Abstract

Optical-wireless convergence is identified as a promising solution to facilitate quality-of-service (QoS)-guaranteed, ubiquitous, and high-bandwidth access to end users. Different converged network architectures can be deployed depending on individual circumstances to achieve improved performance without compromising cost-effectiveness. However, with different network architectures, different resource allocation mechanisms are required to achieve the best performance. This is problematic in both the deployment and operational phases. In this paper, we propose an architecture discovery enabled resource allocation (ADERA) mechanism for the long term evolution (LTE)-gigabit Ethernet passive optical network (GEPON) converged network. The proposed ADERA is a self-adaptive algorithm—it discovers the underlying architecture of the network by analyzing control signals and eventually evolves into an effective resource handling mechanism for the respective architecture. In addition, ADERA leverages inherited features of both the LTE network and GEPON in conjunction with the characteristics of their frame structures to improve the overall network performance. For example, ADERA is incorporated with a near-future traffic forecasting mechanism for efficient resource allocation. Using simulations, we evaluate the performance of our proposed ADERA algorithm and compare it against other existing resource allocation mechanisms. Our results indicate that ADERA achieves improved QoS performance in the converged network irrespective of the architecture used for the deployment.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Shen, R. S. Tucker, and C.-J. Chae, “Fixed mobile convergence architectures for broadband access: Integration of EPON and WiMAX,” IEEE Commun. Mag., vol.  45, no. 8, pp. 44–50, 2007.
    [CrossRef]
  2. S. Sarkar, S. Dixit, and B. Mukherjee, “Hybrid wireless-optical broadband-access network (WOBAN): A review of relevant challenges,” J. Lightwave Technol., vol.  25, no. 11, pp. 3329–3340, 2007.
    [CrossRef]
  3. “Quality of service (QoS) concept and architecture,” .
  4. Cisco, “Architectural considerations for backhaul of 2G/3G and long term evolution networks,” White Paper, 2010.
  5. M. B. S. Sesia and I. Toufik, LTE—The UMTS Long Term Evolution: From Theory to Practice. Wiley, 2009.
  6. C. Ranaweera, E. Wong, C. Lim, and A. Nirmalathas, “Next generation optical-wireless converged network architectures,” IEEE Network, vol.  26, no. 2, pp. 22–27, 2012.
    [CrossRef]
  7. N. Nadarajah, M. Attygalle, E. Wong, and A. Nirmalathas, “Novel schemes for local area network emulation in passive optical networks with RF subcarrier multiplexed customer traffic,” J. Lightwave Technol., vol.  23, no. 10, pp. 2974–2983, 2005.
    [CrossRef]
  8. C.-J. Chae, S.-T. Lee, G.-Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett., vol.  11, no. 12, pp. 1686–1688, 1999.
    [CrossRef]
  9. Q. Wang, K.-H. Tse, L.-K. Chen, and S.-C. Liew, “Physical-layer network coding for VPN in TDM-PON,” IEEE Photon. Technol. Lett., vol.  24, no. 23, pp. 2166–2168, 2012.
    [CrossRef]
  10. M. A. Ali, G. Ellinas, H. Erkan, A. Hadjiantonis, and R. Dorsinville, “On the vision of complete fixed-mobile convergence,” J. Lightwave Technol., vol.  28, no. 16, pp. 2343–2357, 2010.
    [CrossRef]
  11. B. O. Obele, M. Iftikhar, S. Manipornsut, and K. Minho, “Analysis of the behavior of self-similar traffic in a QoS-aware architecture for integrating WiMAX and GEPON,” J. Opt. Commun. Netw., vol.  1, no. 4, pp. 259–273, 2009.
    [CrossRef]
  12. B. Jung, J. Choi, Y. Han, M. Kim, and M. Kang, “Centralized scheduling mechanism for enhanced end-to-end delay and QoS support in integrated architecture of EPON and WiMAX,” J. Lightwave Technol., vol.  28, no. 16, pp. 2277–2288, 2010.
    [CrossRef]
  13. Y. Kun, O. Shumao, K. Guild, and H.-H. Chen, “Convergence of Ethernet PON and IEEE 802.16 broadband access networks and its QoS-aware dynamic bandwidth allocation scheme,” IEEE J. Sel. Areas Commun., vol.  27, no. 2, pp. 101–116, 2009.
    [CrossRef]
  14. Y. Li, J. Wang, C. Qiao, A. Gumaste, Y. Xu, and Y. Xu, “Integrated fiber-wireless (FiWi) access networks supporting inter-ONU communications,” J. Lightwave Technol., vol.  28, no. 5, pp. 714–724, 2010.
    [CrossRef]
  15. J. R. Ferguson, M. P. McGarry, and M. Reisslein, “When are online and offline excess bandwidth distribution useful in EPONs? (Invited Paper),” in AccessNets, C. Wang, Ed., Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Berlin, Heidelberg: Springer, 2009, vol. 6, pp. 36–45.
  16. G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, 2002.
    [CrossRef]
  17. J. Zheng and H. T. Mouftah, “A survey of dynamic bandwidth allocation algorithms for Ethernet passive optical networks,” Opt. Switching Networking, vol.  6, no. 3, pp. 151–162, 2009.
    [CrossRef]
  18. E. Wong and C.-J. Chae, “Customer-controlled dynamic bandwidth allocation scheme for differentiated services in passive optical networks,” J. Opt. Netw., vol.  5, no. 7, pp. 541–553, 2006.
    [CrossRef]
  19. S. R. Sherif, A. Hadjiantonis, G. Ellinas, C. Assi, and M. A. Ali, “A novel decentralized Ethernet-based PON access architecture for provisioning differentiated QoS,” J. Lightwave Technol., vol.  22, no. 11, pp. 2483–2497, 2004.
    [CrossRef]
  20. “IEEE 802.3ah Ethernet in the First Mile Task Force,” .
  21. “IEEE 802.3av standard,” , 2009.
  22. C. Ranaweera, E. Wong, C. Lim, A. Nirmalathas, and C. Jayasundara, “An efficient resource allocation mechanism for LTE-GEPON converged networks,” J. Netw. Syst. Manag., to be published.
  23. M. S. Taqqu, W. Willinger, and R. Sherman, “Proof of a fundamental result in self-similar traffic modeling,” Comput. Commun. Rev., vol.  27, no. 2, pp. 5–23, 1997.
    [CrossRef]
  24. M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic: Evidence and possible causes,” IEEE/ACM Trans. Netw., vol.  5, no. 6, pp. 835–846, 1997.
    [CrossRef]
  25. P. Gao, T. Liu, Y. Chen, X. Wu, Y. El-khatib, and C. Edwards, “The measurement and modeling of a P2P streaming video service networks for grid applications,” in Networks for Grid Applications, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 2. Berlin, Heidelberg: Springer, 2009, pp. 24–34.
  26. Next Generation Mobile Networks Alliance, “NGMN Optimised Backhaul Requirements,” 2008 [Online]. Available: http://www.ngmn.org .
  27. I. Widjaja and H. La Roche, “Sizing X2 bandwidth for inter-connected eNBs,” in IEEE Vehicular Technology Conf. (VTC) Fall, Anchorage, Alaska, 2009.

2012 (2)

C. Ranaweera, E. Wong, C. Lim, and A. Nirmalathas, “Next generation optical-wireless converged network architectures,” IEEE Network, vol.  26, no. 2, pp. 22–27, 2012.
[CrossRef]

Q. Wang, K.-H. Tse, L.-K. Chen, and S.-C. Liew, “Physical-layer network coding for VPN in TDM-PON,” IEEE Photon. Technol. Lett., vol.  24, no. 23, pp. 2166–2168, 2012.
[CrossRef]

2010 (3)

2009 (3)

J. Zheng and H. T. Mouftah, “A survey of dynamic bandwidth allocation algorithms for Ethernet passive optical networks,” Opt. Switching Networking, vol.  6, no. 3, pp. 151–162, 2009.
[CrossRef]

Y. Kun, O. Shumao, K. Guild, and H.-H. Chen, “Convergence of Ethernet PON and IEEE 802.16 broadband access networks and its QoS-aware dynamic bandwidth allocation scheme,” IEEE J. Sel. Areas Commun., vol.  27, no. 2, pp. 101–116, 2009.
[CrossRef]

B. O. Obele, M. Iftikhar, S. Manipornsut, and K. Minho, “Analysis of the behavior of self-similar traffic in a QoS-aware architecture for integrating WiMAX and GEPON,” J. Opt. Commun. Netw., vol.  1, no. 4, pp. 259–273, 2009.
[CrossRef]

2007 (2)

G. Shen, R. S. Tucker, and C.-J. Chae, “Fixed mobile convergence architectures for broadband access: Integration of EPON and WiMAX,” IEEE Commun. Mag., vol.  45, no. 8, pp. 44–50, 2007.
[CrossRef]

S. Sarkar, S. Dixit, and B. Mukherjee, “Hybrid wireless-optical broadband-access network (WOBAN): A review of relevant challenges,” J. Lightwave Technol., vol.  25, no. 11, pp. 3329–3340, 2007.
[CrossRef]

2006 (1)

2005 (1)

2004 (1)

2002 (1)

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, 2002.
[CrossRef]

1999 (1)

C.-J. Chae, S.-T. Lee, G.-Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett., vol.  11, no. 12, pp. 1686–1688, 1999.
[CrossRef]

1997 (2)

M. S. Taqqu, W. Willinger, and R. Sherman, “Proof of a fundamental result in self-similar traffic modeling,” Comput. Commun. Rev., vol.  27, no. 2, pp. 5–23, 1997.
[CrossRef]

M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic: Evidence and possible causes,” IEEE/ACM Trans. Netw., vol.  5, no. 6, pp. 835–846, 1997.
[CrossRef]

Ali, M. A.

Assi, C.

Attygalle, M.

Bestavros, A.

M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic: Evidence and possible causes,” IEEE/ACM Trans. Netw., vol.  5, no. 6, pp. 835–846, 1997.
[CrossRef]

Chae, C.-J.

G. Shen, R. S. Tucker, and C.-J. Chae, “Fixed mobile convergence architectures for broadband access: Integration of EPON and WiMAX,” IEEE Commun. Mag., vol.  45, no. 8, pp. 44–50, 2007.
[CrossRef]

E. Wong and C.-J. Chae, “Customer-controlled dynamic bandwidth allocation scheme for differentiated services in passive optical networks,” J. Opt. Netw., vol.  5, no. 7, pp. 541–553, 2006.
[CrossRef]

C.-J. Chae, S.-T. Lee, G.-Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett., vol.  11, no. 12, pp. 1686–1688, 1999.
[CrossRef]

Chen, H.-H.

Y. Kun, O. Shumao, K. Guild, and H.-H. Chen, “Convergence of Ethernet PON and IEEE 802.16 broadband access networks and its QoS-aware dynamic bandwidth allocation scheme,” IEEE J. Sel. Areas Commun., vol.  27, no. 2, pp. 101–116, 2009.
[CrossRef]

Chen, L.-K.

Q. Wang, K.-H. Tse, L.-K. Chen, and S.-C. Liew, “Physical-layer network coding for VPN in TDM-PON,” IEEE Photon. Technol. Lett., vol.  24, no. 23, pp. 2166–2168, 2012.
[CrossRef]

Chen, Y.

P. Gao, T. Liu, Y. Chen, X. Wu, Y. El-khatib, and C. Edwards, “The measurement and modeling of a P2P streaming video service networks for grid applications,” in Networks for Grid Applications, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 2. Berlin, Heidelberg: Springer, 2009, pp. 24–34.

Choi, J.

Crovella, M. E.

M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic: Evidence and possible causes,” IEEE/ACM Trans. Netw., vol.  5, no. 6, pp. 835–846, 1997.
[CrossRef]

Dixit, S.

Dorsinville, R.

Edwards, C.

P. Gao, T. Liu, Y. Chen, X. Wu, Y. El-khatib, and C. Edwards, “The measurement and modeling of a P2P streaming video service networks for grid applications,” in Networks for Grid Applications, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 2. Berlin, Heidelberg: Springer, 2009, pp. 24–34.

El-khatib, Y.

P. Gao, T. Liu, Y. Chen, X. Wu, Y. El-khatib, and C. Edwards, “The measurement and modeling of a P2P streaming video service networks for grid applications,” in Networks for Grid Applications, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 2. Berlin, Heidelberg: Springer, 2009, pp. 24–34.

Ellinas, G.

Erkan, H.

Ferguson, J. R.

J. R. Ferguson, M. P. McGarry, and M. Reisslein, “When are online and offline excess bandwidth distribution useful in EPONs? (Invited Paper),” in AccessNets, C. Wang, Ed., Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Berlin, Heidelberg: Springer, 2009, vol. 6, pp. 36–45.

Gao, P.

P. Gao, T. Liu, Y. Chen, X. Wu, Y. El-khatib, and C. Edwards, “The measurement and modeling of a P2P streaming video service networks for grid applications,” in Networks for Grid Applications, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 2. Berlin, Heidelberg: Springer, 2009, pp. 24–34.

Guild, K.

Y. Kun, O. Shumao, K. Guild, and H.-H. Chen, “Convergence of Ethernet PON and IEEE 802.16 broadband access networks and its QoS-aware dynamic bandwidth allocation scheme,” IEEE J. Sel. Areas Commun., vol.  27, no. 2, pp. 101–116, 2009.
[CrossRef]

Gumaste, A.

Hadjiantonis, A.

Han, Y.

Iftikhar, M.

Jayasundara, C.

C. Ranaweera, E. Wong, C. Lim, A. Nirmalathas, and C. Jayasundara, “An efficient resource allocation mechanism for LTE-GEPON converged networks,” J. Netw. Syst. Manag., to be published.

Jung, B.

Kang, M.

Kim, G.-Y.

C.-J. Chae, S.-T. Lee, G.-Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett., vol.  11, no. 12, pp. 1686–1688, 1999.
[CrossRef]

Kim, M.

Kramer, G.

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, 2002.
[CrossRef]

Kun, Y.

Y. Kun, O. Shumao, K. Guild, and H.-H. Chen, “Convergence of Ethernet PON and IEEE 802.16 broadband access networks and its QoS-aware dynamic bandwidth allocation scheme,” IEEE J. Sel. Areas Commun., vol.  27, no. 2, pp. 101–116, 2009.
[CrossRef]

La Roche, H.

I. Widjaja and H. La Roche, “Sizing X2 bandwidth for inter-connected eNBs,” in IEEE Vehicular Technology Conf. (VTC) Fall, Anchorage, Alaska, 2009.

Lee, S.-T.

C.-J. Chae, S.-T. Lee, G.-Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett., vol.  11, no. 12, pp. 1686–1688, 1999.
[CrossRef]

Li, Y.

Liew, S.-C.

Q. Wang, K.-H. Tse, L.-K. Chen, and S.-C. Liew, “Physical-layer network coding for VPN in TDM-PON,” IEEE Photon. Technol. Lett., vol.  24, no. 23, pp. 2166–2168, 2012.
[CrossRef]

Lim, C.

C. Ranaweera, E. Wong, C. Lim, and A. Nirmalathas, “Next generation optical-wireless converged network architectures,” IEEE Network, vol.  26, no. 2, pp. 22–27, 2012.
[CrossRef]

C. Ranaweera, E. Wong, C. Lim, A. Nirmalathas, and C. Jayasundara, “An efficient resource allocation mechanism for LTE-GEPON converged networks,” J. Netw. Syst. Manag., to be published.

Liu, T.

P. Gao, T. Liu, Y. Chen, X. Wu, Y. El-khatib, and C. Edwards, “The measurement and modeling of a P2P streaming video service networks for grid applications,” in Networks for Grid Applications, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 2. Berlin, Heidelberg: Springer, 2009, pp. 24–34.

Manipornsut, S.

McGarry, M. P.

J. R. Ferguson, M. P. McGarry, and M. Reisslein, “When are online and offline excess bandwidth distribution useful in EPONs? (Invited Paper),” in AccessNets, C. Wang, Ed., Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Berlin, Heidelberg: Springer, 2009, vol. 6, pp. 36–45.

Minho, K.

Mouftah, H. T.

J. Zheng and H. T. Mouftah, “A survey of dynamic bandwidth allocation algorithms for Ethernet passive optical networks,” Opt. Switching Networking, vol.  6, no. 3, pp. 151–162, 2009.
[CrossRef]

Mukherjee, B.

S. Sarkar, S. Dixit, and B. Mukherjee, “Hybrid wireless-optical broadband-access network (WOBAN): A review of relevant challenges,” J. Lightwave Technol., vol.  25, no. 11, pp. 3329–3340, 2007.
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, 2002.
[CrossRef]

Nadarajah, N.

Nirmalathas, A.

C. Ranaweera, E. Wong, C. Lim, and A. Nirmalathas, “Next generation optical-wireless converged network architectures,” IEEE Network, vol.  26, no. 2, pp. 22–27, 2012.
[CrossRef]

N. Nadarajah, M. Attygalle, E. Wong, and A. Nirmalathas, “Novel schemes for local area network emulation in passive optical networks with RF subcarrier multiplexed customer traffic,” J. Lightwave Technol., vol.  23, no. 10, pp. 2974–2983, 2005.
[CrossRef]

C. Ranaweera, E. Wong, C. Lim, A. Nirmalathas, and C. Jayasundara, “An efficient resource allocation mechanism for LTE-GEPON converged networks,” J. Netw. Syst. Manag., to be published.

Obele, B. O.

Park, H.

C.-J. Chae, S.-T. Lee, G.-Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett., vol.  11, no. 12, pp. 1686–1688, 1999.
[CrossRef]

Pesavento, G.

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, 2002.
[CrossRef]

Qiao, C.

Ranaweera, C.

C. Ranaweera, E. Wong, C. Lim, and A. Nirmalathas, “Next generation optical-wireless converged network architectures,” IEEE Network, vol.  26, no. 2, pp. 22–27, 2012.
[CrossRef]

C. Ranaweera, E. Wong, C. Lim, A. Nirmalathas, and C. Jayasundara, “An efficient resource allocation mechanism for LTE-GEPON converged networks,” J. Netw. Syst. Manag., to be published.

Reisslein, M.

J. R. Ferguson, M. P. McGarry, and M. Reisslein, “When are online and offline excess bandwidth distribution useful in EPONs? (Invited Paper),” in AccessNets, C. Wang, Ed., Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Berlin, Heidelberg: Springer, 2009, vol. 6, pp. 36–45.

Sarkar, S.

Sesia, M. B. S.

M. B. S. Sesia and I. Toufik, LTE—The UMTS Long Term Evolution: From Theory to Practice. Wiley, 2009.

Shen, G.

G. Shen, R. S. Tucker, and C.-J. Chae, “Fixed mobile convergence architectures for broadband access: Integration of EPON and WiMAX,” IEEE Commun. Mag., vol.  45, no. 8, pp. 44–50, 2007.
[CrossRef]

Sherif, S. R.

Sherman, R.

M. S. Taqqu, W. Willinger, and R. Sherman, “Proof of a fundamental result in self-similar traffic modeling,” Comput. Commun. Rev., vol.  27, no. 2, pp. 5–23, 1997.
[CrossRef]

Shumao, O.

Y. Kun, O. Shumao, K. Guild, and H.-H. Chen, “Convergence of Ethernet PON and IEEE 802.16 broadband access networks and its QoS-aware dynamic bandwidth allocation scheme,” IEEE J. Sel. Areas Commun., vol.  27, no. 2, pp. 101–116, 2009.
[CrossRef]

Taqqu, M. S.

M. S. Taqqu, W. Willinger, and R. Sherman, “Proof of a fundamental result in self-similar traffic modeling,” Comput. Commun. Rev., vol.  27, no. 2, pp. 5–23, 1997.
[CrossRef]

Toufik, I.

M. B. S. Sesia and I. Toufik, LTE—The UMTS Long Term Evolution: From Theory to Practice. Wiley, 2009.

Tse, K.-H.

Q. Wang, K.-H. Tse, L.-K. Chen, and S.-C. Liew, “Physical-layer network coding for VPN in TDM-PON,” IEEE Photon. Technol. Lett., vol.  24, no. 23, pp. 2166–2168, 2012.
[CrossRef]

Tucker, R. S.

G. Shen, R. S. Tucker, and C.-J. Chae, “Fixed mobile convergence architectures for broadband access: Integration of EPON and WiMAX,” IEEE Commun. Mag., vol.  45, no. 8, pp. 44–50, 2007.
[CrossRef]

Wang, J.

Wang, Q.

Q. Wang, K.-H. Tse, L.-K. Chen, and S.-C. Liew, “Physical-layer network coding for VPN in TDM-PON,” IEEE Photon. Technol. Lett., vol.  24, no. 23, pp. 2166–2168, 2012.
[CrossRef]

Widjaja, I.

I. Widjaja and H. La Roche, “Sizing X2 bandwidth for inter-connected eNBs,” in IEEE Vehicular Technology Conf. (VTC) Fall, Anchorage, Alaska, 2009.

Willinger, W.

M. S. Taqqu, W. Willinger, and R. Sherman, “Proof of a fundamental result in self-similar traffic modeling,” Comput. Commun. Rev., vol.  27, no. 2, pp. 5–23, 1997.
[CrossRef]

Wong, E.

C. Ranaweera, E. Wong, C. Lim, and A. Nirmalathas, “Next generation optical-wireless converged network architectures,” IEEE Network, vol.  26, no. 2, pp. 22–27, 2012.
[CrossRef]

E. Wong and C.-J. Chae, “Customer-controlled dynamic bandwidth allocation scheme for differentiated services in passive optical networks,” J. Opt. Netw., vol.  5, no. 7, pp. 541–553, 2006.
[CrossRef]

N. Nadarajah, M. Attygalle, E. Wong, and A. Nirmalathas, “Novel schemes for local area network emulation in passive optical networks with RF subcarrier multiplexed customer traffic,” J. Lightwave Technol., vol.  23, no. 10, pp. 2974–2983, 2005.
[CrossRef]

C. Ranaweera, E. Wong, C. Lim, A. Nirmalathas, and C. Jayasundara, “An efficient resource allocation mechanism for LTE-GEPON converged networks,” J. Netw. Syst. Manag., to be published.

Wu, X.

P. Gao, T. Liu, Y. Chen, X. Wu, Y. El-khatib, and C. Edwards, “The measurement and modeling of a P2P streaming video service networks for grid applications,” in Networks for Grid Applications, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 2. Berlin, Heidelberg: Springer, 2009, pp. 24–34.

Xu, Y.

Zheng, J.

J. Zheng and H. T. Mouftah, “A survey of dynamic bandwidth allocation algorithms for Ethernet passive optical networks,” Opt. Switching Networking, vol.  6, no. 3, pp. 151–162, 2009.
[CrossRef]

Comput. Commun. Rev. (1)

M. S. Taqqu, W. Willinger, and R. Sherman, “Proof of a fundamental result in self-similar traffic modeling,” Comput. Commun. Rev., vol.  27, no. 2, pp. 5–23, 1997.
[CrossRef]

IEEE Commun. Mag. (2)

G. Shen, R. S. Tucker, and C.-J. Chae, “Fixed mobile convergence architectures for broadband access: Integration of EPON and WiMAX,” IEEE Commun. Mag., vol.  45, no. 8, pp. 44–50, 2007.
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, 2002.
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

Y. Kun, O. Shumao, K. Guild, and H.-H. Chen, “Convergence of Ethernet PON and IEEE 802.16 broadband access networks and its QoS-aware dynamic bandwidth allocation scheme,” IEEE J. Sel. Areas Commun., vol.  27, no. 2, pp. 101–116, 2009.
[CrossRef]

IEEE Network (1)

C. Ranaweera, E. Wong, C. Lim, and A. Nirmalathas, “Next generation optical-wireless converged network architectures,” IEEE Network, vol.  26, no. 2, pp. 22–27, 2012.
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C.-J. Chae, S.-T. Lee, G.-Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett., vol.  11, no. 12, pp. 1686–1688, 1999.
[CrossRef]

Q. Wang, K.-H. Tse, L.-K. Chen, and S.-C. Liew, “Physical-layer network coding for VPN in TDM-PON,” IEEE Photon. Technol. Lett., vol.  24, no. 23, pp. 2166–2168, 2012.
[CrossRef]

IEEE/ACM Trans. Netw. (1)

M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic: Evidence and possible causes,” IEEE/ACM Trans. Netw., vol.  5, no. 6, pp. 835–846, 1997.
[CrossRef]

J. Lightwave Technol. (6)

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (1)

Opt. Switching Networking (1)

J. Zheng and H. T. Mouftah, “A survey of dynamic bandwidth allocation algorithms for Ethernet passive optical networks,” Opt. Switching Networking, vol.  6, no. 3, pp. 151–162, 2009.
[CrossRef]

Other (10)

J. R. Ferguson, M. P. McGarry, and M. Reisslein, “When are online and offline excess bandwidth distribution useful in EPONs? (Invited Paper),” in AccessNets, C. Wang, Ed., Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Berlin, Heidelberg: Springer, 2009, vol. 6, pp. 36–45.

“Quality of service (QoS) concept and architecture,” .

Cisco, “Architectural considerations for backhaul of 2G/3G and long term evolution networks,” White Paper, 2010.

M. B. S. Sesia and I. Toufik, LTE—The UMTS Long Term Evolution: From Theory to Practice. Wiley, 2009.

“IEEE 802.3ah Ethernet in the First Mile Task Force,” .

“IEEE 802.3av standard,” , 2009.

C. Ranaweera, E. Wong, C. Lim, A. Nirmalathas, and C. Jayasundara, “An efficient resource allocation mechanism for LTE-GEPON converged networks,” J. Netw. Syst. Manag., to be published.

P. Gao, T. Liu, Y. Chen, X. Wu, Y. El-khatib, and C. Edwards, “The measurement and modeling of a P2P streaming video service networks for grid applications,” in Networks for Grid Applications, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 2. Berlin, Heidelberg: Springer, 2009, pp. 24–34.

Next Generation Mobile Networks Alliance, “NGMN Optimised Backhaul Requirements,” 2008 [Online]. Available: http://www.ngmn.org .

I. Widjaja and H. La Roche, “Sizing X2 bandwidth for inter-connected eNBs,” in IEEE Vehicular Technology Conf. (VTC) Fall, Anchorage, Alaska, 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Architecture of the LTE network. EPC, evolved packet core; S-GW, serving gateway; MME, mobility management entity; PDN-GW, packet data network gateway.

Fig. 2.
Fig. 2.

GEPON-LTE converge network architectures. PDN-GW, packet data network gateway; MME, mobility management entity; OLT, optical line terminal; ONU-eNB, integrated ONU and eNodeB; A-RN, active remote node; λU, uplink wavelength; λU, downlink wavelength; Tx, transmitter; Rx, receiver.

Fig. 3.
Fig. 3.

(a) Functionalities of the ONU-eNB and the OLT relevant to the architecture-discovering process and (b) MPCP control frame structure [21].

Fig. 4.
Fig. 4.

Uplink transmission timing diagram.

Fig. 5.
Fig. 5.

Uplink packet delay in the NGLIA for (a) GBR traffic and (b) non-GBR traffic.

Fig. 6.
Fig. 6.

Uplink packet delay in LIA for (a) GBR traffic and (b) non-GBR traffic.

Fig. 7.
Fig. 7.

Uplink packet delay in the RNIA for (a) GBR traffic and (b) non-GBR traffic.

Fig. 8.
Fig. 8.

Variation of delay in high-priority traffic traversing the X2 interface when the architecture of the converged network is (a) the NGLIA and (b) the LIA.

Fig. 9.
Fig. 9.

Delay in X2 interface traffic under RNIA for (a) intragroup traffic and (b) intergroup traffic.

Tables (2)

Tables Icon

TABLE I Reported Field Lengths

Tables Icon

TABLE II Simulation Parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Tgate=TrecTrtt,
Wi=min(Wreq,Wmax),
T˜in+1=Ti1n+1+Wi1n+1+TGuard,
Wi={LiifLiWmWm+(LiWm)j=1nLmax(WmLj,0)j=1nLmax(LjWm,0)otherwise,
Wm=(T˜1n+1(Tlast+Wlast+TGuard))/nL,