Abstract

Energy saving (ES) in telecommunication networks is an important criterion when planning access networks. In fiber–wireless (FiWi) access networks the ES potential is high, when compared with other architectures, because different routes and optical access points can be used by routers at the wireless section. Although some proposals to increase energy efficiency in these architectures have been presented, these are not approaches that can adapt to variations in traffic load or distribution of traffic across the network. Here we fill this gap and propose a load adaptive and fault tolerant framework for ES in FiWi access networks. This framework allows optical network units (ONUs) to enter long-standing sleep mode under low traffic conditions, reducing energy waste, permitting fast reaction to ONU or fiber failures, and allowing quality of service (QoS) to be kept at a certain level. Results show that significant ES can be achieved under low to medium traffic loads while maintaining QoS and fault tolerance.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription