Abstract

In this work scaling of an optical broadcast-and-select network based on a passive star coupler is explored for avionics applications. Each client in the network is equipped with a transmitter unit and a multichannel receiver capable of receiving signals from all other clients connected to the star coupler. We propose a connecting node concept to scale the number of clients supported by the architecture. These connecting nodes act as bridges between star couplers, enabling the organization of several star couplers into a topology with additional clients. This design is modeled in the PhoenixSim simulation environment, and system-level simulation results are reported. We then propose the ring topology and dimension-N topology to interconnect and scale star couplers. Finally we compare the ring and dimension-N topologies in terms of scalability limit at different crossing traffic loads, revealing the trade-offs between latency, system complexity, and scalability. Our study shows that a robust, low-latency network of up to hundreds of clients, sufficient for current and next-generation avionics applications, can be built using off-the-shelf and near-term commercial technology.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. F.  Habiby, M. J.  Hackert, “RONIA results: WDM-based optical networks in aircraft applications,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf., 2008, pp. 71–72.
  2. M.-Y.  Nam, E.  Seo, L.  Sha, K.-J.  Park, K.  Kang, “Limiting worst-case end-to-end latency when traffic increases in a switched avionics network,” in IEEE 17th Int. Conf. on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2011, vol. 1, pp. 285–294.
  3. M.  Masanovic, L. A.  Johansson, J.  Barton, “Widely tunable optical transceiver for avionic WDM networks,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 2011, pp. 23–24.
  4. G. J.  Whaley, R. J.  Karnopp, “Air Force highly integrated photonics program: Development and demonstration of an optically transparent fiber optic network for avionics applications,” Proc. SPIE, vol.  7700, 77000A, Apr. 2010.
    [CrossRef]
  5. J.  Levis, B.  Sutterfield, R.  Stevens, “Fiber optic communication within the F-35 mission systems,” in IEEE Conf. Avionics Fiber-Optics and Photonics, 12–14 Sept. 2006, pp. 12–13.
  6. D. E.  Anderson, M. W.  Beranek, “777 optical LAN technology review,” in 48th IEEE Electronic Components & Technology Conf., 1998, pp. 386–390.
  7. A. A. R.  Lee, S. D.  Rayner, “Avionic architectures incorporating optical fibre technology,” in IEEE Conf. Avionics Fiber-Optics and Photonics, 12–14 Sept. 2006, pp. 10–11.
  8. J.  Chan, G.  Hendry, A.  Biberman, K.  Bergman, L. P.  Carloni, “PhoenixSim: A simulator for physical-layer analysis of chip-scale photonic interconnection networks,” in Proc. Conf. on Design, Automation and Test in Europe, Mar. 2010, pp. 691–696.
  9. Demartek, “High performance fibre channel switch vs. unified port switch technology” [Online]. Available: http://www.demartek.com/Reports_Free/Demartek_Brocade_6510_FC_Switch_Latency_Evaluation_2012-09.pdf .
  10. R.  Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron., vol.  12, no. 6, pp. 1678–1687, 2006.
    [CrossRef]
  11. C.  Reardon, J.  Profumo, A.  George, “Comparative simulative analysis of WDM LANs for avionics platforms,” in IEEE Military Communications Conf., 2006.
  12. S. F.  Habiby, R.  Vaidyanathan, “WDM optical backbone networks in aircraft applications: Networking challenges and standards progress,” in IEEE Military Communications Conf., 18–21 Oct. 2009, pp. 1–6.
  13. J.  Jackel, “Advances in optical networking for aerospace platform applications,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 2011, pp. 5–6.
  14. D.  Drury, “Satellite optical backplane,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 2011, pp. 17–18.
  15. D.  Coudert, A.  Ferreira, X.  Munoz, “A multihop multi-OPS optical interconnection network,” J. Lightwave Technol., vol.  18, no. 12, pp. 2076–2085, Dec. 2000.
    [CrossRef]
  16. G.  Gravenstreter, R. G.  Melhem, D. M.  Chiarulli, S. P.  Levitan, J. P.  Teza, “The partitioned optical passive stars (POPS) topology,” in Proc. 9th Int. Parallel Processing Symp., 25–28 Apr. 1995, pp. 4–10.
  17. R.  Chipalkatti, Z.  Zhang, A. S.  Acampora, “Protocols for optical star-coupler network using WDM: Performance and complexity study,” IEEE J. Sel. Areas Commun., vol.  11, no. 4, pp. 579–589, May 1993.
    [CrossRef]
  18. S. B.  Tridandapani, B.  Mukherjee, “Channel sharing in multi-hop WDM lightwave networks: Realization and performance of multicast traffic,” IEEE J. Sel. Areas Commun., vol.  15, no. 3, pp. 488–500, 1997.
    [CrossRef]
  19. M. S.  Goodman, H.  Kobrinski, M. P.  Vecchi, R. M.  Bulley, J. L.  Gimlett, “The LAMBDANET multiwavelength network: Architecture, applications, and demonstrations,” IEEE J. Sel. Areas Commun., vol.  8, no. 6, pp. 995–1004, 1990.
    [CrossRef]
  20. K. R.  Desai, K.  Ghose, “An evaluation of communication protocols for star-coupled multidimensional WDM networks for multiprocessors,” in Proc. 2nd Int. Conf. on Massively Parallel Processing Using Optical Interconnections, 1995, pp. 42–49.
  21. Q.  Li, N.  Ophir, L.  Xu, K.  Padmaraju, L.  Chen, M.  Lipson, K.  Bergman, “Experimental characterization of the optical-power upper bound in a silicon microring modulator,” in IEEE Optical Interconnects Conf., May 2012, pp. 38–39.
  22. Y.  Kuo, M.  Kwakernaak, X.  Sun, J.  Pescatore, M.  Gilmer, J.  Oakley, Z.  Ji, A.  Nikolov, “Integrated multi-wavelength silicon germanium high speed receivers,” in Integrated Photonics Research, Silicon and Nanophotonics (IPRSN), 2010, paper IWF3.
  23. J.  Chan, G.  Hendry, K.  Bergman, L. P.  Carloni, “Physical-layer modeling and system-level design of chip-scale photonic interconnection networks,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.  30, no. 10, pp. 1507–1520, Oct. 2011.
    [CrossRef]
  24. G.  Hendry, E.  Robinson, V.  Gleyzer, J.  Chan, L. P.  Carloni, N.  Bliss, K.  Bergman, “Time-division-multiplexed arbitration in silicon nanophotonic networks-on-chip for high-performance chip multiprocessors,” J. Parallel Distrib. Comput., vol.  71, no. 5, pp. 641–650, May 2011.
    [CrossRef]
  25. A.  Varga, “OMNeT++ discrete event simulation system” [Online]. Available: http://www.omnetpp.org .
  26. Q.  Li, R.  Hendry, J.  Chan, K.  Bergman, M.  Glick, R.  Dutt, “Network simulation of passive optical broadcast-and-select network for avionics applications,” presented at the Government Microcircuit Applications and Critical Technology Conf. (GOMACTech-13), Las Vegas, Nov. 2013.
  27. T.  Saito, K.  Nara, K.  Tanaka, Y.  Nekado, J. I.  Hasegawa, K.  Kashihara, “Temperature-insensitive (athermal) AWG modules,” Furukawa Rev., vol.  24, pp. 29–33, 2003.
  28. S.  Kamei, Y.  Inoue, A.  Kaneko, T.  Shibata, H.  Takahashi, “Recent progress on athermal AWG wavelength multiplexer,” Proc. SPIE, vol.  6014, 60140H, Oct. 2005.
    [CrossRef]
  29. X.  Wang, S.  Xiao, W.  Zheng, F.  Wang, Y.  Hao, X.  Jiang, M.  Wang, J.  Yang, “Slot-based athermal silicon arrayed-waveguide grating (AWG),” Proc. SPIE, vol.  7134, 71340X, 2008.
    [CrossRef]
  30. S.  Nishimura, H.  Inoue, S.  Hanatani, H.  Matsuoka, T.  Yokota, “Optical interconnections for the massively parallel computer,” IEEE Photon. Technol. Lett., vol.  9, no. 7, pp. 1029–1031, July 1997.
    [CrossRef]
  31. The F-35 Lightning II Program [Online]. Available: http://www.jsf.mil/f35/f35_variants.htm .
  32. Boeing, “747–8 Technical Characterizations” [Online]. Available: http://www.boeing.com/boeing/commercial/747family/747-8_fact_sheet.page .
  33. J.  Zhang, Y.  An, M. S.  Berger, A. T.  Clausen, “Wavelength and fiber assignment problems on avionic networks,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 4–6 Oct. 2011, pp. 15–16.
  34. S.  Assefa, S. B. G.  Lee, C. L.  Schow, W. M. J.  Green, A. V.  Rylyakov, R. A.  John, Y. A.  Vlasov, “20 Gbps receiver based on germanium photodetector hybrid-integrated with 90 nm CMOS amplifier,” in Conf. on Lasers and Electro-Optics (CLEO), 1–6 May 2011, pp. 1–2.
  35. B.  Grot, J.  Hestness, S. W.  Keckler, O.  Mutlu, “Express cube topologies for on-chip interconnects,” in IEEE 15th Int. Symp. on High Performance Computer Architecture (HPCA), 14–18 Feb. 2009, pp. 163–174.
  36. B.  Attia, W.  Chouchene, A.  Zitouni, A.  Nourdin, R.  Tourki, “Design and implementation of low latency network interface for network on chip,” in 5th Int. Design and Test Workshop (IDT), 14–15 Dec. 2010, pp. 37–42.
  37. M.  Simmons, “Ethernet theory of operation,” Microchip Technology Inc., , 2008 [Online]. Available: http://ww1.microchip.com/downloads/en/AppNotes/01120a.pdf .
  38. L.-S.  Peh, W. J.  Dally, “A delay model and speculative architecture for pipelined routers,” in 7th Int. Symp. on High-Performance Computer Architecture (HPCA), 2001, pp. 255–266.
  39. J.  Kim, W. J.  Dally, B.  Towles, A. K.  Gupta, “Microarchitecture of a high-radix router,” Comput. Archit. News, vol.  33, no. 2, pp. 420–431, 2005.
  40. A. L.  Chiu, E. H.  Modiano, “Traffic grooming algorithms for reducing electronic multiplexing costs in WDM ring networks,” J. Lightwave Technol., vol.  18, no. 1, pp. 2–12, Jan. 2000.
    [CrossRef]

2011 (2)

J.  Chan, G.  Hendry, K.  Bergman, L. P.  Carloni, “Physical-layer modeling and system-level design of chip-scale photonic interconnection networks,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.  30, no. 10, pp. 1507–1520, Oct. 2011.
[CrossRef]

G.  Hendry, E.  Robinson, V.  Gleyzer, J.  Chan, L. P.  Carloni, N.  Bliss, K.  Bergman, “Time-division-multiplexed arbitration in silicon nanophotonic networks-on-chip for high-performance chip multiprocessors,” J. Parallel Distrib. Comput., vol.  71, no. 5, pp. 641–650, May 2011.
[CrossRef]

2010 (1)

G. J.  Whaley, R. J.  Karnopp, “Air Force highly integrated photonics program: Development and demonstration of an optically transparent fiber optic network for avionics applications,” Proc. SPIE, vol.  7700, 77000A, Apr. 2010.
[CrossRef]

2008 (1)

X.  Wang, S.  Xiao, W.  Zheng, F.  Wang, Y.  Hao, X.  Jiang, M.  Wang, J.  Yang, “Slot-based athermal silicon arrayed-waveguide grating (AWG),” Proc. SPIE, vol.  7134, 71340X, 2008.
[CrossRef]

2006 (1)

R.  Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron., vol.  12, no. 6, pp. 1678–1687, 2006.
[CrossRef]

2005 (2)

J.  Kim, W. J.  Dally, B.  Towles, A. K.  Gupta, “Microarchitecture of a high-radix router,” Comput. Archit. News, vol.  33, no. 2, pp. 420–431, 2005.

S.  Kamei, Y.  Inoue, A.  Kaneko, T.  Shibata, H.  Takahashi, “Recent progress on athermal AWG wavelength multiplexer,” Proc. SPIE, vol.  6014, 60140H, Oct. 2005.
[CrossRef]

2003 (1)

T.  Saito, K.  Nara, K.  Tanaka, Y.  Nekado, J. I.  Hasegawa, K.  Kashihara, “Temperature-insensitive (athermal) AWG modules,” Furukawa Rev., vol.  24, pp. 29–33, 2003.

2000 (2)

1997 (2)

S. B.  Tridandapani, B.  Mukherjee, “Channel sharing in multi-hop WDM lightwave networks: Realization and performance of multicast traffic,” IEEE J. Sel. Areas Commun., vol.  15, no. 3, pp. 488–500, 1997.
[CrossRef]

S.  Nishimura, H.  Inoue, S.  Hanatani, H.  Matsuoka, T.  Yokota, “Optical interconnections for the massively parallel computer,” IEEE Photon. Technol. Lett., vol.  9, no. 7, pp. 1029–1031, July 1997.
[CrossRef]

1993 (1)

R.  Chipalkatti, Z.  Zhang, A. S.  Acampora, “Protocols for optical star-coupler network using WDM: Performance and complexity study,” IEEE J. Sel. Areas Commun., vol.  11, no. 4, pp. 579–589, May 1993.
[CrossRef]

1990 (1)

M. S.  Goodman, H.  Kobrinski, M. P.  Vecchi, R. M.  Bulley, J. L.  Gimlett, “The LAMBDANET multiwavelength network: Architecture, applications, and demonstrations,” IEEE J. Sel. Areas Commun., vol.  8, no. 6, pp. 995–1004, 1990.
[CrossRef]

Acampora, A. S.

R.  Chipalkatti, Z.  Zhang, A. S.  Acampora, “Protocols for optical star-coupler network using WDM: Performance and complexity study,” IEEE J. Sel. Areas Commun., vol.  11, no. 4, pp. 579–589, May 1993.
[CrossRef]

An, Y.

J.  Zhang, Y.  An, M. S.  Berger, A. T.  Clausen, “Wavelength and fiber assignment problems on avionic networks,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 4–6 Oct. 2011, pp. 15–16.

Anderson, D. E.

D. E.  Anderson, M. W.  Beranek, “777 optical LAN technology review,” in 48th IEEE Electronic Components & Technology Conf., 1998, pp. 386–390.

Assefa, S.

S.  Assefa, S. B. G.  Lee, C. L.  Schow, W. M. J.  Green, A. V.  Rylyakov, R. A.  John, Y. A.  Vlasov, “20 Gbps receiver based on germanium photodetector hybrid-integrated with 90 nm CMOS amplifier,” in Conf. on Lasers and Electro-Optics (CLEO), 1–6 May 2011, pp. 1–2.

Attia, B.

B.  Attia, W.  Chouchene, A.  Zitouni, A.  Nourdin, R.  Tourki, “Design and implementation of low latency network interface for network on chip,” in 5th Int. Design and Test Workshop (IDT), 14–15 Dec. 2010, pp. 37–42.

Barton, J.

M.  Masanovic, L. A.  Johansson, J.  Barton, “Widely tunable optical transceiver for avionic WDM networks,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 2011, pp. 23–24.

Beranek, M. W.

D. E.  Anderson, M. W.  Beranek, “777 optical LAN technology review,” in 48th IEEE Electronic Components & Technology Conf., 1998, pp. 386–390.

Berger, M. S.

J.  Zhang, Y.  An, M. S.  Berger, A. T.  Clausen, “Wavelength and fiber assignment problems on avionic networks,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 4–6 Oct. 2011, pp. 15–16.

Bergman, K.

J.  Chan, G.  Hendry, K.  Bergman, L. P.  Carloni, “Physical-layer modeling and system-level design of chip-scale photonic interconnection networks,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.  30, no. 10, pp. 1507–1520, Oct. 2011.
[CrossRef]

G.  Hendry, E.  Robinson, V.  Gleyzer, J.  Chan, L. P.  Carloni, N.  Bliss, K.  Bergman, “Time-division-multiplexed arbitration in silicon nanophotonic networks-on-chip for high-performance chip multiprocessors,” J. Parallel Distrib. Comput., vol.  71, no. 5, pp. 641–650, May 2011.
[CrossRef]

Q.  Li, R.  Hendry, J.  Chan, K.  Bergman, M.  Glick, R.  Dutt, “Network simulation of passive optical broadcast-and-select network for avionics applications,” presented at the Government Microcircuit Applications and Critical Technology Conf. (GOMACTech-13), Las Vegas, Nov. 2013.

Q.  Li, N.  Ophir, L.  Xu, K.  Padmaraju, L.  Chen, M.  Lipson, K.  Bergman, “Experimental characterization of the optical-power upper bound in a silicon microring modulator,” in IEEE Optical Interconnects Conf., May 2012, pp. 38–39.

J.  Chan, G.  Hendry, A.  Biberman, K.  Bergman, L. P.  Carloni, “PhoenixSim: A simulator for physical-layer analysis of chip-scale photonic interconnection networks,” in Proc. Conf. on Design, Automation and Test in Europe, Mar. 2010, pp. 691–696.

Biberman, A.

J.  Chan, G.  Hendry, A.  Biberman, K.  Bergman, L. P.  Carloni, “PhoenixSim: A simulator for physical-layer analysis of chip-scale photonic interconnection networks,” in Proc. Conf. on Design, Automation and Test in Europe, Mar. 2010, pp. 691–696.

Bliss, N.

G.  Hendry, E.  Robinson, V.  Gleyzer, J.  Chan, L. P.  Carloni, N.  Bliss, K.  Bergman, “Time-division-multiplexed arbitration in silicon nanophotonic networks-on-chip for high-performance chip multiprocessors,” J. Parallel Distrib. Comput., vol.  71, no. 5, pp. 641–650, May 2011.
[CrossRef]

Bulley, R. M.

M. S.  Goodman, H.  Kobrinski, M. P.  Vecchi, R. M.  Bulley, J. L.  Gimlett, “The LAMBDANET multiwavelength network: Architecture, applications, and demonstrations,” IEEE J. Sel. Areas Commun., vol.  8, no. 6, pp. 995–1004, 1990.
[CrossRef]

Carloni, L. P.

J.  Chan, G.  Hendry, K.  Bergman, L. P.  Carloni, “Physical-layer modeling and system-level design of chip-scale photonic interconnection networks,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.  30, no. 10, pp. 1507–1520, Oct. 2011.
[CrossRef]

G.  Hendry, E.  Robinson, V.  Gleyzer, J.  Chan, L. P.  Carloni, N.  Bliss, K.  Bergman, “Time-division-multiplexed arbitration in silicon nanophotonic networks-on-chip for high-performance chip multiprocessors,” J. Parallel Distrib. Comput., vol.  71, no. 5, pp. 641–650, May 2011.
[CrossRef]

J.  Chan, G.  Hendry, A.  Biberman, K.  Bergman, L. P.  Carloni, “PhoenixSim: A simulator for physical-layer analysis of chip-scale photonic interconnection networks,” in Proc. Conf. on Design, Automation and Test in Europe, Mar. 2010, pp. 691–696.

Chan, J.

G.  Hendry, E.  Robinson, V.  Gleyzer, J.  Chan, L. P.  Carloni, N.  Bliss, K.  Bergman, “Time-division-multiplexed arbitration in silicon nanophotonic networks-on-chip for high-performance chip multiprocessors,” J. Parallel Distrib. Comput., vol.  71, no. 5, pp. 641–650, May 2011.
[CrossRef]

J.  Chan, G.  Hendry, K.  Bergman, L. P.  Carloni, “Physical-layer modeling and system-level design of chip-scale photonic interconnection networks,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.  30, no. 10, pp. 1507–1520, Oct. 2011.
[CrossRef]

Q.  Li, R.  Hendry, J.  Chan, K.  Bergman, M.  Glick, R.  Dutt, “Network simulation of passive optical broadcast-and-select network for avionics applications,” presented at the Government Microcircuit Applications and Critical Technology Conf. (GOMACTech-13), Las Vegas, Nov. 2013.

J.  Chan, G.  Hendry, A.  Biberman, K.  Bergman, L. P.  Carloni, “PhoenixSim: A simulator for physical-layer analysis of chip-scale photonic interconnection networks,” in Proc. Conf. on Design, Automation and Test in Europe, Mar. 2010, pp. 691–696.

Chen, L.

Q.  Li, N.  Ophir, L.  Xu, K.  Padmaraju, L.  Chen, M.  Lipson, K.  Bergman, “Experimental characterization of the optical-power upper bound in a silicon microring modulator,” in IEEE Optical Interconnects Conf., May 2012, pp. 38–39.

Chiarulli, D. M.

G.  Gravenstreter, R. G.  Melhem, D. M.  Chiarulli, S. P.  Levitan, J. P.  Teza, “The partitioned optical passive stars (POPS) topology,” in Proc. 9th Int. Parallel Processing Symp., 25–28 Apr. 1995, pp. 4–10.

Chipalkatti, R.

R.  Chipalkatti, Z.  Zhang, A. S.  Acampora, “Protocols for optical star-coupler network using WDM: Performance and complexity study,” IEEE J. Sel. Areas Commun., vol.  11, no. 4, pp. 579–589, May 1993.
[CrossRef]

Chiu, A. L.

Chouchene, W.

B.  Attia, W.  Chouchene, A.  Zitouni, A.  Nourdin, R.  Tourki, “Design and implementation of low latency network interface for network on chip,” in 5th Int. Design and Test Workshop (IDT), 14–15 Dec. 2010, pp. 37–42.

Clausen, A. T.

J.  Zhang, Y.  An, M. S.  Berger, A. T.  Clausen, “Wavelength and fiber assignment problems on avionic networks,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 4–6 Oct. 2011, pp. 15–16.

Coudert, D.

Dally, W. J.

J.  Kim, W. J.  Dally, B.  Towles, A. K.  Gupta, “Microarchitecture of a high-radix router,” Comput. Archit. News, vol.  33, no. 2, pp. 420–431, 2005.

L.-S.  Peh, W. J.  Dally, “A delay model and speculative architecture for pipelined routers,” in 7th Int. Symp. on High-Performance Computer Architecture (HPCA), 2001, pp. 255–266.

Desai, K. R.

K. R.  Desai, K.  Ghose, “An evaluation of communication protocols for star-coupled multidimensional WDM networks for multiprocessors,” in Proc. 2nd Int. Conf. on Massively Parallel Processing Using Optical Interconnections, 1995, pp. 42–49.

Drury, D.

D.  Drury, “Satellite optical backplane,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 2011, pp. 17–18.

Dutt, R.

Q.  Li, R.  Hendry, J.  Chan, K.  Bergman, M.  Glick, R.  Dutt, “Network simulation of passive optical broadcast-and-select network for avionics applications,” presented at the Government Microcircuit Applications and Critical Technology Conf. (GOMACTech-13), Las Vegas, Nov. 2013.

Ferreira, A.

George, A.

C.  Reardon, J.  Profumo, A.  George, “Comparative simulative analysis of WDM LANs for avionics platforms,” in IEEE Military Communications Conf., 2006.

Ghose, K.

K. R.  Desai, K.  Ghose, “An evaluation of communication protocols for star-coupled multidimensional WDM networks for multiprocessors,” in Proc. 2nd Int. Conf. on Massively Parallel Processing Using Optical Interconnections, 1995, pp. 42–49.

Gilmer, M.

Y.  Kuo, M.  Kwakernaak, X.  Sun, J.  Pescatore, M.  Gilmer, J.  Oakley, Z.  Ji, A.  Nikolov, “Integrated multi-wavelength silicon germanium high speed receivers,” in Integrated Photonics Research, Silicon and Nanophotonics (IPRSN), 2010, paper IWF3.

Gimlett, J. L.

M. S.  Goodman, H.  Kobrinski, M. P.  Vecchi, R. M.  Bulley, J. L.  Gimlett, “The LAMBDANET multiwavelength network: Architecture, applications, and demonstrations,” IEEE J. Sel. Areas Commun., vol.  8, no. 6, pp. 995–1004, 1990.
[CrossRef]

Gleyzer, V.

G.  Hendry, E.  Robinson, V.  Gleyzer, J.  Chan, L. P.  Carloni, N.  Bliss, K.  Bergman, “Time-division-multiplexed arbitration in silicon nanophotonic networks-on-chip for high-performance chip multiprocessors,” J. Parallel Distrib. Comput., vol.  71, no. 5, pp. 641–650, May 2011.
[CrossRef]

Glick, M.

Q.  Li, R.  Hendry, J.  Chan, K.  Bergman, M.  Glick, R.  Dutt, “Network simulation of passive optical broadcast-and-select network for avionics applications,” presented at the Government Microcircuit Applications and Critical Technology Conf. (GOMACTech-13), Las Vegas, Nov. 2013.

Goodman, M. S.

M. S.  Goodman, H.  Kobrinski, M. P.  Vecchi, R. M.  Bulley, J. L.  Gimlett, “The LAMBDANET multiwavelength network: Architecture, applications, and demonstrations,” IEEE J. Sel. Areas Commun., vol.  8, no. 6, pp. 995–1004, 1990.
[CrossRef]

Gravenstreter, G.

G.  Gravenstreter, R. G.  Melhem, D. M.  Chiarulli, S. P.  Levitan, J. P.  Teza, “The partitioned optical passive stars (POPS) topology,” in Proc. 9th Int. Parallel Processing Symp., 25–28 Apr. 1995, pp. 4–10.

Green, W. M. J.

S.  Assefa, S. B. G.  Lee, C. L.  Schow, W. M. J.  Green, A. V.  Rylyakov, R. A.  John, Y. A.  Vlasov, “20 Gbps receiver based on germanium photodetector hybrid-integrated with 90 nm CMOS amplifier,” in Conf. on Lasers and Electro-Optics (CLEO), 1–6 May 2011, pp. 1–2.

Grot, B.

B.  Grot, J.  Hestness, S. W.  Keckler, O.  Mutlu, “Express cube topologies for on-chip interconnects,” in IEEE 15th Int. Symp. on High Performance Computer Architecture (HPCA), 14–18 Feb. 2009, pp. 163–174.

Gupta, A. K.

J.  Kim, W. J.  Dally, B.  Towles, A. K.  Gupta, “Microarchitecture of a high-radix router,” Comput. Archit. News, vol.  33, no. 2, pp. 420–431, 2005.

Habiby, S. F.

S. F.  Habiby, M. J.  Hackert, “RONIA results: WDM-based optical networks in aircraft applications,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf., 2008, pp. 71–72.

S. F.  Habiby, R.  Vaidyanathan, “WDM optical backbone networks in aircraft applications: Networking challenges and standards progress,” in IEEE Military Communications Conf., 18–21 Oct. 2009, pp. 1–6.

Hackert, M. J.

S. F.  Habiby, M. J.  Hackert, “RONIA results: WDM-based optical networks in aircraft applications,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf., 2008, pp. 71–72.

Hanatani, S.

S.  Nishimura, H.  Inoue, S.  Hanatani, H.  Matsuoka, T.  Yokota, “Optical interconnections for the massively parallel computer,” IEEE Photon. Technol. Lett., vol.  9, no. 7, pp. 1029–1031, July 1997.
[CrossRef]

Hao, Y.

X.  Wang, S.  Xiao, W.  Zheng, F.  Wang, Y.  Hao, X.  Jiang, M.  Wang, J.  Yang, “Slot-based athermal silicon arrayed-waveguide grating (AWG),” Proc. SPIE, vol.  7134, 71340X, 2008.
[CrossRef]

Hasegawa, J. I.

T.  Saito, K.  Nara, K.  Tanaka, Y.  Nekado, J. I.  Hasegawa, K.  Kashihara, “Temperature-insensitive (athermal) AWG modules,” Furukawa Rev., vol.  24, pp. 29–33, 2003.

Hendry, G.

J.  Chan, G.  Hendry, K.  Bergman, L. P.  Carloni, “Physical-layer modeling and system-level design of chip-scale photonic interconnection networks,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.  30, no. 10, pp. 1507–1520, Oct. 2011.
[CrossRef]

G.  Hendry, E.  Robinson, V.  Gleyzer, J.  Chan, L. P.  Carloni, N.  Bliss, K.  Bergman, “Time-division-multiplexed arbitration in silicon nanophotonic networks-on-chip for high-performance chip multiprocessors,” J. Parallel Distrib. Comput., vol.  71, no. 5, pp. 641–650, May 2011.
[CrossRef]

J.  Chan, G.  Hendry, A.  Biberman, K.  Bergman, L. P.  Carloni, “PhoenixSim: A simulator for physical-layer analysis of chip-scale photonic interconnection networks,” in Proc. Conf. on Design, Automation and Test in Europe, Mar. 2010, pp. 691–696.

Hendry, R.

Q.  Li, R.  Hendry, J.  Chan, K.  Bergman, M.  Glick, R.  Dutt, “Network simulation of passive optical broadcast-and-select network for avionics applications,” presented at the Government Microcircuit Applications and Critical Technology Conf. (GOMACTech-13), Las Vegas, Nov. 2013.

Hestness, J.

B.  Grot, J.  Hestness, S. W.  Keckler, O.  Mutlu, “Express cube topologies for on-chip interconnects,” in IEEE 15th Int. Symp. on High Performance Computer Architecture (HPCA), 14–18 Feb. 2009, pp. 163–174.

Inoue, H.

S.  Nishimura, H.  Inoue, S.  Hanatani, H.  Matsuoka, T.  Yokota, “Optical interconnections for the massively parallel computer,” IEEE Photon. Technol. Lett., vol.  9, no. 7, pp. 1029–1031, July 1997.
[CrossRef]

Inoue, Y.

S.  Kamei, Y.  Inoue, A.  Kaneko, T.  Shibata, H.  Takahashi, “Recent progress on athermal AWG wavelength multiplexer,” Proc. SPIE, vol.  6014, 60140H, Oct. 2005.
[CrossRef]

Jackel, J.

J.  Jackel, “Advances in optical networking for aerospace platform applications,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 2011, pp. 5–6.

Ji, Z.

Y.  Kuo, M.  Kwakernaak, X.  Sun, J.  Pescatore, M.  Gilmer, J.  Oakley, Z.  Ji, A.  Nikolov, “Integrated multi-wavelength silicon germanium high speed receivers,” in Integrated Photonics Research, Silicon and Nanophotonics (IPRSN), 2010, paper IWF3.

Jiang, X.

X.  Wang, S.  Xiao, W.  Zheng, F.  Wang, Y.  Hao, X.  Jiang, M.  Wang, J.  Yang, “Slot-based athermal silicon arrayed-waveguide grating (AWG),” Proc. SPIE, vol.  7134, 71340X, 2008.
[CrossRef]

Johansson, L. A.

M.  Masanovic, L. A.  Johansson, J.  Barton, “Widely tunable optical transceiver for avionic WDM networks,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 2011, pp. 23–24.

John, R. A.

S.  Assefa, S. B. G.  Lee, C. L.  Schow, W. M. J.  Green, A. V.  Rylyakov, R. A.  John, Y. A.  Vlasov, “20 Gbps receiver based on germanium photodetector hybrid-integrated with 90 nm CMOS amplifier,” in Conf. on Lasers and Electro-Optics (CLEO), 1–6 May 2011, pp. 1–2.

Kamei, S.

S.  Kamei, Y.  Inoue, A.  Kaneko, T.  Shibata, H.  Takahashi, “Recent progress on athermal AWG wavelength multiplexer,” Proc. SPIE, vol.  6014, 60140H, Oct. 2005.
[CrossRef]

Kaneko, A.

S.  Kamei, Y.  Inoue, A.  Kaneko, T.  Shibata, H.  Takahashi, “Recent progress on athermal AWG wavelength multiplexer,” Proc. SPIE, vol.  6014, 60140H, Oct. 2005.
[CrossRef]

Kang, K.

M.-Y.  Nam, E.  Seo, L.  Sha, K.-J.  Park, K.  Kang, “Limiting worst-case end-to-end latency when traffic increases in a switched avionics network,” in IEEE 17th Int. Conf. on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2011, vol. 1, pp. 285–294.

Karnopp, R. J.

G. J.  Whaley, R. J.  Karnopp, “Air Force highly integrated photonics program: Development and demonstration of an optically transparent fiber optic network for avionics applications,” Proc. SPIE, vol.  7700, 77000A, Apr. 2010.
[CrossRef]

Kashihara, K.

T.  Saito, K.  Nara, K.  Tanaka, Y.  Nekado, J. I.  Hasegawa, K.  Kashihara, “Temperature-insensitive (athermal) AWG modules,” Furukawa Rev., vol.  24, pp. 29–33, 2003.

Keckler, S. W.

B.  Grot, J.  Hestness, S. W.  Keckler, O.  Mutlu, “Express cube topologies for on-chip interconnects,” in IEEE 15th Int. Symp. on High Performance Computer Architecture (HPCA), 14–18 Feb. 2009, pp. 163–174.

Kim, J.

J.  Kim, W. J.  Dally, B.  Towles, A. K.  Gupta, “Microarchitecture of a high-radix router,” Comput. Archit. News, vol.  33, no. 2, pp. 420–431, 2005.

Kobrinski, H.

M. S.  Goodman, H.  Kobrinski, M. P.  Vecchi, R. M.  Bulley, J. L.  Gimlett, “The LAMBDANET multiwavelength network: Architecture, applications, and demonstrations,” IEEE J. Sel. Areas Commun., vol.  8, no. 6, pp. 995–1004, 1990.
[CrossRef]

Kuo, Y.

Y.  Kuo, M.  Kwakernaak, X.  Sun, J.  Pescatore, M.  Gilmer, J.  Oakley, Z.  Ji, A.  Nikolov, “Integrated multi-wavelength silicon germanium high speed receivers,” in Integrated Photonics Research, Silicon and Nanophotonics (IPRSN), 2010, paper IWF3.

Kwakernaak, M.

Y.  Kuo, M.  Kwakernaak, X.  Sun, J.  Pescatore, M.  Gilmer, J.  Oakley, Z.  Ji, A.  Nikolov, “Integrated multi-wavelength silicon germanium high speed receivers,” in Integrated Photonics Research, Silicon and Nanophotonics (IPRSN), 2010, paper IWF3.

Lee, A. A. R.

A. A. R.  Lee, S. D.  Rayner, “Avionic architectures incorporating optical fibre technology,” in IEEE Conf. Avionics Fiber-Optics and Photonics, 12–14 Sept. 2006, pp. 10–11.

Lee, S. B. G.

S.  Assefa, S. B. G.  Lee, C. L.  Schow, W. M. J.  Green, A. V.  Rylyakov, R. A.  John, Y. A.  Vlasov, “20 Gbps receiver based on germanium photodetector hybrid-integrated with 90 nm CMOS amplifier,” in Conf. on Lasers and Electro-Optics (CLEO), 1–6 May 2011, pp. 1–2.

Levis, J.

J.  Levis, B.  Sutterfield, R.  Stevens, “Fiber optic communication within the F-35 mission systems,” in IEEE Conf. Avionics Fiber-Optics and Photonics, 12–14 Sept. 2006, pp. 12–13.

Levitan, S. P.

G.  Gravenstreter, R. G.  Melhem, D. M.  Chiarulli, S. P.  Levitan, J. P.  Teza, “The partitioned optical passive stars (POPS) topology,” in Proc. 9th Int. Parallel Processing Symp., 25–28 Apr. 1995, pp. 4–10.

Li, Q.

Q.  Li, N.  Ophir, L.  Xu, K.  Padmaraju, L.  Chen, M.  Lipson, K.  Bergman, “Experimental characterization of the optical-power upper bound in a silicon microring modulator,” in IEEE Optical Interconnects Conf., May 2012, pp. 38–39.

Q.  Li, R.  Hendry, J.  Chan, K.  Bergman, M.  Glick, R.  Dutt, “Network simulation of passive optical broadcast-and-select network for avionics applications,” presented at the Government Microcircuit Applications and Critical Technology Conf. (GOMACTech-13), Las Vegas, Nov. 2013.

Lipson, M.

Q.  Li, N.  Ophir, L.  Xu, K.  Padmaraju, L.  Chen, M.  Lipson, K.  Bergman, “Experimental characterization of the optical-power upper bound in a silicon microring modulator,” in IEEE Optical Interconnects Conf., May 2012, pp. 38–39.

Masanovic, M.

M.  Masanovic, L. A.  Johansson, J.  Barton, “Widely tunable optical transceiver for avionic WDM networks,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 2011, pp. 23–24.

Matsuoka, H.

S.  Nishimura, H.  Inoue, S.  Hanatani, H.  Matsuoka, T.  Yokota, “Optical interconnections for the massively parallel computer,” IEEE Photon. Technol. Lett., vol.  9, no. 7, pp. 1029–1031, July 1997.
[CrossRef]

Melhem, R. G.

G.  Gravenstreter, R. G.  Melhem, D. M.  Chiarulli, S. P.  Levitan, J. P.  Teza, “The partitioned optical passive stars (POPS) topology,” in Proc. 9th Int. Parallel Processing Symp., 25–28 Apr. 1995, pp. 4–10.

Modiano, E. H.

Mukherjee, B.

S. B.  Tridandapani, B.  Mukherjee, “Channel sharing in multi-hop WDM lightwave networks: Realization and performance of multicast traffic,” IEEE J. Sel. Areas Commun., vol.  15, no. 3, pp. 488–500, 1997.
[CrossRef]

Munoz, X.

Mutlu, O.

B.  Grot, J.  Hestness, S. W.  Keckler, O.  Mutlu, “Express cube topologies for on-chip interconnects,” in IEEE 15th Int. Symp. on High Performance Computer Architecture (HPCA), 14–18 Feb. 2009, pp. 163–174.

Nam, M.-Y.

M.-Y.  Nam, E.  Seo, L.  Sha, K.-J.  Park, K.  Kang, “Limiting worst-case end-to-end latency when traffic increases in a switched avionics network,” in IEEE 17th Int. Conf. on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2011, vol. 1, pp. 285–294.

Nara, K.

T.  Saito, K.  Nara, K.  Tanaka, Y.  Nekado, J. I.  Hasegawa, K.  Kashihara, “Temperature-insensitive (athermal) AWG modules,” Furukawa Rev., vol.  24, pp. 29–33, 2003.

Nekado, Y.

T.  Saito, K.  Nara, K.  Tanaka, Y.  Nekado, J. I.  Hasegawa, K.  Kashihara, “Temperature-insensitive (athermal) AWG modules,” Furukawa Rev., vol.  24, pp. 29–33, 2003.

Nikolov, A.

Y.  Kuo, M.  Kwakernaak, X.  Sun, J.  Pescatore, M.  Gilmer, J.  Oakley, Z.  Ji, A.  Nikolov, “Integrated multi-wavelength silicon germanium high speed receivers,” in Integrated Photonics Research, Silicon and Nanophotonics (IPRSN), 2010, paper IWF3.

Nishimura, S.

S.  Nishimura, H.  Inoue, S.  Hanatani, H.  Matsuoka, T.  Yokota, “Optical interconnections for the massively parallel computer,” IEEE Photon. Technol. Lett., vol.  9, no. 7, pp. 1029–1031, July 1997.
[CrossRef]

Nourdin, A.

B.  Attia, W.  Chouchene, A.  Zitouni, A.  Nourdin, R.  Tourki, “Design and implementation of low latency network interface for network on chip,” in 5th Int. Design and Test Workshop (IDT), 14–15 Dec. 2010, pp. 37–42.

Oakley, J.

Y.  Kuo, M.  Kwakernaak, X.  Sun, J.  Pescatore, M.  Gilmer, J.  Oakley, Z.  Ji, A.  Nikolov, “Integrated multi-wavelength silicon germanium high speed receivers,” in Integrated Photonics Research, Silicon and Nanophotonics (IPRSN), 2010, paper IWF3.

Ophir, N.

Q.  Li, N.  Ophir, L.  Xu, K.  Padmaraju, L.  Chen, M.  Lipson, K.  Bergman, “Experimental characterization of the optical-power upper bound in a silicon microring modulator,” in IEEE Optical Interconnects Conf., May 2012, pp. 38–39.

Padmaraju, K.

Q.  Li, N.  Ophir, L.  Xu, K.  Padmaraju, L.  Chen, M.  Lipson, K.  Bergman, “Experimental characterization of the optical-power upper bound in a silicon microring modulator,” in IEEE Optical Interconnects Conf., May 2012, pp. 38–39.

Park, K.-J.

M.-Y.  Nam, E.  Seo, L.  Sha, K.-J.  Park, K.  Kang, “Limiting worst-case end-to-end latency when traffic increases in a switched avionics network,” in IEEE 17th Int. Conf. on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2011, vol. 1, pp. 285–294.

Peh, L.-S.

L.-S.  Peh, W. J.  Dally, “A delay model and speculative architecture for pipelined routers,” in 7th Int. Symp. on High-Performance Computer Architecture (HPCA), 2001, pp. 255–266.

Pescatore, J.

Y.  Kuo, M.  Kwakernaak, X.  Sun, J.  Pescatore, M.  Gilmer, J.  Oakley, Z.  Ji, A.  Nikolov, “Integrated multi-wavelength silicon germanium high speed receivers,” in Integrated Photonics Research, Silicon and Nanophotonics (IPRSN), 2010, paper IWF3.

Profumo, J.

C.  Reardon, J.  Profumo, A.  George, “Comparative simulative analysis of WDM LANs for avionics platforms,” in IEEE Military Communications Conf., 2006.

Rayner, S. D.

A. A. R.  Lee, S. D.  Rayner, “Avionic architectures incorporating optical fibre technology,” in IEEE Conf. Avionics Fiber-Optics and Photonics, 12–14 Sept. 2006, pp. 10–11.

Reardon, C.

C.  Reardon, J.  Profumo, A.  George, “Comparative simulative analysis of WDM LANs for avionics platforms,” in IEEE Military Communications Conf., 2006.

Robinson, E.

G.  Hendry, E.  Robinson, V.  Gleyzer, J.  Chan, L. P.  Carloni, N.  Bliss, K.  Bergman, “Time-division-multiplexed arbitration in silicon nanophotonic networks-on-chip for high-performance chip multiprocessors,” J. Parallel Distrib. Comput., vol.  71, no. 5, pp. 641–650, May 2011.
[CrossRef]

Rylyakov, A. V.

S.  Assefa, S. B. G.  Lee, C. L.  Schow, W. M. J.  Green, A. V.  Rylyakov, R. A.  John, Y. A.  Vlasov, “20 Gbps receiver based on germanium photodetector hybrid-integrated with 90 nm CMOS amplifier,” in Conf. on Lasers and Electro-Optics (CLEO), 1–6 May 2011, pp. 1–2.

Saito, T.

T.  Saito, K.  Nara, K.  Tanaka, Y.  Nekado, J. I.  Hasegawa, K.  Kashihara, “Temperature-insensitive (athermal) AWG modules,” Furukawa Rev., vol.  24, pp. 29–33, 2003.

Schow, C. L.

S.  Assefa, S. B. G.  Lee, C. L.  Schow, W. M. J.  Green, A. V.  Rylyakov, R. A.  John, Y. A.  Vlasov, “20 Gbps receiver based on germanium photodetector hybrid-integrated with 90 nm CMOS amplifier,” in Conf. on Lasers and Electro-Optics (CLEO), 1–6 May 2011, pp. 1–2.

Seo, E.

M.-Y.  Nam, E.  Seo, L.  Sha, K.-J.  Park, K.  Kang, “Limiting worst-case end-to-end latency when traffic increases in a switched avionics network,” in IEEE 17th Int. Conf. on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2011, vol. 1, pp. 285–294.

Sha, L.

M.-Y.  Nam, E.  Seo, L.  Sha, K.-J.  Park, K.  Kang, “Limiting worst-case end-to-end latency when traffic increases in a switched avionics network,” in IEEE 17th Int. Conf. on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2011, vol. 1, pp. 285–294.

Shibata, T.

S.  Kamei, Y.  Inoue, A.  Kaneko, T.  Shibata, H.  Takahashi, “Recent progress on athermal AWG wavelength multiplexer,” Proc. SPIE, vol.  6014, 60140H, Oct. 2005.
[CrossRef]

Simmons, M.

M.  Simmons, “Ethernet theory of operation,” Microchip Technology Inc., , 2008 [Online]. Available: http://ww1.microchip.com/downloads/en/AppNotes/01120a.pdf .

Soref, R.

R.  Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron., vol.  12, no. 6, pp. 1678–1687, 2006.
[CrossRef]

Stevens, R.

J.  Levis, B.  Sutterfield, R.  Stevens, “Fiber optic communication within the F-35 mission systems,” in IEEE Conf. Avionics Fiber-Optics and Photonics, 12–14 Sept. 2006, pp. 12–13.

Sun, X.

Y.  Kuo, M.  Kwakernaak, X.  Sun, J.  Pescatore, M.  Gilmer, J.  Oakley, Z.  Ji, A.  Nikolov, “Integrated multi-wavelength silicon germanium high speed receivers,” in Integrated Photonics Research, Silicon and Nanophotonics (IPRSN), 2010, paper IWF3.

Sutterfield, B.

J.  Levis, B.  Sutterfield, R.  Stevens, “Fiber optic communication within the F-35 mission systems,” in IEEE Conf. Avionics Fiber-Optics and Photonics, 12–14 Sept. 2006, pp. 12–13.

Takahashi, H.

S.  Kamei, Y.  Inoue, A.  Kaneko, T.  Shibata, H.  Takahashi, “Recent progress on athermal AWG wavelength multiplexer,” Proc. SPIE, vol.  6014, 60140H, Oct. 2005.
[CrossRef]

Tanaka, K.

T.  Saito, K.  Nara, K.  Tanaka, Y.  Nekado, J. I.  Hasegawa, K.  Kashihara, “Temperature-insensitive (athermal) AWG modules,” Furukawa Rev., vol.  24, pp. 29–33, 2003.

Teza, J. P.

G.  Gravenstreter, R. G.  Melhem, D. M.  Chiarulli, S. P.  Levitan, J. P.  Teza, “The partitioned optical passive stars (POPS) topology,” in Proc. 9th Int. Parallel Processing Symp., 25–28 Apr. 1995, pp. 4–10.

Tourki, R.

B.  Attia, W.  Chouchene, A.  Zitouni, A.  Nourdin, R.  Tourki, “Design and implementation of low latency network interface for network on chip,” in 5th Int. Design and Test Workshop (IDT), 14–15 Dec. 2010, pp. 37–42.

Towles, B.

J.  Kim, W. J.  Dally, B.  Towles, A. K.  Gupta, “Microarchitecture of a high-radix router,” Comput. Archit. News, vol.  33, no. 2, pp. 420–431, 2005.

Tridandapani, S. B.

S. B.  Tridandapani, B.  Mukherjee, “Channel sharing in multi-hop WDM lightwave networks: Realization and performance of multicast traffic,” IEEE J. Sel. Areas Commun., vol.  15, no. 3, pp. 488–500, 1997.
[CrossRef]

Vaidyanathan, R.

S. F.  Habiby, R.  Vaidyanathan, “WDM optical backbone networks in aircraft applications: Networking challenges and standards progress,” in IEEE Military Communications Conf., 18–21 Oct. 2009, pp. 1–6.

Vecchi, M. P.

M. S.  Goodman, H.  Kobrinski, M. P.  Vecchi, R. M.  Bulley, J. L.  Gimlett, “The LAMBDANET multiwavelength network: Architecture, applications, and demonstrations,” IEEE J. Sel. Areas Commun., vol.  8, no. 6, pp. 995–1004, 1990.
[CrossRef]

Vlasov, Y. A.

S.  Assefa, S. B. G.  Lee, C. L.  Schow, W. M. J.  Green, A. V.  Rylyakov, R. A.  John, Y. A.  Vlasov, “20 Gbps receiver based on germanium photodetector hybrid-integrated with 90 nm CMOS amplifier,” in Conf. on Lasers and Electro-Optics (CLEO), 1–6 May 2011, pp. 1–2.

Wang, F.

X.  Wang, S.  Xiao, W.  Zheng, F.  Wang, Y.  Hao, X.  Jiang, M.  Wang, J.  Yang, “Slot-based athermal silicon arrayed-waveguide grating (AWG),” Proc. SPIE, vol.  7134, 71340X, 2008.
[CrossRef]

Wang, M.

X.  Wang, S.  Xiao, W.  Zheng, F.  Wang, Y.  Hao, X.  Jiang, M.  Wang, J.  Yang, “Slot-based athermal silicon arrayed-waveguide grating (AWG),” Proc. SPIE, vol.  7134, 71340X, 2008.
[CrossRef]

Wang, X.

X.  Wang, S.  Xiao, W.  Zheng, F.  Wang, Y.  Hao, X.  Jiang, M.  Wang, J.  Yang, “Slot-based athermal silicon arrayed-waveguide grating (AWG),” Proc. SPIE, vol.  7134, 71340X, 2008.
[CrossRef]

Whaley, G. J.

G. J.  Whaley, R. J.  Karnopp, “Air Force highly integrated photonics program: Development and demonstration of an optically transparent fiber optic network for avionics applications,” Proc. SPIE, vol.  7700, 77000A, Apr. 2010.
[CrossRef]

Xiao, S.

X.  Wang, S.  Xiao, W.  Zheng, F.  Wang, Y.  Hao, X.  Jiang, M.  Wang, J.  Yang, “Slot-based athermal silicon arrayed-waveguide grating (AWG),” Proc. SPIE, vol.  7134, 71340X, 2008.
[CrossRef]

Xu, L.

Q.  Li, N.  Ophir, L.  Xu, K.  Padmaraju, L.  Chen, M.  Lipson, K.  Bergman, “Experimental characterization of the optical-power upper bound in a silicon microring modulator,” in IEEE Optical Interconnects Conf., May 2012, pp. 38–39.

Yang, J.

X.  Wang, S.  Xiao, W.  Zheng, F.  Wang, Y.  Hao, X.  Jiang, M.  Wang, J.  Yang, “Slot-based athermal silicon arrayed-waveguide grating (AWG),” Proc. SPIE, vol.  7134, 71340X, 2008.
[CrossRef]

Yokota, T.

S.  Nishimura, H.  Inoue, S.  Hanatani, H.  Matsuoka, T.  Yokota, “Optical interconnections for the massively parallel computer,” IEEE Photon. Technol. Lett., vol.  9, no. 7, pp. 1029–1031, July 1997.
[CrossRef]

Zhang, J.

J.  Zhang, Y.  An, M. S.  Berger, A. T.  Clausen, “Wavelength and fiber assignment problems on avionic networks,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 4–6 Oct. 2011, pp. 15–16.

Zhang, Z.

R.  Chipalkatti, Z.  Zhang, A. S.  Acampora, “Protocols for optical star-coupler network using WDM: Performance and complexity study,” IEEE J. Sel. Areas Commun., vol.  11, no. 4, pp. 579–589, May 1993.
[CrossRef]

Zheng, W.

X.  Wang, S.  Xiao, W.  Zheng, F.  Wang, Y.  Hao, X.  Jiang, M.  Wang, J.  Yang, “Slot-based athermal silicon arrayed-waveguide grating (AWG),” Proc. SPIE, vol.  7134, 71340X, 2008.
[CrossRef]

Zitouni, A.

B.  Attia, W.  Chouchene, A.  Zitouni, A.  Nourdin, R.  Tourki, “Design and implementation of low latency network interface for network on chip,” in 5th Int. Design and Test Workshop (IDT), 14–15 Dec. 2010, pp. 37–42.

Comput. Archit. News (1)

J.  Kim, W. J.  Dally, B.  Towles, A. K.  Gupta, “Microarchitecture of a high-radix router,” Comput. Archit. News, vol.  33, no. 2, pp. 420–431, 2005.

Furukawa Rev. (1)

T.  Saito, K.  Nara, K.  Tanaka, Y.  Nekado, J. I.  Hasegawa, K.  Kashihara, “Temperature-insensitive (athermal) AWG modules,” Furukawa Rev., vol.  24, pp. 29–33, 2003.

IEEE J. Sel. Areas Commun. (3)

R.  Chipalkatti, Z.  Zhang, A. S.  Acampora, “Protocols for optical star-coupler network using WDM: Performance and complexity study,” IEEE J. Sel. Areas Commun., vol.  11, no. 4, pp. 579–589, May 1993.
[CrossRef]

S. B.  Tridandapani, B.  Mukherjee, “Channel sharing in multi-hop WDM lightwave networks: Realization and performance of multicast traffic,” IEEE J. Sel. Areas Commun., vol.  15, no. 3, pp. 488–500, 1997.
[CrossRef]

M. S.  Goodman, H.  Kobrinski, M. P.  Vecchi, R. M.  Bulley, J. L.  Gimlett, “The LAMBDANET multiwavelength network: Architecture, applications, and demonstrations,” IEEE J. Sel. Areas Commun., vol.  8, no. 6, pp. 995–1004, 1990.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R.  Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron., vol.  12, no. 6, pp. 1678–1687, 2006.
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S.  Nishimura, H.  Inoue, S.  Hanatani, H.  Matsuoka, T.  Yokota, “Optical interconnections for the massively parallel computer,” IEEE Photon. Technol. Lett., vol.  9, no. 7, pp. 1029–1031, July 1997.
[CrossRef]

IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. (1)

J.  Chan, G.  Hendry, K.  Bergman, L. P.  Carloni, “Physical-layer modeling and system-level design of chip-scale photonic interconnection networks,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.  30, no. 10, pp. 1507–1520, Oct. 2011.
[CrossRef]

J. Lightwave Technol. (2)

J. Parallel Distrib. Comput. (1)

G.  Hendry, E.  Robinson, V.  Gleyzer, J.  Chan, L. P.  Carloni, N.  Bliss, K.  Bergman, “Time-division-multiplexed arbitration in silicon nanophotonic networks-on-chip for high-performance chip multiprocessors,” J. Parallel Distrib. Comput., vol.  71, no. 5, pp. 641–650, May 2011.
[CrossRef]

Proc. SPIE (3)

S.  Kamei, Y.  Inoue, A.  Kaneko, T.  Shibata, H.  Takahashi, “Recent progress on athermal AWG wavelength multiplexer,” Proc. SPIE, vol.  6014, 60140H, Oct. 2005.
[CrossRef]

X.  Wang, S.  Xiao, W.  Zheng, F.  Wang, Y.  Hao, X.  Jiang, M.  Wang, J.  Yang, “Slot-based athermal silicon arrayed-waveguide grating (AWG),” Proc. SPIE, vol.  7134, 71340X, 2008.
[CrossRef]

G. J.  Whaley, R. J.  Karnopp, “Air Force highly integrated photonics program: Development and demonstration of an optically transparent fiber optic network for avionics applications,” Proc. SPIE, vol.  7700, 77000A, Apr. 2010.
[CrossRef]

Other (26)

J.  Levis, B.  Sutterfield, R.  Stevens, “Fiber optic communication within the F-35 mission systems,” in IEEE Conf. Avionics Fiber-Optics and Photonics, 12–14 Sept. 2006, pp. 12–13.

D. E.  Anderson, M. W.  Beranek, “777 optical LAN technology review,” in 48th IEEE Electronic Components & Technology Conf., 1998, pp. 386–390.

A. A. R.  Lee, S. D.  Rayner, “Avionic architectures incorporating optical fibre technology,” in IEEE Conf. Avionics Fiber-Optics and Photonics, 12–14 Sept. 2006, pp. 10–11.

J.  Chan, G.  Hendry, A.  Biberman, K.  Bergman, L. P.  Carloni, “PhoenixSim: A simulator for physical-layer analysis of chip-scale photonic interconnection networks,” in Proc. Conf. on Design, Automation and Test in Europe, Mar. 2010, pp. 691–696.

Demartek, “High performance fibre channel switch vs. unified port switch technology” [Online]. Available: http://www.demartek.com/Reports_Free/Demartek_Brocade_6510_FC_Switch_Latency_Evaluation_2012-09.pdf .

C.  Reardon, J.  Profumo, A.  George, “Comparative simulative analysis of WDM LANs for avionics platforms,” in IEEE Military Communications Conf., 2006.

S. F.  Habiby, R.  Vaidyanathan, “WDM optical backbone networks in aircraft applications: Networking challenges and standards progress,” in IEEE Military Communications Conf., 18–21 Oct. 2009, pp. 1–6.

J.  Jackel, “Advances in optical networking for aerospace platform applications,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 2011, pp. 5–6.

D.  Drury, “Satellite optical backplane,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 2011, pp. 17–18.

G.  Gravenstreter, R. G.  Melhem, D. M.  Chiarulli, S. P.  Levitan, J. P.  Teza, “The partitioned optical passive stars (POPS) topology,” in Proc. 9th Int. Parallel Processing Symp., 25–28 Apr. 1995, pp. 4–10.

S. F.  Habiby, M. J.  Hackert, “RONIA results: WDM-based optical networks in aircraft applications,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf., 2008, pp. 71–72.

M.-Y.  Nam, E.  Seo, L.  Sha, K.-J.  Park, K.  Kang, “Limiting worst-case end-to-end latency when traffic increases in a switched avionics network,” in IEEE 17th Int. Conf. on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2011, vol. 1, pp. 285–294.

M.  Masanovic, L. A.  Johansson, J.  Barton, “Widely tunable optical transceiver for avionic WDM networks,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 2011, pp. 23–24.

K. R.  Desai, K.  Ghose, “An evaluation of communication protocols for star-coupled multidimensional WDM networks for multiprocessors,” in Proc. 2nd Int. Conf. on Massively Parallel Processing Using Optical Interconnections, 1995, pp. 42–49.

Q.  Li, N.  Ophir, L.  Xu, K.  Padmaraju, L.  Chen, M.  Lipson, K.  Bergman, “Experimental characterization of the optical-power upper bound in a silicon microring modulator,” in IEEE Optical Interconnects Conf., May 2012, pp. 38–39.

Y.  Kuo, M.  Kwakernaak, X.  Sun, J.  Pescatore, M.  Gilmer, J.  Oakley, Z.  Ji, A.  Nikolov, “Integrated multi-wavelength silicon germanium high speed receivers,” in Integrated Photonics Research, Silicon and Nanophotonics (IPRSN), 2010, paper IWF3.

A.  Varga, “OMNeT++ discrete event simulation system” [Online]. Available: http://www.omnetpp.org .

Q.  Li, R.  Hendry, J.  Chan, K.  Bergman, M.  Glick, R.  Dutt, “Network simulation of passive optical broadcast-and-select network for avionics applications,” presented at the Government Microcircuit Applications and Critical Technology Conf. (GOMACTech-13), Las Vegas, Nov. 2013.

The F-35 Lightning II Program [Online]. Available: http://www.jsf.mil/f35/f35_variants.htm .

Boeing, “747–8 Technical Characterizations” [Online]. Available: http://www.boeing.com/boeing/commercial/747family/747-8_fact_sheet.page .

J.  Zhang, Y.  An, M. S.  Berger, A. T.  Clausen, “Wavelength and fiber assignment problems on avionic networks,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 4–6 Oct. 2011, pp. 15–16.

S.  Assefa, S. B. G.  Lee, C. L.  Schow, W. M. J.  Green, A. V.  Rylyakov, R. A.  John, Y. A.  Vlasov, “20 Gbps receiver based on germanium photodetector hybrid-integrated with 90 nm CMOS amplifier,” in Conf. on Lasers and Electro-Optics (CLEO), 1–6 May 2011, pp. 1–2.

B.  Grot, J.  Hestness, S. W.  Keckler, O.  Mutlu, “Express cube topologies for on-chip interconnects,” in IEEE 15th Int. Symp. on High Performance Computer Architecture (HPCA), 14–18 Feb. 2009, pp. 163–174.

B.  Attia, W.  Chouchene, A.  Zitouni, A.  Nourdin, R.  Tourki, “Design and implementation of low latency network interface for network on chip,” in 5th Int. Design and Test Workshop (IDT), 14–15 Dec. 2010, pp. 37–42.

M.  Simmons, “Ethernet theory of operation,” Microchip Technology Inc., , 2008 [Online]. Available: http://ww1.microchip.com/downloads/en/AppNotes/01120a.pdf .

L.-S.  Peh, W. J.  Dally, “A delay model and speculative architecture for pipelined routers,” in 7th Int. Symp. on High-Performance Computer Architecture (HPCA), 2001, pp. 255–266.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

PhoenixSim simulation hierarchy includes highly parameterized electronic and photonic device models to capture system-level effects of the physical-layer parameters.

Fig. 2.
Fig. 2.

Star-coupler-based 32-node network architecture. Each client has a transmitter unit emitting on a unique wavelength and a multichannel receiver unit with 32 photodetectors, permitting it to receive messages from all other clients.

Fig. 3.
Fig. 3.

Average latency versus network throughput of the 32-node star coupler network with different message sizes at random traffic loads and fixed simulation time (0.1 ms).

Fig. 4.
Fig. 4.

Two-star-coupler network with (a) one and (b) ten connecting nodes, showing only one direction of data flow in the connecting node. The connecting nodes can be dumb or smart. A dumb connecting node simply repeats any message received on its responsible frequencies, without attempting to interpret the message content; a smart connecting node analyzes the destination address and determines if it should be retransmitted.

Fig. 5.
Fig. 5.

Connecting node structure (showing only one direction). The dumb connecting node simply repeats any message received on its detected frequencies. For the smart connecting node, the control logic reads the incoming message header from the associated reception register and checks whether the messages should be retransmitted. Buffered messages are stored at the memory unit.

Fig. 6.
Fig. 6.

Separated (crossing traffic and local traffic) analysis of two star coupler networks with (a) one and (b) ten connecting nodes and the dumb and smart node cases. Traffic is evaluated by average message latency at each network load. Message size is set to be 2048 bits with random traffic and fixed simulation time. With proper dimensioning of connecting nodes, the cross traffic load demand can be fully satisfied.

Fig. 7.
Fig. 7.

Schematic of a ring topology connecting 64 clients using four star couplers. The transmitter wavelength assignment of each client (green) and connecting node (red) is shown.

Fig. 8.
Fig. 8.

Schematic showing the connection of five star couplers in a dimension-4 topology. Each star coupler has 15 clients and 12 connecting nodes; there are 4 links to the other star couplers, each with 3 connecting nodes. Each star coupler is able to reach any other star coupler within one hop.

Fig. 9.
Fig. 9.

Maximum number of clients T max , the upper bound and asymptotic limits for crossing traffic load ρ = 0.4 (blue, ▵) and ρ = 1 (green, ○) with ring topology as the number of star couplers increases.

Fig. 10.
Fig. 10.

Scalability comparison of dimension-N and ring topology at crossing traffic load 1 and 0.1. At full crossing traffic load, dimension-N provides better scalability; at low crossing traffic load, the ring topology supports more clients. However, the complexity of dimension-N scales with O ( N 2 ) , while the ring topology only scales with O ( N ) . Therefore trade-offs have to be made in terms of scalability, latency, and system complexity.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

T max S · W 1 + ρ S · S 2 1 4 = W ρ 4 + 1 S ρ 4 S 2 .
T asym = 4 W ρ .
ρ sd = ρ T .
ρ s = C 2 · ρ sd .
T l = { S 2 1 8 if  S is odd S ( S 1 ) 8 if S is even ,
T r = { S 2 1 8 if S is odd S ( S 1 ) 8 if S is even .
N l = T l · ρ s ,
N r = T r · ρ s .
T = C · S .
maximize T = C · S [ Eq. ( A5 ) ] subject to C + N l + N r W .
C ˜ + N ˜ l + N ˜ r = W .
ρ ˜ s = C ˜ 2 ρ T ˜ = C ˜ 2 ρ C ˜ S = C ˜ ρ S ,
N ˜ l = N ˜ r = ρ s · T l = C ˜ ρ S · S 2 1 8 .
C ˜ = { W 1 + ρ S · S 2 1 8 if  S is odd W 1 + ρ S · S 2 8 if S is even .
W C ˜ W C max C max C ˜ .
C max W 1 + ρ S · S 2 1 4 .
T max S · W 1 + ρ S · S 2 1 4 = W ρ 4 + 1 S ρ 4 S 2 .
T asym = 4 W ρ .
C · S T , C + N l + N r W .
T S ˜ = C ˜ = W 1 + ρ S ˜ · S ˜ 2 1 4 ,
S ˜ = T + T 2 ρ T ( W ρ T 4 ) 2 ( W ρ T 4 ) .
ρ sd = ρ T = ρ C S .
ρ s = C 2 · ρ sd = C ρ S ,
C + ( S 1 ) C ρ S W .
C ˜ = W ρ + 1 ρ S .
C max + ( S 1 ) C max ρ S C max + ( S 1 ) C max ρ S W = C ˜ + ( S 1 ) C ˜ ρ S .