. 9, pp. 812–815, 1991.
[CrossRef]

Agata, A.

A. Agata and Y. Horiuchi, “PON network designing algorithm for suboptimal deployment of optical fiber cables,” in Asia Communications and Photonics Conf. and Exhibition, Shanghai, China, Nov. 2009.

Agrawal, A.

A. Gumaste, D. Diwakar, A. Agrawal, A. Lodha, and N. Ghani, “Light-mesh—a pragmatic optical access network architecture for IP-centric service oriented communication,” Opt. Switching Networking, vol.  5, no. 2–3, pp. 63–74, 2008.
[CrossRef]

An, F.-T.

Ansari, N.

Banerjee, A.

Bock, C.

Chowdhury, R.

B. Jaumard and R. Chowdhury, “Location and allocation of switching equipment (splitters/AWGS) in a WDM PON network,” in Proc. 20th Int. Conf. Computer Communications and Networks (ICCCN), July 2011, pp. 1–8.

Clarke, F.

Diwakar, D.

A. Gumaste, D. Diwakar, A. Agrawal, A. Lodha, and N. Ghani, “Light-mesh—a pragmatic optical access network architecture for IP-centric service oriented communication,” Opt. Switching Networking, vol.  5, no. 2–3, pp. 63–74, 2008.
[CrossRef]

Doyle, L.

Dragone, C.

C. Dragone, “An N*N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett., vol.  3, no. 9, pp. 812–815, 1991.
[CrossRef]

Ghani, N.

A. Gumaste, D. Diwakar, A. Agrawal, A. Lodha, and N. Ghani, “Light-mesh—a pragmatic optical access network architecture for IP-centric service oriented communication,” Opt. Switching Networking, vol.  5, no. 2–3, pp. 63–74, 2008.
[CrossRef]

Glance, B.

B. Glance, I. Kaminow, and R. Wilson, “Applications of the integrated waveguide grating router,” J. Lightwave Technol., vol.  12, no. 6, pp. 957–962, 1994.
[CrossRef]

Gumaste, A.

A. Gumaste, D. Diwakar, A. Agrawal, A. Lodha, and N. Ghani, “Light-mesh—a pragmatic optical access network architecture for IP-centric service oriented communication,” Opt. Switching Networking, vol.  5, no. 2–3, pp. 63–74, 2008.
[CrossRef]

Gutierrez, D.

Hajduczenia, M.

B. Lakic and M. Hajduczenia, “On optimized passive optical network (PON) deployment,” in Second Int. Conf. Access Networks and Workshops, Ottawa, Canada, Aug. 2007.

Hasegawa, H.

S. Kakehashi, H. Hasegawa, K.-i. Sato, O. Moriwaki, and S. Kamei, “Analysis and development of fixed and variable waveband MUX/DEMUX utilizing AWG routing functions,” J. Lightwave Technol., vol.  27, no. 1, pp. 30–40, Jan. 2009.
[CrossRef]

S. Kakehashi, H. Hasegawa, K. Sato, O. Moriwaki, S. Kamei, Y. Jinnouchi, and M. Okuno, “Performance of waveband MUX/DEMUX using concatenated AWGs,” IEEE Photon. Technol. Lett., vol.  19, no. 16, pp. 1197–1199, Aug. 2007.
[CrossRef]

Horiuchi, Y.

A. Agata and Y. Horiuchi, “PON network designing algorithm for suboptimal deployment of optical fiber cables,” in Asia Communications and Photonics Conf. and Exhibition, Shanghai, China, Nov. 2009.

Hu, E. S.-T.

Jaumard, B.

D.-L. Truong and B. Jaumard, “Recent progress in dynamic routing for shared protection in multidomain networks,” IEEE Commun. Mag., vol.  46, no. 6, pp. 112–119, 2008.
[CrossRef]

B. Jaumard and R. Chowdhury, “Location and allocation of switching equipment (splitters/AWGS) in a WDM PON network,” in Proc. 20th Int. Conf. Computer Communications and Networks (ICCCN), July 2011, pp. 1–8.

Jinnouchi, Y.

S. Kakehashi, H. Hasegawa, K. Sato, O. Moriwaki, S. Kamei, Y. Jinnouchi, and M. Okuno, “Performance of waveband MUX/DEMUX using concatenated AWGs,” IEEE Photon. Technol. Lett., vol.  19, no. 16, pp. 1197–1199, Aug. 2007.
[CrossRef]

Kakehashi, S.

S. Kakehashi, H. Hasegawa, K.-i. Sato, O. Moriwaki, and S. Kamei, “Analysis and development of fixed and variable waveband MUX/DEMUX utilizing AWG routing functions,” J. Lightwave Technol., vol.  27, no. 1, pp. 30–40, Jan. 2009.
[CrossRef]

S. Kakehashi, H. Hasegawa, K. Sato, O. Moriwaki, S. Kamei, Y. Jinnouchi, and M. Okuno, “Performance of waveband MUX/DEMUX using concatenated AWGs,” IEEE Photon. Technol. Lett., vol.  19, no. 16, pp. 1197–1199, Aug. 2007.
[CrossRef]

Kamei, S.

S. Kakehashi, H. Hasegawa, K.-i. Sato, O. Moriwaki, and S. Kamei, “Analysis and development of fixed and variable waveband MUX/DEMUX utilizing AWG routing functions,” J. Lightwave Technol., vol.  27, no. 1, pp. 30–40, Jan. 2009.
[CrossRef]

S. Kakehashi, H. Hasegawa, K. Sato, O. Moriwaki, S. Kamei, Y. Jinnouchi, and M. Okuno, “Performance of waveband MUX/DEMUX using concatenated AWGs,” IEEE Photon. Technol. Lett., vol.  19, no. 16, pp. 1197–1199, Aug. 2007.
[CrossRef]

Kaminow, I.

B. Glance, I. Kaminow, and R. Wilson, “Applications of the integrated waveguide grating router,” J. Lightwave Technol., vol.  12, no. 6, pp. 957–962, 1994.
[CrossRef]

Kantarci, B.

B. Kantarci and H. Mouftah, “Optimization models for reliable long-reach PON deployment,” in IEEE Symp. on Computers and Communications (ISCC), July 2011, pp. 506–511.

Kim, B.-W.

H. Song, B.-W. Kim, and B. Mukherjee, “Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms,” IEEE Commun. Surv. Tutorials, vol.  12, no. 1, pp. 112–123, 2010.
[CrossRef]

Kim, K.

Kim, K. S.

Kimura, H.

H. Kimura, T. Matsumoto, S. Shimazu, S. Yamashita, and J. Yamasaki, “Optical power budget enhancement technologies for long-reach GE-PON system,” NTT Tech. Rev., vol.  9, no. 10, pp. 1–5, 2011.

Kramer, G.

Krishnaswamy, R. M.

R. M. Krishnaswamy and K. N. Sivarajan, “Design of logical topologies: A linear formulation for wavelength-routed optical networks with no wavelength changers,” IEEE/ACM Trans. Netw., vol.  9, no. 2, pp. 186–198, 2001.
[CrossRef]

Lakic, B.

B. Lakic and M. Hajduczenia, “On optimized passive optical network (PON) deployment,” in Second Int. Conf. Access Networks and Workshops, Ottawa, Canada, Aug. 2007.

Lee, K.-L.

E. Wong and K.-L. Lee, “Automatic protection, restoration, and survivability of long-reach passive optical networks,” in IEEE Int. Conf. Communications (ICC), July 2011.

Li, J.

Liu, H.

H. Liu and F. Tobagi, “Physical topology design for all-optical networks,” in Int. Conf. Broadband Communications, Networks and Systems (BROADNETS), Oct. 2006.

Lodha, A.

A. Gumaste, D. Diwakar, A. Agrawal, A. Lodha, and N. Ghani, “Light-mesh—a pragmatic optical access network architecture for IP-centric service oriented communication,” Opt. Switching Networking, vol.  5, no. 2–3, pp. 63–74, 2008.
[CrossRef]

Maier, G.

Martinelli, M.

Matsumoto, T.

H. Kimura, T. Matsumoto, S. Shimazu, S. Yamashita, and J. Yamasaki, “Optical power budget enhancement technologies for long-reach GE-PON system,” NTT Tech. Rev., vol.  9, no. 10, pp. 1–5, 2011.

Mehta, D.

Mitchell, J.

D. Shea and J. Mitchell, “Long-reach optical access technologies,” IEEE Network, vol.  21, no. 5, pp. 5–11, 2007.
[CrossRef]

Moriwaki, O.

S. Kakehashi, H. Hasegawa, K.-i. Sato, O. Moriwaki, and S. Kamei, “Analysis and development of fixed and variable waveband MUX/DEMUX utilizing AWG routing functions,” J. Lightwave Technol., vol.  27, no. 1, pp. 30–40, Jan. 2009.
[CrossRef]

S. Kakehashi, H. Hasegawa, K. Sato, O. Moriwaki, S. Kamei, Y. Jinnouchi, and M. Okuno, “Performance of waveband MUX/DEMUX using concatenated AWGs,” IEEE Photon. Technol. Lett., vol.  19, no. 16, pp. 1197–1199, Aug. 2007.
[CrossRef]

Mouftah, H.

B. Kantarci and H. Mouftah, “Optimization models for reliable long-reach PON deployment,” in IEEE Symp. on Computers and Communications (ISCC), July 2011, pp. 506–511.

Mukherjee, B.

H. Song, B.-W. Kim, and B. Mukherjee, “Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms,” IEEE Commun. Surv. Tutorials, vol.  12, no. 1, pp. 112–123, 2010.
[CrossRef]

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: A review,” J. Opt. Netw., vol.  4, no. 11, pp. 737–758, Nov. 2005.
[CrossRef]

J. Zhang and B. Mukherjee, “A review of fault management in WDM mesh networks: Basic concept and research challenges,” IEEE Network, vol.  18, no. 2, pp. 41–48, Mar. 2004.

O’Sullivan, B.

Okuno, M.

S. Kakehashi, H. Hasegawa, K. Sato, O. Moriwaki, S. Kamei, Y. Jinnouchi, and M. Okuno, “Performance of waveband MUX/DEMUX using concatenated AWGs,” IEEE Photon. Technol. Lett., vol.  19, no. 16, pp. 1197–1199, Aug. 2007.
[CrossRef]

Osa, F. I. F.

Park, Y.

Pattavina, A.

Payne, D. B.

Perros, H.

Pham, A. T.

D.-L. Truong and A. T. Pham, “A model for designing survivable mesh optical access networks,” in Int. Conf. Advanced Technologies for Communications (ATC), Aug. 2011, pp. 156–160.

Prat, J.

Quesada, L.

Rouskas, G.

Ruffini, M.

Salvadori, E.

Sato, K.

S. Kakehashi, H. Hasegawa, K. Sato, O. Moriwaki, S. Kamei, Y. Jinnouchi, and M. Okuno, “Performance of waveband MUX/DEMUX using concatenated AWGs,” IEEE Photon. Technol. Lett., vol.  19, no. 16, pp. 1197–1199, Aug. 2007.
[CrossRef]

Sato, K.-i.

Shea, D.

D. Shea and J. Mitchell, “Long-reach optical access technologies,” IEEE Network, vol.  21, no. 5, pp. 5–11, 2007.
[CrossRef]

Shen, G.

Shimazu, S.

H. Kimura, T. Matsumoto, S. Shimazu, S. Yamashita, and J. Yamasaki, “Optical power budget enhancement technologies for long-reach GE-PON system,” NTT Tech. Rev., vol.  9, no. 10, pp. 1–5, 2011.

Sivarajan, K. N.

R. M. Krishnaswamy and K. N. Sivarajan, “Design of logical topologies: A linear formulation for wavelength-routed optical networks with no wavelength changers,” IEEE/ACM Trans. Netw., vol.  9, no. 2, pp. 186–198, 2001.
[CrossRef]

Song, H.

H. Song, B.-W. Kim, and B. Mukherjee, “Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms,” IEEE Commun. Surv. Tutorials, vol.  12, no. 1, pp. 112–123, 2010.
[CrossRef]

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: A review,” J. Opt. Netw., vol.  4, no. 11, pp. 737–758, Nov. 2005.
[CrossRef]

Talli, G.

Tobagi, F.

H. Liu and F. Tobagi, “Physical topology design for all-optical networks,” in Int. Conf. Broadband Communications, Networks and Systems (BROADNETS), Oct. 2006.

Townsend, P. D.

Truong, D.-L.

D.-L. Truong and B. Jaumard, “Recent progress in dynamic routing for shared protection in multidomain networks,” IEEE Commun. Mag., vol.  46, no. 6, pp. 112–119, 2008.
[CrossRef]

D.-L. Truong and A. T. Pham, “A model for designing survivable mesh optical access networks,” in Int. Conf. Advanced Technologies for Communications (ATC), Aug. 2011, pp. 156–160.

Walker, S.

Wilson, R.

B. Glance, I. Kaminow, and R. Wilson, “Applications of the integrated waveguide grating router,” J. Lightwave Technol., vol.  12, no. 6, pp. 957–962, 1994.
[CrossRef]

Wong, E.

E. Wong and K.-L. Lee, “Automatic protection, restoration, and survivability of long-reach passive optical networks,” in IEEE Int. Conf. Communications (ICC), July 2011.

Xin, Y.

Yam, S.

Yamasaki, J.

H. Kimura, T. Matsumoto, S. Shimazu, S. Yamashita, and J. Yamasaki, “Optical power budget enhancement technologies for long-reach GE-PON system,” NTT Tech. Rev., vol.  9, no. 10, pp. 1–5, 2011.

Yamashita, S.

H. Kimura, T. Matsumoto, S. Shimazu, S. Yamashita, and J. Yamasaki, “Optical power budget enhancement technologies for long-reach GE-PON system,” NTT Tech. Rev., vol.  9, no. 10, pp. 1–5, 2011.

Yang, S.

Zhang, J.

J. Zhang and N. Ansari, “Minimizing the arrayed waveguide grating cost and the optical cable cost in deploying WDM passive optical networks,” J. Opt. Commun. Netw., vol.  1, no. 5, pp. 352–365, 2009.
[CrossRef]

J. Zhang and B. Mukherjee, “A review of fault management in WDM mesh networks: Basic concept and research challenges,” IEEE Network, vol.  18, no. 2, pp. 41–48, Mar. 2004.

IEEE Commun. Mag. (1)

D.-L. Truong and B. Jaumard, “Recent progress in dynamic routing for shared protection in multidomain networks,” IEEE Commun. Mag., vol.  46, no. 6, pp. 112–119, 2008.
[CrossRef]

IEEE Commun. Surv. Tutorials (1)

H. Song, B.-W. Kim, and B. Mukherjee, “Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms,” IEEE Commun. Surv. Tutorials, vol.  12, no. 1, pp. 112–123, 2010.
[CrossRef]

IEEE Network (2)

D. Shea and J. Mitchell, “Long-reach optical access technologies,” IEEE Network, vol.  21, no. 5, pp. 5–11, 2007.
[CrossRef]

J. Zhang and B. Mukherjee, “A review of fault management in WDM mesh networks: Basic concept and research challenges,” IEEE Network, vol.  18, no. 2, pp. 41–48, Mar. 2004.

IEEE Photon. Technol. Lett. (2)

C. Dragone, “An N*N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett., vol.  3, no. 9, pp. 812–815, 1991.
[CrossRef]

S. Kakehashi, H. Hasegawa, K. Sato, O. Moriwaki, S. Kamei, Y. Jinnouchi, and M. Okuno, “Performance of waveband MUX/DEMUX using concatenated AWGs,” IEEE Photon. Technol. Lett., vol.  19, no. 16, pp. 1197–1199, Aug. 2007.
[CrossRef]

IEEE/ACM Trans. Netw. (1)

R. M. Krishnaswamy and K. N. Sivarajan, “Design of logical topologies: A linear formulation for wavelength-routed optical networks with no wavelength changers,” IEEE/ACM Trans. Netw., vol.  9, no. 2, pp. 186–198, 2001.
[CrossRef]

J. Lightwave Technol. (7)

J. Opt. Commun. Netw. (3)

J. Opt. Netw. (1)

NTT Tech. Rev. (1)

H. Kimura, T. Matsumoto, S. Shimazu, S. Yamashita, and J. Yamasaki, “Optical power budget enhancement technologies for long-reach GE-PON system,” NTT Tech. Rev., vol.  9, no. 10, pp. 1–5, 2011.

Opt. Switching Networking (1)

A. Gumaste, D. Diwakar, A. Agrawal, A. Lodha, and N. Ghani, “Light-mesh—a pragmatic optical access network architecture for IP-centric service oriented communication,” Opt. Switching Networking, vol.  5, no. 2–3, pp. 63–74, 2008.
[CrossRef]

Other (12)

D.-L. Truong and A. T. Pham, “A model for designing survivable mesh optical access networks,” in Int. Conf. Advanced Technologies for Communications (ATC), Aug. 2011, pp. 156–160.

H. Venghaus, Ed., Wavelength Filters in Fibre Optics, Springer Series in Optical Sciences (Springer, 2010).

U.S. Department of Transportation Research and Innovative Technology Administration, “ITS unit costs database,” Oct. 2010.

U. S. Department of Transportation Research and Innovative Technology Administration, “Intelligent transportation systems benefits, costs, deployment, and lessons learned: 2011 update,” Oct. 2010.

AliExpress website, 2013, http://www.aliexpress.com .

H. Liu and F. Tobagi, “Physical topology design for all-optical networks,” in Int. Conf. Broadband Communications, Networks and Systems (BROADNETS), Oct. 2006.

B. Lakic and M. Hajduczenia, “On optimized passive optical network (PON) deployment,” in Second Int. Conf. Access Networks and Workshops, Ottawa, Canada, Aug. 2007.

A. Agata and Y. Horiuchi, “PON network designing algorithm for suboptimal deployment of optical fiber cables,” in Asia Communications and Photonics Conf. and Exhibition, Shanghai, China, Nov. 2009.

B. Kantarci and H. Mouftah, “Optimization models for reliable long-reach PON deployment,” in IEEE Symp. on Computers and Communications (ISCC), July 2011, pp. 506–511.

E. Wong and K.-L. Lee, “Automatic protection, restoration, and survivability of long-reach passive optical networks,” in IEEE Int. Conf. Communications (ICC), July 2011.

B. Jaumard and R. Chowdhury, “Location and allocation of switching equipment (splitters/AWGS) in a WDM PON network,” in Proc. 20th Int. Conf. Computer Communications and Networks (ICCCN), July 2011, pp. 1–8.

IBM Academic Initiative, “ILOG CPLEX Optimization Studio” [Online]. Available: http://www-03.ibm.com/ibm/university/academic/pub/page/ban_ilog_programming .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Mesh hybrid WDM-TDM PON model.

Fig. 2.
Fig. 2.

(a) Conventional 1×4 AWG and (b) conventional 4×4 AWG.

Fig. 3.
Fig. 3.

Two typical connections of an OLT and a service area (ONUs are not shown).

Fig. 4.
Fig. 4.

Example of a path protection scheme in a mesh PON.

Fig. 5.
Fig. 5.

Node with one waveband input, multiple single wavelength outputs can be realized by a single 1×N AWG.

Fig. 6.
Fig. 6.

Waveband MUX/DeMUX node with one waveband input, many sub-waveband and single wavelength outputs.

Fig. 7.
Fig. 7.

Waveband MUX/DeMUX node with many waveband inputs, many sub-waveband and single wavelength outputs.

Fig. 8.
Fig. 8.

Waveband MUX/DeMUX node with many waveband inputs, many sub-waveband outputs with mixed bands and single wavelength outputs.

Fig. 9.
Fig. 9.

Illustration of a star design.

Fig. 10.
Fig. 10.

Illustration of Improvement 1.

Fig. 11.
Fig. 11.

Illustration of Improvement 2.

Fig. 12.
Fig. 12.

Illustration of Improvement 3.

Fig. 13.
Fig. 13.

Illustration of Improvement 4.

Fig. 14.
Fig. 14.

Illustration of Improvement 5.

Fig. 15.
Fig. 15.

Example of a survivable long-reach hybrid WDM-TDM PON designed by Local-Search. Links between OLT and AWGs are dashed black lines, between AWGs are blue thick lines, between AWGs and SPs are red medium lines, and between SPs and ONUs are green thin lines.

Tables (15)

Tables Icon

TABLE I Fiber Installation and Maintenance Costs

Tables Icon

TABLE II PON Device Costs

Tables Icon

TABLE III Unit Losses and Notations

Tables Icon

TABLE IV Upper Bound of the Maximum Number of Equivalent AWGs and Connection Length L for a Given Split Ratio

Tables Icon

TABLE V Hop Count Threshold H for Given Split Ratios and Connection Length Thresholds L

Tables Icon

Algorithm 1 Improvement 1

Tables Icon

Algorithm 2 Improvement 2

Tables Icon

Algorithm 3 Improvement 3

Tables Icon

Algorithm 4 Improvement 4

Tables Icon

Algorithm 5 Improvement 5

Tables Icon

TABLE VI Average Relative Gaps Between the Proposed Algorithms and OPT

Tables Icon

TABLE VII Average Relative Gaps Between MeshLIP and Star

Tables Icon

TABLE VIII Percentages of Cases That MeshLIP Impr. 1-2-3-4-5 and OPT Use Links AWG–AWG and the Fiber Saving Level of Those Cases

Tables Icon

TABLE IX Statistics on Connection Length and Hop Count Given by MeshLIP Impr.1-2-3-4-5

Tables Icon

TABLE X Hop Count and Path Length Overheads due to the Use of Links Between AWGs in MeshLIP 1-2-3-4-5

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

{λ1,,λn}=mi=1WBi{λk}{λn}.
portin=1+(wavelength indexportout)modN.
Fiber loss=Lfiber*(dB),
Insertion loss=nAWG×LAWG+2×nWB×LAWG+LSP(dB).
LSP=1.5+10lgnsplit(dB).
Power loss=0.2*+4(nAWG+2nWB)+1.5+10lgnsplit(dB).
0.2*+4(nAWG+2*nWB)+1.5+10lgnsplit37.
s,j,λoasjλsk1(k),
oasiλsk+j(aajiλskaaijλsk)asikλsk=0(s,k,λ,i),
s,j,λasjkλsk1(k).
s,kfdsk=1(d),
kfdskkfdsk(b)=0(s,d),
1nsplit×s,d(fdsk+fdsk(b))s,j,λasjkλsk0(k).
λ(oasjλsk+oasjλsk)+fdsk+fdsk(b)3(s,d,kk,j),
λ(aaijλsk+aaijλsk+aajiλsk)+fdsk+fdsk(b)3(s,d,kk,i,j),
λ(asikλsk+asikλsk)+fdsk+fdsk(b)3(s,d,kk,i),
fdsk+fdsk(b)1(s,d,k).
s,k,λoasjλskZ·oasj,(s,j),
s,k,λaaijλskZ·aaij,(i,j),
s,λasikλskZ·asik,(i,k),
s(fdsk+fdsk(b))Z·snkd,(k,d).
koasjλsk1(s,j,λ),
s,k(aaijλsk+aajiλsk)1(i,j,λ),
sasikλsk1(i,k,λ).
ioaij+iaaijN/2(j),
jaaij+jasijN/2(i).
joaijn0(i).
i,j,λaaijλskH3(s,k).
j,λoasjλsk×doasj+i,j,λaaijλsk×daaij+i,λasikλsk×dasik+fdsk×dsnkdL(s,k,d).
minimizei,joaij×doaij+i,jaaij×aaji×daaij+i,jasij×dasij+i,jsnij×dsnij.
fiber length inXfiber length inOPTfiber length inOPT,
fiber length inXfiber length in Starfiber length in Star.