Abstract

A novel scheme to simultaneously generate an on–off keying (OOK) impulse radio ultra-wideband (IR-UWB) signal, a 60-GHz millimeter-wave (mmW) signal, and a baseband signal in the optical domain using a Sagnac loop is proposed and demonstrated. In the proposed system, a polarization beam splitter (PBS), a fiber Bragg grating (FBG), and two back-to-back connected polarization modulators (PolMs) are incorporated in the Sagnac loop. An OOK Gaussian pulse signal is modulated on a clockwise transmitted optical carrier by the first PolM and then converted to an OOK UWB impulse signal at the FBG serving as an edge filter, and the counterclockwise transmitted optical carrier is simultaneously modulated by a baseband signal and a 30-GHz mmW signal at the second PolM. By introducing a π phase shift between the clockwise and counterclockwise optical carriers, the optical carrier of the 30-GHz signal is suppressed when applied to a polarizer. As a result, a frequency-doubled mmW signal at 60 GHz is generated by beating the two first order sidebands at a photodetector. Due to the velocity mismatch between the counterclockwise light wave and the clockwise microwave carrier, the OOK signal and the baseband signal can travel through the other PolM with negligible modulation; thus no interference from another signal would be introduced. Error-free transmission of a UWB signal at 2.5 Gbps and a wired baseband signal at 2.5 and 5 Gbps over a 25-km single-mode fiber is achieved. A frequency-doubled mmW signal at 60 GHz is also obtained.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Porcino and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag., vol.  41, no. 7, pp. 66–74, July 2003.
    [CrossRef]
  2. A. Kim, Y. H. Joo, and Y. Kim, “60 GHz wireless communication systems with radio-over-fiber links for indoor wireless LANs,” IEEE Trans. Consum. Electron., vol.  50, no. 2, pp. 517–520, May 2004.
    [CrossRef]
  3. IEEE Standard for Information Technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements. Part 15.3: Wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPANs). Amendment 2: Millimeter-wave-based alternative physical layer extension, (Amendment to IEEE Std 802.15.3-2003), 2009.
  4. http://www.ecma-international.org/publications/standards/Ecma-387.htm .
  5. http://www.wirelesshd.org/about/specification-summary/ .
  6. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag., vol.  4, no. 2, pp. 36–47, June 2003.
    [CrossRef]
  7. H. Arslan, Z. N. Chen, and M. Benedetto, Ultra Wideband Wireless Communication.Hoboken, NJ: Wiley, 2006.
  8. L. Nöel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1146–1423, Aug. 1997.
    [CrossRef]
  9. P. Smulders, “Exploring the 60 GHz band for local wireless multimedia access: Prospects and future directions,” IEEE Commun. Mag., vol.  40, no. 1, pp. 140–147, Jan. 2002.
    [CrossRef]
  10. A. Alomainy, Y. Hao, C. G. Parini, and P. S. Hall, “Comparison between two different antennas for UWB on-body propagation measurements,” IEEE Antennas Wireless Propag. Lett., vol.  4, pp. 31–34, June 2005.
    [CrossRef]
  11. S. Geng, J. Kivinen, X. Zhao, and P. Vainikainen, “Millimeter-wave propagation channel characterization for short-range wireless communications,” IEEE Trans. Veh. Technol., vol.  58, no. 1, pp. 3–13, Jan. 2009.
    [CrossRef]
  12. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division multiplexed passive optical network (WDM-PON) technologies for broadband access—A review,” J. Opt. Netw., vol.  4, no. 11, pp. 737–758, Nov. 2005.
    [CrossRef]
  13. Y. C. Chung, “Recent advancement in WDM PON technology,” in 37th European Conf. on Optical Communication (ECOC), Geneva, Sept. 2011, paper TH.11.C.4.
  14. S. Pan and J. P. Yao, “Simultaneous provision of UWB and wired services in a WDM-PON network using a centralized light source,” IEEE Photon. J., vol.  2, no. 5, pp. 712–718, Oct. 2010.
    [CrossRef]
  15. S. Pan and J. P. Yao, “Provision of IR-UWB wireless and baseband wired services over a WDM-PON,” Opt. Express, vol.  19, no. 26, pp. B209–B217, Dec. 2011.
    [CrossRef]
  16. J. J. V. Olmos, T. Kuri, and K. Kitayama, “Reconfigurable radio-over-fiber networks: Multiple-access functionality directly over the optical layer,” IEEE Trans. Microwave Theory Tech., vol.  58, no. 11, pp. 3001–3010, Dec. 2010.
    [CrossRef]
  17. T. Shao, F. Paresys, Y. Le Guennec, G. Maury, N. Corrao, and B. Cabon, “Convergence of 60 GHz radio over fiber and WDM-PON using parallel phase modulation with a single Mach-Zehnder modulator,” J. Lightwave Technol., vol.  30, no. 17, pp. 2824–2831, Sept. 2012.
    [CrossRef]
  18. C. Y. Li, H. S. Su, C. H. Chang, H. H. Lu, P. Y. Wu, C. Y. Chen, and C. L. Ying, “Generation and transmission of BB/MW/MMW signals by cascading PM and MZM,” J. Lightwave Technol., vol.  30, no. 3, pp. 298–303, Feb. 2012.
    [CrossRef]
  19. C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60 GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photon. Technol. Lett., vol.  24, no. 22, pp. 1984–1987, Nov. 2012.
    [CrossRef]
  20. W. Liu, M. Wang, and J. P. Yao, “Tunable microwave and sub-terahertz generation based on frequency quadrupling using a single polarization modulator,” J. Lightwave Technol., vol.  31, no. 10, pp. 1636–1644, May 2013.
    [CrossRef]
  21. Q. Wang, J. P. Yao, and J. D. Bull, “Negative tap photonic microwave filter based on a Mach–Zehnder modulator and a tunable optical polarizer,” IEEE Photon. Technol. Lett., vol.  19, no. 21, pp. 1750–1752, Nov. 2007.
    [CrossRef]
  22. G. K. Chang, A. Chowdhury, Z. S. Jia, H. C. Chien, M. F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks,” J. Opt. Commun. Netw., vol.  1, no. 4, pp. C35–C50, Sept. 2009.
    [CrossRef]

2013

2012

2011

2010

S. Pan and J. P. Yao, “Simultaneous provision of UWB and wired services in a WDM-PON network using a centralized light source,” IEEE Photon. J., vol.  2, no. 5, pp. 712–718, Oct. 2010.
[CrossRef]

J. J. V. Olmos, T. Kuri, and K. Kitayama, “Reconfigurable radio-over-fiber networks: Multiple-access functionality directly over the optical layer,” IEEE Trans. Microwave Theory Tech., vol.  58, no. 11, pp. 3001–3010, Dec. 2010.
[CrossRef]

2009

S. Geng, J. Kivinen, X. Zhao, and P. Vainikainen, “Millimeter-wave propagation channel characterization for short-range wireless communications,” IEEE Trans. Veh. Technol., vol.  58, no. 1, pp. 3–13, Jan. 2009.
[CrossRef]

G. K. Chang, A. Chowdhury, Z. S. Jia, H. C. Chien, M. F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks,” J. Opt. Commun. Netw., vol.  1, no. 4, pp. C35–C50, Sept. 2009.
[CrossRef]

2007

Q. Wang, J. P. Yao, and J. D. Bull, “Negative tap photonic microwave filter based on a Mach–Zehnder modulator and a tunable optical polarizer,” IEEE Photon. Technol. Lett., vol.  19, no. 21, pp. 1750–1752, Nov. 2007.
[CrossRef]

2005

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division multiplexed passive optical network (WDM-PON) technologies for broadband access—A review,” J. Opt. Netw., vol.  4, no. 11, pp. 737–758, Nov. 2005.
[CrossRef]

A. Alomainy, Y. Hao, C. G. Parini, and P. S. Hall, “Comparison between two different antennas for UWB on-body propagation measurements,” IEEE Antennas Wireless Propag. Lett., vol.  4, pp. 31–34, June 2005.
[CrossRef]

2004

A. Kim, Y. H. Joo, and Y. Kim, “60 GHz wireless communication systems with radio-over-fiber links for indoor wireless LANs,” IEEE Trans. Consum. Electron., vol.  50, no. 2, pp. 517–520, May 2004.
[CrossRef]

2003

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag., vol.  4, no. 2, pp. 36–47, June 2003.
[CrossRef]

D. Porcino and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag., vol.  41, no. 7, pp. 66–74, July 2003.
[CrossRef]

2002

P. Smulders, “Exploring the 60 GHz band for local wireless multimedia access: Prospects and future directions,” IEEE Commun. Mag., vol.  40, no. 1, pp. 140–147, Jan. 2002.
[CrossRef]

1997

L. Nöel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1146–1423, Aug. 1997.
[CrossRef]

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag., vol.  4, no. 2, pp. 36–47, June 2003.
[CrossRef]

Alomainy, A.

A. Alomainy, Y. Hao, C. G. Parini, and P. S. Hall, “Comparison between two different antennas for UWB on-body propagation measurements,” IEEE Antennas Wireless Propag. Lett., vol.  4, pp. 31–34, June 2005.
[CrossRef]

Arslan, H.

H. Arslan, Z. N. Chen, and M. Benedetto, Ultra Wideband Wireless Communication.Hoboken, NJ: Wiley, 2006.

Banerjee, A.

Benedetto, M.

H. Arslan, Z. N. Chen, and M. Benedetto, Ultra Wideband Wireless Communication.Hoboken, NJ: Wiley, 2006.

Bull, J. D.

Q. Wang, J. P. Yao, and J. D. Bull, “Negative tap photonic microwave filter based on a Mach–Zehnder modulator and a tunable optical polarizer,” IEEE Photon. Technol. Lett., vol.  19, no. 21, pp. 1750–1752, Nov. 2007.
[CrossRef]

Cabon, B.

Chang, C. H.

Chang, G. K.

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60 GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photon. Technol. Lett., vol.  24, no. 22, pp. 1984–1987, Nov. 2012.
[CrossRef]

G. K. Chang, A. Chowdhury, Z. S. Jia, H. C. Chien, M. F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks,” J. Opt. Commun. Netw., vol.  1, no. 4, pp. C35–C50, Sept. 2009.
[CrossRef]

Chen, C. Y.

Chen, Z. N.

H. Arslan, Z. N. Chen, and M. Benedetto, Ultra Wideband Wireless Communication.Hoboken, NJ: Wiley, 2006.

Chien, H. C.

Chowdhury, A.

Chung, Y. C.

Y. C. Chung, “Recent advancement in WDM PON technology,” in 37th European Conf. on Optical Communication (ECOC), Geneva, Sept. 2011, paper TH.11.C.4.

Clarke, F.

Corrao, N.

Ellinas, G.

Geng, S.

S. Geng, J. Kivinen, X. Zhao, and P. Vainikainen, “Millimeter-wave propagation channel characterization for short-range wireless communications,” IEEE Trans. Veh. Technol., vol.  58, no. 1, pp. 3–13, Jan. 2009.
[CrossRef]

Hall, P. S.

A. Alomainy, Y. Hao, C. G. Parini, and P. S. Hall, “Comparison between two different antennas for UWB on-body propagation measurements,” IEEE Antennas Wireless Propag. Lett., vol.  4, pp. 31–34, June 2005.
[CrossRef]

Hao, Y.

A. Alomainy, Y. Hao, C. G. Parini, and P. S. Hall, “Comparison between two different antennas for UWB on-body propagation measurements,” IEEE Antennas Wireless Propag. Lett., vol.  4, pp. 31–34, June 2005.
[CrossRef]

He, S.

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60 GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photon. Technol. Lett., vol.  24, no. 22, pp. 1984–1987, Nov. 2012.
[CrossRef]

Hirt, W.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag., vol.  41, no. 7, pp. 66–74, July 2003.
[CrossRef]

Huang, M. F.

Jia, Z. S.

Joo, Y. H.

A. Kim, Y. H. Joo, and Y. Kim, “60 GHz wireless communication systems with radio-over-fiber links for indoor wireless LANs,” IEEE Trans. Consum. Electron., vol.  50, no. 2, pp. 517–520, May 2004.
[CrossRef]

Kim, A.

A. Kim, Y. H. Joo, and Y. Kim, “60 GHz wireless communication systems with radio-over-fiber links for indoor wireless LANs,” IEEE Trans. Consum. Electron., vol.  50, no. 2, pp. 517–520, May 2004.
[CrossRef]

Kim, K.

Kim, Y.

A. Kim, Y. H. Joo, and Y. Kim, “60 GHz wireless communication systems with radio-over-fiber links for indoor wireless LANs,” IEEE Trans. Consum. Electron., vol.  50, no. 2, pp. 517–520, May 2004.
[CrossRef]

Kitayama, K.

J. J. V. Olmos, T. Kuri, and K. Kitayama, “Reconfigurable radio-over-fiber networks: Multiple-access functionality directly over the optical layer,” IEEE Trans. Microwave Theory Tech., vol.  58, no. 11, pp. 3001–3010, Dec. 2010.
[CrossRef]

Kivinen, J.

S. Geng, J. Kivinen, X. Zhao, and P. Vainikainen, “Millimeter-wave propagation channel characterization for short-range wireless communications,” IEEE Trans. Veh. Technol., vol.  58, no. 1, pp. 3–13, Jan. 2009.
[CrossRef]

Kramer, G.

Kuri, T.

J. J. V. Olmos, T. Kuri, and K. Kitayama, “Reconfigurable radio-over-fiber networks: Multiple-access functionality directly over the optical layer,” IEEE Trans. Microwave Theory Tech., vol.  58, no. 11, pp. 3001–3010, Dec. 2010.
[CrossRef]

Le Guennec, Y.

Li, C. Y.

Liu, W.

Lu, H. H.

Marcenac, D. D.

L. Nöel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1146–1423, Aug. 1997.
[CrossRef]

Maury, G.

Moodie, D. G.

L. Nöel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1146–1423, Aug. 1997.
[CrossRef]

Mukherjee, B.

Nesset, D.

L. Nöel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1146–1423, Aug. 1997.
[CrossRef]

Nöel, L.

L. Nöel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1146–1423, Aug. 1997.
[CrossRef]

Olmos, J. J. V.

J. J. V. Olmos, T. Kuri, and K. Kitayama, “Reconfigurable radio-over-fiber networks: Multiple-access functionality directly over the optical layer,” IEEE Trans. Microwave Theory Tech., vol.  58, no. 11, pp. 3001–3010, Dec. 2010.
[CrossRef]

Pan, S.

S. Pan and J. P. Yao, “Provision of IR-UWB wireless and baseband wired services over a WDM-PON,” Opt. Express, vol.  19, no. 26, pp. B209–B217, Dec. 2011.
[CrossRef]

S. Pan and J. P. Yao, “Simultaneous provision of UWB and wired services in a WDM-PON network using a centralized light source,” IEEE Photon. J., vol.  2, no. 5, pp. 712–718, Oct. 2010.
[CrossRef]

Paresys, F.

Parini, C. G.

A. Alomainy, Y. Hao, C. G. Parini, and P. S. Hall, “Comparison between two different antennas for UWB on-body propagation measurements,” IEEE Antennas Wireless Propag. Lett., vol.  4, pp. 31–34, June 2005.
[CrossRef]

Park, Y.

Porcino, D.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag., vol.  41, no. 7, pp. 66–74, July 2003.
[CrossRef]

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag., vol.  4, no. 2, pp. 36–47, June 2003.
[CrossRef]

Shao, T.

Smulders, P.

P. Smulders, “Exploring the 60 GHz band for local wireless multimedia access: Prospects and future directions,” IEEE Commun. Mag., vol.  40, no. 1, pp. 140–147, Jan. 2002.
[CrossRef]

Song, H.

Su, H. S.

Vainikainen, P.

S. Geng, J. Kivinen, X. Zhao, and P. Vainikainen, “Millimeter-wave propagation channel characterization for short-range wireless communications,” IEEE Trans. Veh. Technol., vol.  58, no. 1, pp. 3–13, Jan. 2009.
[CrossRef]

Wake, D.

L. Nöel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1146–1423, Aug. 1997.
[CrossRef]

Wang, M.

Wang, Q.

Q. Wang, J. P. Yao, and J. D. Bull, “Negative tap photonic microwave filter based on a Mach–Zehnder modulator and a tunable optical polarizer,” IEEE Photon. Technol. Lett., vol.  19, no. 21, pp. 1750–1752, Nov. 2007.
[CrossRef]

Westbrook, L. D.

L. Nöel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1146–1423, Aug. 1997.
[CrossRef]

Wu, P. Y.

Yang, S.

Yao, J. P.

W. Liu, M. Wang, and J. P. Yao, “Tunable microwave and sub-terahertz generation based on frequency quadrupling using a single polarization modulator,” J. Lightwave Technol., vol.  31, no. 10, pp. 1636–1644, May 2013.
[CrossRef]

S. Pan and J. P. Yao, “Provision of IR-UWB wireless and baseband wired services over a WDM-PON,” Opt. Express, vol.  19, no. 26, pp. B209–B217, Dec. 2011.
[CrossRef]

S. Pan and J. P. Yao, “Simultaneous provision of UWB and wired services in a WDM-PON network using a centralized light source,” IEEE Photon. J., vol.  2, no. 5, pp. 712–718, Oct. 2010.
[CrossRef]

Q. Wang, J. P. Yao, and J. D. Bull, “Negative tap photonic microwave filter based on a Mach–Zehnder modulator and a tunable optical polarizer,” IEEE Photon. Technol. Lett., vol.  19, no. 21, pp. 1750–1752, Nov. 2007.
[CrossRef]

Ye, C.

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60 GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photon. Technol. Lett., vol.  24, no. 22, pp. 1984–1987, Nov. 2012.
[CrossRef]

Ying, C. L.

Yu, J.

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60 GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photon. Technol. Lett., vol.  24, no. 22, pp. 1984–1987, Nov. 2012.
[CrossRef]

G. K. Chang, A. Chowdhury, Z. S. Jia, H. C. Chien, M. F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks,” J. Opt. Commun. Netw., vol.  1, no. 4, pp. C35–C50, Sept. 2009.
[CrossRef]

Zhang, L.

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60 GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photon. Technol. Lett., vol.  24, no. 22, pp. 1984–1987, Nov. 2012.
[CrossRef]

Zhao, X.

S. Geng, J. Kivinen, X. Zhao, and P. Vainikainen, “Millimeter-wave propagation channel characterization for short-range wireless communications,” IEEE Trans. Veh. Technol., vol.  58, no. 1, pp. 3–13, Jan. 2009.
[CrossRef]

Zhu, M.

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60 GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photon. Technol. Lett., vol.  24, no. 22, pp. 1984–1987, Nov. 2012.
[CrossRef]

IEEE Antennas Wireless Propag. Lett.

A. Alomainy, Y. Hao, C. G. Parini, and P. S. Hall, “Comparison between two different antennas for UWB on-body propagation measurements,” IEEE Antennas Wireless Propag. Lett., vol.  4, pp. 31–34, June 2005.
[CrossRef]

IEEE Commun. Mag.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag., vol.  41, no. 7, pp. 66–74, July 2003.
[CrossRef]

P. Smulders, “Exploring the 60 GHz band for local wireless multimedia access: Prospects and future directions,” IEEE Commun. Mag., vol.  40, no. 1, pp. 140–147, Jan. 2002.
[CrossRef]

IEEE Microw. Mag.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag., vol.  4, no. 2, pp. 36–47, June 2003.
[CrossRef]

IEEE Photon. J.

S. Pan and J. P. Yao, “Simultaneous provision of UWB and wired services in a WDM-PON network using a centralized light source,” IEEE Photon. J., vol.  2, no. 5, pp. 712–718, Oct. 2010.
[CrossRef]

IEEE Photon. Technol. Lett.

C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60 GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photon. Technol. Lett., vol.  24, no. 22, pp. 1984–1987, Nov. 2012.
[CrossRef]

Q. Wang, J. P. Yao, and J. D. Bull, “Negative tap photonic microwave filter based on a Mach–Zehnder modulator and a tunable optical polarizer,” IEEE Photon. Technol. Lett., vol.  19, no. 21, pp. 1750–1752, Nov. 2007.
[CrossRef]

IEEE Trans. Consum. Electron.

A. Kim, Y. H. Joo, and Y. Kim, “60 GHz wireless communication systems with radio-over-fiber links for indoor wireless LANs,” IEEE Trans. Consum. Electron., vol.  50, no. 2, pp. 517–520, May 2004.
[CrossRef]

IEEE Trans. Microwave Theory Tech.

L. Nöel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1146–1423, Aug. 1997.
[CrossRef]

J. J. V. Olmos, T. Kuri, and K. Kitayama, “Reconfigurable radio-over-fiber networks: Multiple-access functionality directly over the optical layer,” IEEE Trans. Microwave Theory Tech., vol.  58, no. 11, pp. 3001–3010, Dec. 2010.
[CrossRef]

IEEE Trans. Veh. Technol.

S. Geng, J. Kivinen, X. Zhao, and P. Vainikainen, “Millimeter-wave propagation channel characterization for short-range wireless communications,” IEEE Trans. Veh. Technol., vol.  58, no. 1, pp. 3–13, Jan. 2009.
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Netw.

J. Opt. Netw.

Opt. Express

Other

Y. C. Chung, “Recent advancement in WDM PON technology,” in 37th European Conf. on Optical Communication (ECOC), Geneva, Sept. 2011, paper TH.11.C.4.

H. Arslan, Z. N. Chen, and M. Benedetto, Ultra Wideband Wireless Communication.Hoboken, NJ: Wiley, 2006.

IEEE Standard for Information Technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements. Part 15.3: Wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPANs). Amendment 2: Millimeter-wave-based alternative physical layer extension, (Amendment to IEEE Std 802.15.3-2003), 2009.

http://www.ecma-international.org/publications/standards/Ecma-387.htm .

http://www.wirelesshd.org/about/specification-summary/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

UWB and 60 GHz over WDM-PON architecture. LD, laser diode; OLT, optical line terminal; MUX, WDM multiplexer; RAN, remote access node; DEMUX, WDM demultiplexer.

Fig. 2.
Fig. 2.

Experimental setup for the simultaneous generation and transmission of a UWB, mmW, and baseband signal over a SMF. CS, central office; EDFA, erbium-doped fiber amplifier; BS, base station; BERT, bit error rate tester; AMP, amplifier.

Fig. 3.
Fig. 3.

Experiment results. (a) The optical spectrum of the carrier suppressed 30-GHz signal measured at the output of the polarizer. (b) Electrical spectrum of the generated 60-GHz signal at the output of AMP3. The inset shows a zoom-in view of the spectrum of the 60-GHz signal.

Fig. 4.
Fig. 4.

Experiment results. (a) Eye diagram of the Gaussian pulse signal at 2.5 Gbps. (b) Optical spectrum of the CW carrier and the transmission spectrum of the FBG. (c) Eye diagram of the generated UWB monocycle impulse signal at the transmitter. (d) Electrical spectrum of the generated UWB pulse.

Fig. 5.
Fig. 5.

Eye diagrams of the UWB monocycle impulse signal (a) after transmission over a 25-km SMF link with a baseband signal at 5 Gbps and (b) received at a receiving UWB antenna.

Fig. 6.
Fig. 6.

BER measurements of the 2.5-Gbps UWB signal at the receiving antenna.

Fig. 7.
Fig. 7.

BER measurements of the baseband signal with or without a UWB or a 60-GHz signal. (a) Baseband data rate is 2.5 Gbps. (b) Baseband data rate is 5 Gbps.

Tables (1)

Tables Icon

TABLE I Receiver Sensitivities for Baseband Transmissiona