Abstract

We demonstrate a stabilization and tuning architecture that enables the transmission of a stable modulation sideband in the presence of high carrier instability. The technique can be used in radio-over-fiber (RoF) systems employing optical intensity modulation, and in links featuring optical carrier generation, which might exhibit considerable phase noise or even frequency drift. The stabilization concept is validated experimentally in two systems based on two different laser structures. The results of this paper represent the first demonstration, to our knowledge, of the technique on a RoF system operating in the millimeter-wave range.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simplification of millimeter-wave radio-over-fiber system employing heterodyning of uncorrelated optical carriers and self-homodyning of RF signal at the receiver

A.H.M. Razibul Islam, Masuduzzaman Bakaul, Ampalavanapillai Nirmalathas, and Graham E. Town
Opt. Express 20(5) 5707-5724 (2012)

Polarization insensitive all-optical up-conversion for ROF systems based on parallel pump FWM in a SOA

Jia Lu, Ze Dong, Zizeng Cao, Lin Chen, Shuangchun Wen, and Jianguo Yu
Opt. Express 17(9) 6962-6967 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription