Abstract

We demonstrate a stabilization and tuning architecture that enables the transmission of a stable modulation sideband in the presence of high carrier instability. The technique can be used in radio-over-fiber (RoF) systems employing optical intensity modulation, and in links featuring optical carrier generation, which might exhibit considerable phase noise or even frequency drift. The stabilization concept is validated experimentally in two systems based on two different laser structures. The results of this paper represent the first demonstration, to our knowledge, of the technique on a RoF system operating in the millimeter-wave range.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Renaudier, G. H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron., vol.  43, no. 2, pp. 147–156, Feb. 2007.
    [CrossRef]
  2. B. A. Khawaja and M. J. Cryan, “Wireless hybrid mode locked lasers for next generation radio-over-fiber systems,” J. Lightwave Technol., vol.  28, no. 16, pp. 2268–2276, Aug. 2010.
    [CrossRef]
  3. F. Van Dijk, A. Enard, X. Buet, F. Lelarge, and G. H. Duan, “Phase noise reduction of a quantum dash mode-locked laser in a millimeter-wave coupled opto-electronic oscillator,” J. Lightwave Technol., vol.  26, no. 15, pp. 2789–2794, 2008.
    [CrossRef]
  4. “Wireless medium access control (MAC), and physical layer (PHY) specifications for high rate wireless personal area networks (WPANs), Amendment 2: Millimeter-wave-based alternative physical layer extension,” (Amendment to IEEE Standard 802.15.3-2003), Dec. 2009.
  5. E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-gigahertz mode-locked semiconductor lasers: Constructions, experiments, models and applications,” IEE Proc.: Optoelectron., vol.  147, no. 4, pp. 251–278, 2000.
    [CrossRef]
  6. L. A. Buckman, J. B. Georges, J. Park, D. Vassilovski, J. M. Kahn, and K. Y. Lau, “Stabilization of millimeter-wave frequencies from passively mode-locked semiconductor lasers using an optoelectronic phase-locked loop,” IEEE Photon. Technol. Lett., vol.  5, no. 10, pp. 1137–1140, 1993.
    [CrossRef]
  7. Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking characteristics of a passively mode-locked monolithic DBR laser stabilized by optical injection,” IEEE Photon. Technol. Lett., vol.  8, no. 1, pp. 37–39, Jan. 1996.
    [CrossRef]
  8. K. Merghem, R. Rosales, S. Azouigui, A. Akrout, A. Martinez, F. Lelarge, G. Aubin, G. H. Duan, and A. Ramdane, “Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback,” Appl. Phys. Lett., vol.  95, 131111, 2009.
    [CrossRef]
  9. A. Georgiadis, “Gain, phase imbalance, and phase noise effects on error vector magnitude,” IEEE Trans. Veh. Technol., vol.  53, no. 2, pp. 443–449, 2004.
    [CrossRef]
  10. F. Brendel, T. Zwick, J. Poëtte, and B. Cabon, “A novel technique for sideband stabilization in the presence of carrier phase noise in RoF systems,” Proc. European Microwave Conf., Amsterdam, The Netherlands, Oct. 28–Nov. 1, 2012.
  11. G. H. Nguyen, B. Cabon, and Y. Le Guennec, “Generation of 60-GHz MB-OFDM signal-over-fiber by up-conversion using cascaded external modulators,” J. Lightwave Technol., vol.  27, no. 11, pp. 1496–1502, June 2009.
    [CrossRef]

2010 (1)

2009 (2)

K. Merghem, R. Rosales, S. Azouigui, A. Akrout, A. Martinez, F. Lelarge, G. Aubin, G. H. Duan, and A. Ramdane, “Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback,” Appl. Phys. Lett., vol.  95, 131111, 2009.
[CrossRef]

G. H. Nguyen, B. Cabon, and Y. Le Guennec, “Generation of 60-GHz MB-OFDM signal-over-fiber by up-conversion using cascaded external modulators,” J. Lightwave Technol., vol.  27, no. 11, pp. 1496–1502, June 2009.
[CrossRef]

2008 (1)

2007 (1)

J. Renaudier, G. H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron., vol.  43, no. 2, pp. 147–156, Feb. 2007.
[CrossRef]

2004 (1)

A. Georgiadis, “Gain, phase imbalance, and phase noise effects on error vector magnitude,” IEEE Trans. Veh. Technol., vol.  53, no. 2, pp. 443–449, 2004.
[CrossRef]

2000 (1)

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-gigahertz mode-locked semiconductor lasers: Constructions, experiments, models and applications,” IEE Proc.: Optoelectron., vol.  147, no. 4, pp. 251–278, 2000.
[CrossRef]

1996 (1)

Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking characteristics of a passively mode-locked monolithic DBR laser stabilized by optical injection,” IEEE Photon. Technol. Lett., vol.  8, no. 1, pp. 37–39, Jan. 1996.
[CrossRef]

1993 (1)

L. A. Buckman, J. B. Georges, J. Park, D. Vassilovski, J. M. Kahn, and K. Y. Lau, “Stabilization of millimeter-wave frequencies from passively mode-locked semiconductor lasers using an optoelectronic phase-locked loop,” IEEE Photon. Technol. Lett., vol.  5, no. 10, pp. 1137–1140, 1993.
[CrossRef]

Ahmed, Z.

Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking characteristics of a passively mode-locked monolithic DBR laser stabilized by optical injection,” IEEE Photon. Technol. Lett., vol.  8, no. 1, pp. 37–39, Jan. 1996.
[CrossRef]

Akrout, A.

K. Merghem, R. Rosales, S. Azouigui, A. Akrout, A. Martinez, F. Lelarge, G. Aubin, G. H. Duan, and A. Ramdane, “Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback,” Appl. Phys. Lett., vol.  95, 131111, 2009.
[CrossRef]

Aubin, G.

K. Merghem, R. Rosales, S. Azouigui, A. Akrout, A. Martinez, F. Lelarge, G. Aubin, G. H. Duan, and A. Ramdane, “Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback,” Appl. Phys. Lett., vol.  95, 131111, 2009.
[CrossRef]

Avrutin, E. A.

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-gigahertz mode-locked semiconductor lasers: Constructions, experiments, models and applications,” IEE Proc.: Optoelectron., vol.  147, no. 4, pp. 251–278, 2000.
[CrossRef]

Azouigui, S.

K. Merghem, R. Rosales, S. Azouigui, A. Akrout, A. Martinez, F. Lelarge, G. Aubin, G. H. Duan, and A. Ramdane, “Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback,” Appl. Phys. Lett., vol.  95, 131111, 2009.
[CrossRef]

Brendel, F.

F. Brendel, T. Zwick, J. Poëtte, and B. Cabon, “A novel technique for sideband stabilization in the presence of carrier phase noise in RoF systems,” Proc. European Microwave Conf., Amsterdam, The Netherlands, Oct. 28–Nov. 1, 2012.

Buckman, L. A.

L. A. Buckman, J. B. Georges, J. Park, D. Vassilovski, J. M. Kahn, and K. Y. Lau, “Stabilization of millimeter-wave frequencies from passively mode-locked semiconductor lasers using an optoelectronic phase-locked loop,” IEEE Photon. Technol. Lett., vol.  5, no. 10, pp. 1137–1140, 1993.
[CrossRef]

Buet, X.

Cabon, B.

G. H. Nguyen, B. Cabon, and Y. Le Guennec, “Generation of 60-GHz MB-OFDM signal-over-fiber by up-conversion using cascaded external modulators,” J. Lightwave Technol., vol.  27, no. 11, pp. 1496–1502, June 2009.
[CrossRef]

F. Brendel, T. Zwick, J. Poëtte, and B. Cabon, “A novel technique for sideband stabilization in the presence of carrier phase noise in RoF systems,” Proc. European Microwave Conf., Amsterdam, The Netherlands, Oct. 28–Nov. 1, 2012.

Cryan, M. J.

Duan, G. H.

K. Merghem, R. Rosales, S. Azouigui, A. Akrout, A. Martinez, F. Lelarge, G. Aubin, G. H. Duan, and A. Ramdane, “Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback,” Appl. Phys. Lett., vol.  95, 131111, 2009.
[CrossRef]

F. Van Dijk, A. Enard, X. Buet, F. Lelarge, and G. H. Duan, “Phase noise reduction of a quantum dash mode-locked laser in a millimeter-wave coupled opto-electronic oscillator,” J. Lightwave Technol., vol.  26, no. 15, pp. 2789–2794, 2008.
[CrossRef]

J. Renaudier, G. H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron., vol.  43, no. 2, pp. 147–156, Feb. 2007.
[CrossRef]

Enard, A.

Gallion, P.

J. Renaudier, G. H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron., vol.  43, no. 2, pp. 147–156, Feb. 2007.
[CrossRef]

Georges, J. B.

L. A. Buckman, J. B. Georges, J. Park, D. Vassilovski, J. M. Kahn, and K. Y. Lau, “Stabilization of millimeter-wave frequencies from passively mode-locked semiconductor lasers using an optoelectronic phase-locked loop,” IEEE Photon. Technol. Lett., vol.  5, no. 10, pp. 1137–1140, 1993.
[CrossRef]

Georgiadis, A.

A. Georgiadis, “Gain, phase imbalance, and phase noise effects on error vector magnitude,” IEEE Trans. Veh. Technol., vol.  53, no. 2, pp. 443–449, 2004.
[CrossRef]

Kahn, J. M.

L. A. Buckman, J. B. Georges, J. Park, D. Vassilovski, J. M. Kahn, and K. Y. Lau, “Stabilization of millimeter-wave frequencies from passively mode-locked semiconductor lasers using an optoelectronic phase-locked loop,” IEEE Photon. Technol. Lett., vol.  5, no. 10, pp. 1137–1140, 1993.
[CrossRef]

Khawaja, B. A.

Kim, D. Y.

Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking characteristics of a passively mode-locked monolithic DBR laser stabilized by optical injection,” IEEE Photon. Technol. Lett., vol.  8, no. 1, pp. 37–39, Jan. 1996.
[CrossRef]

Landais, P.

J. Renaudier, G. H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron., vol.  43, no. 2, pp. 147–156, Feb. 2007.
[CrossRef]

Lau, K. Y.

L. A. Buckman, J. B. Georges, J. Park, D. Vassilovski, J. M. Kahn, and K. Y. Lau, “Stabilization of millimeter-wave frequencies from passively mode-locked semiconductor lasers using an optoelectronic phase-locked loop,” IEEE Photon. Technol. Lett., vol.  5, no. 10, pp. 1137–1140, 1993.
[CrossRef]

Le Guennec, Y.

Lelarge, F.

K. Merghem, R. Rosales, S. Azouigui, A. Akrout, A. Martinez, F. Lelarge, G. Aubin, G. H. Duan, and A. Ramdane, “Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback,” Appl. Phys. Lett., vol.  95, 131111, 2009.
[CrossRef]

F. Van Dijk, A. Enard, X. Buet, F. Lelarge, and G. H. Duan, “Phase noise reduction of a quantum dash mode-locked laser in a millimeter-wave coupled opto-electronic oscillator,” J. Lightwave Technol., vol.  26, no. 15, pp. 2789–2794, 2008.
[CrossRef]

Liu, H. F.

Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking characteristics of a passively mode-locked monolithic DBR laser stabilized by optical injection,” IEEE Photon. Technol. Lett., vol.  8, no. 1, pp. 37–39, Jan. 1996.
[CrossRef]

Marsh, J. H.

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-gigahertz mode-locked semiconductor lasers: Constructions, experiments, models and applications,” IEE Proc.: Optoelectron., vol.  147, no. 4, pp. 251–278, 2000.
[CrossRef]

Martinez, A.

K. Merghem, R. Rosales, S. Azouigui, A. Akrout, A. Martinez, F. Lelarge, G. Aubin, G. H. Duan, and A. Ramdane, “Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback,” Appl. Phys. Lett., vol.  95, 131111, 2009.
[CrossRef]

Merghem, K.

K. Merghem, R. Rosales, S. Azouigui, A. Akrout, A. Martinez, F. Lelarge, G. Aubin, G. H. Duan, and A. Ramdane, “Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback,” Appl. Phys. Lett., vol.  95, 131111, 2009.
[CrossRef]

Nguyen, G. H.

Novak, D.

Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking characteristics of a passively mode-locked monolithic DBR laser stabilized by optical injection,” IEEE Photon. Technol. Lett., vol.  8, no. 1, pp. 37–39, Jan. 1996.
[CrossRef]

Ogawa, Y.

Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking characteristics of a passively mode-locked monolithic DBR laser stabilized by optical injection,” IEEE Photon. Technol. Lett., vol.  8, no. 1, pp. 37–39, Jan. 1996.
[CrossRef]

Park, J.

L. A. Buckman, J. B. Georges, J. Park, D. Vassilovski, J. M. Kahn, and K. Y. Lau, “Stabilization of millimeter-wave frequencies from passively mode-locked semiconductor lasers using an optoelectronic phase-locked loop,” IEEE Photon. Technol. Lett., vol.  5, no. 10, pp. 1137–1140, 1993.
[CrossRef]

Pelusi, M. D.

Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking characteristics of a passively mode-locked monolithic DBR laser stabilized by optical injection,” IEEE Photon. Technol. Lett., vol.  8, no. 1, pp. 37–39, Jan. 1996.
[CrossRef]

Poëtte, J.

F. Brendel, T. Zwick, J. Poëtte, and B. Cabon, “A novel technique for sideband stabilization in the presence of carrier phase noise in RoF systems,” Proc. European Microwave Conf., Amsterdam, The Netherlands, Oct. 28–Nov. 1, 2012.

Portnoi, E. L.

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-gigahertz mode-locked semiconductor lasers: Constructions, experiments, models and applications,” IEE Proc.: Optoelectron., vol.  147, no. 4, pp. 251–278, 2000.
[CrossRef]

Ramdane, A.

K. Merghem, R. Rosales, S. Azouigui, A. Akrout, A. Martinez, F. Lelarge, G. Aubin, G. H. Duan, and A. Ramdane, “Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback,” Appl. Phys. Lett., vol.  95, 131111, 2009.
[CrossRef]

Renaudier, J.

J. Renaudier, G. H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron., vol.  43, no. 2, pp. 147–156, Feb. 2007.
[CrossRef]

Rosales, R.

K. Merghem, R. Rosales, S. Azouigui, A. Akrout, A. Martinez, F. Lelarge, G. Aubin, G. H. Duan, and A. Ramdane, “Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback,” Appl. Phys. Lett., vol.  95, 131111, 2009.
[CrossRef]

Van Dijk, F.

Vassilovski, D.

L. A. Buckman, J. B. Georges, J. Park, D. Vassilovski, J. M. Kahn, and K. Y. Lau, “Stabilization of millimeter-wave frequencies from passively mode-locked semiconductor lasers using an optoelectronic phase-locked loop,” IEEE Photon. Technol. Lett., vol.  5, no. 10, pp. 1137–1140, 1993.
[CrossRef]

Zwick, T.

F. Brendel, T. Zwick, J. Poëtte, and B. Cabon, “A novel technique for sideband stabilization in the presence of carrier phase noise in RoF systems,” Proc. European Microwave Conf., Amsterdam, The Netherlands, Oct. 28–Nov. 1, 2012.

Appl. Phys. Lett. (1)

K. Merghem, R. Rosales, S. Azouigui, A. Akrout, A. Martinez, F. Lelarge, G. Aubin, G. H. Duan, and A. Ramdane, “Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback,” Appl. Phys. Lett., vol.  95, 131111, 2009.
[CrossRef]

IEE Proc.: Optoelectron. (1)

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-gigahertz mode-locked semiconductor lasers: Constructions, experiments, models and applications,” IEE Proc.: Optoelectron., vol.  147, no. 4, pp. 251–278, 2000.
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Renaudier, G. H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron., vol.  43, no. 2, pp. 147–156, Feb. 2007.
[CrossRef]

IEEE Photon. Technol. Lett. (2)

L. A. Buckman, J. B. Georges, J. Park, D. Vassilovski, J. M. Kahn, and K. Y. Lau, “Stabilization of millimeter-wave frequencies from passively mode-locked semiconductor lasers using an optoelectronic phase-locked loop,” IEEE Photon. Technol. Lett., vol.  5, no. 10, pp. 1137–1140, 1993.
[CrossRef]

Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking characteristics of a passively mode-locked monolithic DBR laser stabilized by optical injection,” IEEE Photon. Technol. Lett., vol.  8, no. 1, pp. 37–39, Jan. 1996.
[CrossRef]

IEEE Trans. Veh. Technol. (1)

A. Georgiadis, “Gain, phase imbalance, and phase noise effects on error vector magnitude,” IEEE Trans. Veh. Technol., vol.  53, no. 2, pp. 443–449, 2004.
[CrossRef]

J. Lightwave Technol. (3)

Other (2)

F. Brendel, T. Zwick, J. Poëtte, and B. Cabon, “A novel technique for sideband stabilization in the presence of carrier phase noise in RoF systems,” Proc. European Microwave Conf., Amsterdam, The Netherlands, Oct. 28–Nov. 1, 2012.

“Wireless medium access control (MAC), and physical layer (PHY) specifications for high rate wireless personal area networks (WPANs), Amendment 2: Millimeter-wave-based alternative physical layer extension,” (Amendment to IEEE Standard 802.15.3-2003), Dec. 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

MLLD air-coupled to a dual lens focalizer.

Fig. 2.
Fig. 2.

Spectral measurements on the LSB. Single sweep and average of 50 sweeps (resolution bandwidth of 10 kHz). Sinusoidal modulation at fIF.

Fig. 3.
Fig. 3.

Stabilization and tuning architecture for implementation in the Tx of a RoF system. Functional blocks that are represented: I/Q data modulation at IF, optical subsystem including E/O and O/E converters, LO generation, carrier recovery stage, PLL.

Fig. 4.
Fig. 4.

Photo of the PLL demonstrator featuring the modified PLL and the carrier recovery stage from Fig. 3. Optical subsystem not shown.

Fig. 5.
Fig. 5.

Block diagrams of the two RoF systems used for the experimental validation. (a) MLLD-based system. The mm-wave signal is generated by the beating of several MLLD modes. (b) DFB-based system. The mm-wave signal is generated by frequency doubling of the seed signal into the MZM.

Fig. 6.
Fig. 6.

MLLD phase noise emulated in the DFB-based RoF system. Gray curve, MLLD phase psd measured in [3]; black curve, phase psd emulated by the DFB-based system.

Fig. 7.
Fig. 7.

DSB-based system: spectrum measurements on the LSB translated to 0 Hz, with GN, PLL active and inactive.

Fig. 8.
Fig. 8.

MLLD-based system: spectrum measurements on the LSB. Average of 50 sweeps for PLL active/inactive. Sinusoidal modulation at fIF.

Fig. 9.
Fig. 9.

Comparison of phase psds for MLLD- and DFB-based RoF systems with active PLL.

Fig. 10.
Fig. 10.

EVM measurements on DFB-based RoF system, different GN-FM values.

Fig. 11.
Fig. 11.

MLLD-based transmission: LSB tuned by PLL to the center frequency of band 1 (IEEE Standard 802.15.3c-2009).

Fig. 12.
Fig. 12.

EVM penalty. Measurement on MLLD-RoF system (asterisk) and on PLL alone (gray circle). Solid and dashed curves: simulations according to Eq. (6) for the respective σrms.

Tables (2)

Tables Icon

TABLE I MLLD Characteristics

Tables Icon

TABLE II Millimeter-Wave Physical Layer Channelization From IEEE Standard 802.15.3c-2009 [4]

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Sφ,L*V=Sφ,LO(f)*Sφ,VCO(f).
GF(s)=(1)·KP·ZLF(s)·KVs·LWD·(1)·Km,
GR(s)=ZeqLPF(s)·1N.
HHP(s)=11+GF(s)GR(s).
Sφ,out(f)=Sφ,L*V·|HHP(jf)|2,
σrms=+Sφ,out(f)df,
EVMrms=1SNR+22cos(σrms).