Abstract

Recently, flexible bandwidth allocation has been proposed in an orthogonal frequency division multiplexing based elastic optical network, which is a promising technology for 100G and beyond optical networks. In this paper, for the first time we introduce flexible bandwidth to an optical burst switching (OBS) ring network and propose a novel bandwidth-variable OBS (BV-OBS) ring network. In the proposed BV-OBS ring network, the durations of bursts are fixed to one timeslot in the time domain, while the bandwidths are variable in the frequency domain according to the burst size. With fixed burst duration and variable bandwidth, the BV-OBS ring can achieve the state of being collision free with high bandwidth efficiency. Simulation results show that a BV-OBS ring network outperforms previous OBS rings proposed in wavelength division multiplexing networks in both network throughput and end-to-end delay.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Qiao and M. S. Yoo, “Optical burst switching (OBS)—A new paradigm for an optical Internet,” J. High Speed Netw., vol.  8, pp. 69–84, 1999.
  2. M. Yoo and C. Qiao, “Just-enough-time (JET): A high speed protocol for bursty traffic in optical networks,” in IEEE/LEOS Technologies for a Global Information Infrastructure, 1997, pp. 26–27.
  3. J. Y. Wei and R. I. McFarland, “Just-in-time signaling for WDM optical burst switching networks,” J. Lightwave Technol., vol.  18, pp. 2019–2037, Dec. 2000.
    [CrossRef]
  4. L.-M. Peng and Y.-C. Kim, “Investigation of the design of MAC protocols for TT-TR-based WDM burst-switched ring networks,” J. Opt. Commun. Netw., vol.  1, pp. A25–A34, 2009.
  5. N. Deng, Q. Xue, M. Li, A. Lord, P. Willis, S. Cao, and Z. Feng, “Network modelling and techno-economic analysis of optical burst ring for metropolitan applications,” in Proc. European Conf. and Exhibition on Optical Communication (ECOC), Amsterdam, The Netherlands, 2012, paper P5.07.
  6. C. Li, N. Deng, M. Li, Q. Xue, and P. Wai, “Performance analysis and experimental demonstration of a novel network architecture using optical burst rings for interpod communications in data centers,” IEEE J. Sel. Top. Quantum Electron., vol.  19, no. 2, 3700508, 2012.
  7. L. M. Peng, C. H. Youn, W. Tang, and C. M. Qiao, “A novel approach to optical switching for intradatacenter networking,” J. Lightwave Technol., vol.  30, no. 2, pp. 252–266, Jan. 2012.
    [CrossRef]
  8. N. Deng, Q. Xue, M. Li, G. Gong, and C. Qiao, “An optical multi-ring burst network for a data center,” in Optical Fiber Communication Conf. (OFC), Anaheim, CA, 2013, paper OTh1A.5.
  9. L. Xu, H. G. Perros, and G. N. Rouskas, “A simulation study of optical burst switching and access protocols for WDM ring networks,” Comput. Netw., vol.  41, no. 2, pp. 143–160, Feb. 2003.
    [CrossRef]
  10. Y. Arakawa, N. Yamanaka, and I. Sasase, “Optical burst switched ring network with upstream prioritized switching and distributed fairness control,” Electron. Commun. Jpn., vol.  90, pp. 30–39, 2007.
  11. J. P. Park and M. S. Lee, “Simultaneous burst and burst control packet transmission protocol for optical burst switching ring networks,” ETRI J., vol.  29, pp. 116–119, 2007.
    [CrossRef]
  12. A. Fumagalli and P. Krishnamoorthy, “A low-latency and bandwidth-efficient distributed optical burst switching architecture for metro ring,” in Proc. ICC, Alaska, May 2003, vol. 2, pp. 1340–1344.
  13. H.-T. Lin and W.-R. Chang, “CORNet: A scalable and bandwidth-efficient optical burst switching ring architecture for metro area networks,” in Proc. of 2006 Int. Conf. on Networking and Services, California, July 2006.
  14. J. Triay and C. Cervello-Pastor, “Distributed contention avoidance in optical burst-switched ring networks,” in Proc. of 11th IEEE Int. Conf. on Communication Systems (ICCS), Singapore, 2008, pp. 715–720.
  15. A. Ge, F. Callegati, and L. S. Tamil, “On optical burst switching and self-similar traffic,” IEEE Commun. Lett., vol.  4, pp. 98–100, Mar. 2000.
    [CrossRef]
  16. V. M. Vokkarane, K. Haridoss, and J. P. Jue, “Threshold-based burst assembly policies for QoS support in optical burst-switched networks,” in Proc. SPIE, vol.  4874, pp. 125–136, July 2002.
  17. S. Oh, H. H. Hong, and M. Kang, “A data burst assembly algorithm in optical burst switching networks,” ETRI J., vol.  24, no. 4, pp. 311–322, 2002.
    [CrossRef]
  18. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol., vol.  27, pp. 189–204, 2009.
    [CrossRef]
  19. C. Zhao, Y. Chen, S. Zhang, J. Li, F. Zhang, L. Zhu, and Z. Chen, “Experimental demonstration of 1.08  Tb/s PDM CO-SCFDM transmission over 3170 km SSMF,” Opt. Express, vol.  20, no. 2, pp. 787–793, 2012.
    [CrossRef]
  20. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, pp. 66–73, 2009.
  21. S. Thiagarajan, M. Frankel, and D. Boertjes, “Spectrum efficient super-channels in dynamic flexible grid networks—A blocking analysis,” in Optical Fiber Communication Conf. (OFC), Los Angeles, CA, 2011, paper OTuI6.
  22. A. Castro, L. Velasco, M. Ruiz, M. A. Klinkowski, J. P. Fernández-Palacios, and D. Careglio, “Dynamic routing and spectrum (re)allocation in future flexgrid optical networks,” Comput. Netw., vol.  56, pp. 2869–2883, 2012.
    [CrossRef]
  23. Y. Yin, K. Wen, D. J. Geisler, R. Liu, and S. Yoo, “Dynamic on-demand defragmentation in flexible bandwidth elastic optical networks,” Opt. Express, vol.  20, pp. 1798–1804, 2012.
    [CrossRef]
  24. R. Dischler, F. Buchali, and A. Klekamp, “Demonstration of bit rate variable ROADM functionality on an optical OFDM superchannel,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, Mar. 2010, paper OTuM7.
  25. Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM functionality on an optical SCFDM superchannel,” IEEE Photon. Technol. Lett., vol.  24, pp. 215–217, 2012.
  26. Y. Qi, T. Yan, M. Yiran, and W. Shieh, “Experimental demonstration and numerical simulation of 107  Gb/s high spectral efficiency coherent optical OFDM,” J. Lightwave Technol., vol.  27, pp. 168–176, 2009.
    [CrossRef]
  27. T. Omiya, M. Yoshida, and M. Nakazawa, “400  Gbit/s 256 QAM-OFDM transmission over 720 km with a 14  bit/s/Hz spectral efficiency by using high-resolution FDE,” Opt. Express, vol.  21, no. 3, pp. 2632–2641, 2013.
    [CrossRef]

2013 (1)

2012 (6)

C. Li, N. Deng, M. Li, Q. Xue, and P. Wai, “Performance analysis and experimental demonstration of a novel network architecture using optical burst rings for interpod communications in data centers,” IEEE J. Sel. Top. Quantum Electron., vol.  19, no. 2, 3700508, 2012.

L. M. Peng, C. H. Youn, W. Tang, and C. M. Qiao, “A novel approach to optical switching for intradatacenter networking,” J. Lightwave Technol., vol.  30, no. 2, pp. 252–266, Jan. 2012.
[CrossRef]

C. Zhao, Y. Chen, S. Zhang, J. Li, F. Zhang, L. Zhu, and Z. Chen, “Experimental demonstration of 1.08  Tb/s PDM CO-SCFDM transmission over 3170 km SSMF,” Opt. Express, vol.  20, no. 2, pp. 787–793, 2012.
[CrossRef]

A. Castro, L. Velasco, M. Ruiz, M. A. Klinkowski, J. P. Fernández-Palacios, and D. Careglio, “Dynamic routing and spectrum (re)allocation in future flexgrid optical networks,” Comput. Netw., vol.  56, pp. 2869–2883, 2012.
[CrossRef]

Y. Yin, K. Wen, D. J. Geisler, R. Liu, and S. Yoo, “Dynamic on-demand defragmentation in flexible bandwidth elastic optical networks,” Opt. Express, vol.  20, pp. 1798–1804, 2012.
[CrossRef]

Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM functionality on an optical SCFDM superchannel,” IEEE Photon. Technol. Lett., vol.  24, pp. 215–217, 2012.

2009 (4)

2007 (2)

Y. Arakawa, N. Yamanaka, and I. Sasase, “Optical burst switched ring network with upstream prioritized switching and distributed fairness control,” Electron. Commun. Jpn., vol.  90, pp. 30–39, 2007.

J. P. Park and M. S. Lee, “Simultaneous burst and burst control packet transmission protocol for optical burst switching ring networks,” ETRI J., vol.  29, pp. 116–119, 2007.
[CrossRef]

2003 (1)

L. Xu, H. G. Perros, and G. N. Rouskas, “A simulation study of optical burst switching and access protocols for WDM ring networks,” Comput. Netw., vol.  41, no. 2, pp. 143–160, Feb. 2003.
[CrossRef]

2002 (2)

V. M. Vokkarane, K. Haridoss, and J. P. Jue, “Threshold-based burst assembly policies for QoS support in optical burst-switched networks,” in Proc. SPIE, vol.  4874, pp. 125–136, July 2002.

S. Oh, H. H. Hong, and M. Kang, “A data burst assembly algorithm in optical burst switching networks,” ETRI J., vol.  24, no. 4, pp. 311–322, 2002.
[CrossRef]

2000 (2)

A. Ge, F. Callegati, and L. S. Tamil, “On optical burst switching and self-similar traffic,” IEEE Commun. Lett., vol.  4, pp. 98–100, Mar. 2000.
[CrossRef]

J. Y. Wei and R. I. McFarland, “Just-in-time signaling for WDM optical burst switching networks,” J. Lightwave Technol., vol.  18, pp. 2019–2037, Dec. 2000.
[CrossRef]

1999 (1)

C. M. Qiao and M. S. Yoo, “Optical burst switching (OBS)—A new paradigm for an optical Internet,” J. High Speed Netw., vol.  8, pp. 69–84, 1999.

Arakawa, Y.

Y. Arakawa, N. Yamanaka, and I. Sasase, “Optical burst switched ring network with upstream prioritized switching and distributed fairness control,” Electron. Commun. Jpn., vol.  90, pp. 30–39, 2007.

Armstrong, J.

Boertjes, D.

S. Thiagarajan, M. Frankel, and D. Boertjes, “Spectrum efficient super-channels in dynamic flexible grid networks—A blocking analysis,” in Optical Fiber Communication Conf. (OFC), Los Angeles, CA, 2011, paper OTuI6.

Buchali, F.

R. Dischler, F. Buchali, and A. Klekamp, “Demonstration of bit rate variable ROADM functionality on an optical OFDM superchannel,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, Mar. 2010, paper OTuM7.

Callegati, F.

A. Ge, F. Callegati, and L. S. Tamil, “On optical burst switching and self-similar traffic,” IEEE Commun. Lett., vol.  4, pp. 98–100, Mar. 2000.
[CrossRef]

Cao, S.

N. Deng, Q. Xue, M. Li, A. Lord, P. Willis, S. Cao, and Z. Feng, “Network modelling and techno-economic analysis of optical burst ring for metropolitan applications,” in Proc. European Conf. and Exhibition on Optical Communication (ECOC), Amsterdam, The Netherlands, 2012, paper P5.07.

Careglio, D.

A. Castro, L. Velasco, M. Ruiz, M. A. Klinkowski, J. P. Fernández-Palacios, and D. Careglio, “Dynamic routing and spectrum (re)allocation in future flexgrid optical networks,” Comput. Netw., vol.  56, pp. 2869–2883, 2012.
[CrossRef]

Castro, A.

A. Castro, L. Velasco, M. Ruiz, M. A. Klinkowski, J. P. Fernández-Palacios, and D. Careglio, “Dynamic routing and spectrum (re)allocation in future flexgrid optical networks,” Comput. Netw., vol.  56, pp. 2869–2883, 2012.
[CrossRef]

Cervello-Pastor, C.

J. Triay and C. Cervello-Pastor, “Distributed contention avoidance in optical burst-switched ring networks,” in Proc. of 11th IEEE Int. Conf. on Communication Systems (ICCS), Singapore, 2008, pp. 715–720.

Chang, W.-R.

H.-T. Lin and W.-R. Chang, “CORNet: A scalable and bandwidth-efficient optical burst switching ring architecture for metro area networks,” in Proc. of 2006 Int. Conf. on Networking and Services, California, July 2006.

Chen, Y.

C. Zhao, Y. Chen, S. Zhang, J. Li, F. Zhang, L. Zhu, and Z. Chen, “Experimental demonstration of 1.08  Tb/s PDM CO-SCFDM transmission over 3170 km SSMF,” Opt. Express, vol.  20, no. 2, pp. 787–793, 2012.
[CrossRef]

Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM functionality on an optical SCFDM superchannel,” IEEE Photon. Technol. Lett., vol.  24, pp. 215–217, 2012.

Chen, Z.

Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM functionality on an optical SCFDM superchannel,” IEEE Photon. Technol. Lett., vol.  24, pp. 215–217, 2012.

C. Zhao, Y. Chen, S. Zhang, J. Li, F. Zhang, L. Zhu, and Z. Chen, “Experimental demonstration of 1.08  Tb/s PDM CO-SCFDM transmission over 3170 km SSMF,” Opt. Express, vol.  20, no. 2, pp. 787–793, 2012.
[CrossRef]

Deng, N.

C. Li, N. Deng, M. Li, Q. Xue, and P. Wai, “Performance analysis and experimental demonstration of a novel network architecture using optical burst rings for interpod communications in data centers,” IEEE J. Sel. Top. Quantum Electron., vol.  19, no. 2, 3700508, 2012.

N. Deng, Q. Xue, M. Li, A. Lord, P. Willis, S. Cao, and Z. Feng, “Network modelling and techno-economic analysis of optical burst ring for metropolitan applications,” in Proc. European Conf. and Exhibition on Optical Communication (ECOC), Amsterdam, The Netherlands, 2012, paper P5.07.

N. Deng, Q. Xue, M. Li, G. Gong, and C. Qiao, “An optical multi-ring burst network for a data center,” in Optical Fiber Communication Conf. (OFC), Anaheim, CA, 2013, paper OTh1A.5.

Dischler, R.

R. Dischler, F. Buchali, and A. Klekamp, “Demonstration of bit rate variable ROADM functionality on an optical OFDM superchannel,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, Mar. 2010, paper OTuM7.

Feng, Z.

N. Deng, Q. Xue, M. Li, A. Lord, P. Willis, S. Cao, and Z. Feng, “Network modelling and techno-economic analysis of optical burst ring for metropolitan applications,” in Proc. European Conf. and Exhibition on Optical Communication (ECOC), Amsterdam, The Netherlands, 2012, paper P5.07.

Fernández-Palacios, J. P.

A. Castro, L. Velasco, M. Ruiz, M. A. Klinkowski, J. P. Fernández-Palacios, and D. Careglio, “Dynamic routing and spectrum (re)allocation in future flexgrid optical networks,” Comput. Netw., vol.  56, pp. 2869–2883, 2012.
[CrossRef]

Frankel, M.

S. Thiagarajan, M. Frankel, and D. Boertjes, “Spectrum efficient super-channels in dynamic flexible grid networks—A blocking analysis,” in Optical Fiber Communication Conf. (OFC), Los Angeles, CA, 2011, paper OTuI6.

Fumagalli, A.

A. Fumagalli and P. Krishnamoorthy, “A low-latency and bandwidth-efficient distributed optical burst switching architecture for metro ring,” in Proc. ICC, Alaska, May 2003, vol. 2, pp. 1340–1344.

Ge, A.

A. Ge, F. Callegati, and L. S. Tamil, “On optical burst switching and self-similar traffic,” IEEE Commun. Lett., vol.  4, pp. 98–100, Mar. 2000.
[CrossRef]

Geisler, D. J.

Gong, G.

N. Deng, Q. Xue, M. Li, G. Gong, and C. Qiao, “An optical multi-ring burst network for a data center,” in Optical Fiber Communication Conf. (OFC), Anaheim, CA, 2013, paper OTh1A.5.

Haridoss, K.

V. M. Vokkarane, K. Haridoss, and J. P. Jue, “Threshold-based burst assembly policies for QoS support in optical burst-switched networks,” in Proc. SPIE, vol.  4874, pp. 125–136, July 2002.

He, Y.

Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM functionality on an optical SCFDM superchannel,” IEEE Photon. Technol. Lett., vol.  24, pp. 215–217, 2012.

Hong, H. H.

S. Oh, H. H. Hong, and M. Kang, “A data burst assembly algorithm in optical burst switching networks,” ETRI J., vol.  24, no. 4, pp. 311–322, 2002.
[CrossRef]

Jinno, M.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, pp. 66–73, 2009.

Jue, J. P.

V. M. Vokkarane, K. Haridoss, and J. P. Jue, “Threshold-based burst assembly policies for QoS support in optical burst-switched networks,” in Proc. SPIE, vol.  4874, pp. 125–136, July 2002.

Kang, M.

S. Oh, H. H. Hong, and M. Kang, “A data burst assembly algorithm in optical burst switching networks,” ETRI J., vol.  24, no. 4, pp. 311–322, 2002.
[CrossRef]

Kim, Y.-C.

Klekamp, A.

R. Dischler, F. Buchali, and A. Klekamp, “Demonstration of bit rate variable ROADM functionality on an optical OFDM superchannel,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, Mar. 2010, paper OTuM7.

Klinkowski, M. A.

A. Castro, L. Velasco, M. Ruiz, M. A. Klinkowski, J. P. Fernández-Palacios, and D. Careglio, “Dynamic routing and spectrum (re)allocation in future flexgrid optical networks,” Comput. Netw., vol.  56, pp. 2869–2883, 2012.
[CrossRef]

Kozicki, B.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, pp. 66–73, 2009.

Krishnamoorthy, P.

A. Fumagalli and P. Krishnamoorthy, “A low-latency and bandwidth-efficient distributed optical burst switching architecture for metro ring,” in Proc. ICC, Alaska, May 2003, vol. 2, pp. 1340–1344.

Lee, M. S.

J. P. Park and M. S. Lee, “Simultaneous burst and burst control packet transmission protocol for optical burst switching ring networks,” ETRI J., vol.  29, pp. 116–119, 2007.
[CrossRef]

Li, C.

C. Li, N. Deng, M. Li, Q. Xue, and P. Wai, “Performance analysis and experimental demonstration of a novel network architecture using optical burst rings for interpod communications in data centers,” IEEE J. Sel. Top. Quantum Electron., vol.  19, no. 2, 3700508, 2012.

Li, J.

C. Zhao, Y. Chen, S. Zhang, J. Li, F. Zhang, L. Zhu, and Z. Chen, “Experimental demonstration of 1.08  Tb/s PDM CO-SCFDM transmission over 3170 km SSMF,” Opt. Express, vol.  20, no. 2, pp. 787–793, 2012.
[CrossRef]

Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM functionality on an optical SCFDM superchannel,” IEEE Photon. Technol. Lett., vol.  24, pp. 215–217, 2012.

Li, M.

C. Li, N. Deng, M. Li, Q. Xue, and P. Wai, “Performance analysis and experimental demonstration of a novel network architecture using optical burst rings for interpod communications in data centers,” IEEE J. Sel. Top. Quantum Electron., vol.  19, no. 2, 3700508, 2012.

N. Deng, Q. Xue, M. Li, A. Lord, P. Willis, S. Cao, and Z. Feng, “Network modelling and techno-economic analysis of optical burst ring for metropolitan applications,” in Proc. European Conf. and Exhibition on Optical Communication (ECOC), Amsterdam, The Netherlands, 2012, paper P5.07.

N. Deng, Q. Xue, M. Li, G. Gong, and C. Qiao, “An optical multi-ring burst network for a data center,” in Optical Fiber Communication Conf. (OFC), Anaheim, CA, 2013, paper OTh1A.5.

Lin, H.-T.

H.-T. Lin and W.-R. Chang, “CORNet: A scalable and bandwidth-efficient optical burst switching ring architecture for metro area networks,” in Proc. of 2006 Int. Conf. on Networking and Services, California, July 2006.

Liu, R.

Lord, A.

N. Deng, Q. Xue, M. Li, A. Lord, P. Willis, S. Cao, and Z. Feng, “Network modelling and techno-economic analysis of optical burst ring for metropolitan applications,” in Proc. European Conf. and Exhibition on Optical Communication (ECOC), Amsterdam, The Netherlands, 2012, paper P5.07.

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, pp. 66–73, 2009.

McFarland, R. I.

Nakazawa, M.

Oh, S.

S. Oh, H. H. Hong, and M. Kang, “A data burst assembly algorithm in optical burst switching networks,” ETRI J., vol.  24, no. 4, pp. 311–322, 2002.
[CrossRef]

Omiya, T.

Park, J. P.

J. P. Park and M. S. Lee, “Simultaneous burst and burst control packet transmission protocol for optical burst switching ring networks,” ETRI J., vol.  29, pp. 116–119, 2007.
[CrossRef]

Peng, L. M.

Peng, L.-M.

Perros, H. G.

L. Xu, H. G. Perros, and G. N. Rouskas, “A simulation study of optical burst switching and access protocols for WDM ring networks,” Comput. Netw., vol.  41, no. 2, pp. 143–160, Feb. 2003.
[CrossRef]

Qi, Y.

Qiao, C.

N. Deng, Q. Xue, M. Li, G. Gong, and C. Qiao, “An optical multi-ring burst network for a data center,” in Optical Fiber Communication Conf. (OFC), Anaheim, CA, 2013, paper OTh1A.5.

M. Yoo and C. Qiao, “Just-enough-time (JET): A high speed protocol for bursty traffic in optical networks,” in IEEE/LEOS Technologies for a Global Information Infrastructure, 1997, pp. 26–27.

Qiao, C. M.

L. M. Peng, C. H. Youn, W. Tang, and C. M. Qiao, “A novel approach to optical switching for intradatacenter networking,” J. Lightwave Technol., vol.  30, no. 2, pp. 252–266, Jan. 2012.
[CrossRef]

C. M. Qiao and M. S. Yoo, “Optical burst switching (OBS)—A new paradigm for an optical Internet,” J. High Speed Netw., vol.  8, pp. 69–84, 1999.

Rouskas, G. N.

L. Xu, H. G. Perros, and G. N. Rouskas, “A simulation study of optical burst switching and access protocols for WDM ring networks,” Comput. Netw., vol.  41, no. 2, pp. 143–160, Feb. 2003.
[CrossRef]

Ruiz, M.

A. Castro, L. Velasco, M. Ruiz, M. A. Klinkowski, J. P. Fernández-Palacios, and D. Careglio, “Dynamic routing and spectrum (re)allocation in future flexgrid optical networks,” Comput. Netw., vol.  56, pp. 2869–2883, 2012.
[CrossRef]

Sasase, I.

Y. Arakawa, N. Yamanaka, and I. Sasase, “Optical burst switched ring network with upstream prioritized switching and distributed fairness control,” Electron. Commun. Jpn., vol.  90, pp. 30–39, 2007.

Shieh, W.

Sone, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, pp. 66–73, 2009.

Takara, H.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, pp. 66–73, 2009.

Tamil, L. S.

A. Ge, F. Callegati, and L. S. Tamil, “On optical burst switching and self-similar traffic,” IEEE Commun. Lett., vol.  4, pp. 98–100, Mar. 2000.
[CrossRef]

Tang, W.

Thiagarajan, S.

S. Thiagarajan, M. Frankel, and D. Boertjes, “Spectrum efficient super-channels in dynamic flexible grid networks—A blocking analysis,” in Optical Fiber Communication Conf. (OFC), Los Angeles, CA, 2011, paper OTuI6.

Triay, J.

J. Triay and C. Cervello-Pastor, “Distributed contention avoidance in optical burst-switched ring networks,” in Proc. of 11th IEEE Int. Conf. on Communication Systems (ICCS), Singapore, 2008, pp. 715–720.

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, pp. 66–73, 2009.

Velasco, L.

A. Castro, L. Velasco, M. Ruiz, M. A. Klinkowski, J. P. Fernández-Palacios, and D. Careglio, “Dynamic routing and spectrum (re)allocation in future flexgrid optical networks,” Comput. Netw., vol.  56, pp. 2869–2883, 2012.
[CrossRef]

Vokkarane, V. M.

V. M. Vokkarane, K. Haridoss, and J. P. Jue, “Threshold-based burst assembly policies for QoS support in optical burst-switched networks,” in Proc. SPIE, vol.  4874, pp. 125–136, July 2002.

Wai, P.

C. Li, N. Deng, M. Li, Q. Xue, and P. Wai, “Performance analysis and experimental demonstration of a novel network architecture using optical burst rings for interpod communications in data centers,” IEEE J. Sel. Top. Quantum Electron., vol.  19, no. 2, 3700508, 2012.

Wei, J. Y.

Wen, K.

Willis, P.

N. Deng, Q. Xue, M. Li, A. Lord, P. Willis, S. Cao, and Z. Feng, “Network modelling and techno-economic analysis of optical burst ring for metropolitan applications,” in Proc. European Conf. and Exhibition on Optical Communication (ECOC), Amsterdam, The Netherlands, 2012, paper P5.07.

Xu, L.

L. Xu, H. G. Perros, and G. N. Rouskas, “A simulation study of optical burst switching and access protocols for WDM ring networks,” Comput. Netw., vol.  41, no. 2, pp. 143–160, Feb. 2003.
[CrossRef]

Xue, Q.

C. Li, N. Deng, M. Li, Q. Xue, and P. Wai, “Performance analysis and experimental demonstration of a novel network architecture using optical burst rings for interpod communications in data centers,” IEEE J. Sel. Top. Quantum Electron., vol.  19, no. 2, 3700508, 2012.

N. Deng, Q. Xue, M. Li, A. Lord, P. Willis, S. Cao, and Z. Feng, “Network modelling and techno-economic analysis of optical burst ring for metropolitan applications,” in Proc. European Conf. and Exhibition on Optical Communication (ECOC), Amsterdam, The Netherlands, 2012, paper P5.07.

N. Deng, Q. Xue, M. Li, G. Gong, and C. Qiao, “An optical multi-ring burst network for a data center,” in Optical Fiber Communication Conf. (OFC), Anaheim, CA, 2013, paper OTh1A.5.

Yamanaka, N.

Y. Arakawa, N. Yamanaka, and I. Sasase, “Optical burst switched ring network with upstream prioritized switching and distributed fairness control,” Electron. Commun. Jpn., vol.  90, pp. 30–39, 2007.

Yan, T.

Yin, Y.

Yiran, M.

Yoo, M.

M. Yoo and C. Qiao, “Just-enough-time (JET): A high speed protocol for bursty traffic in optical networks,” in IEEE/LEOS Technologies for a Global Information Infrastructure, 1997, pp. 26–27.

Yoo, M. S.

C. M. Qiao and M. S. Yoo, “Optical burst switching (OBS)—A new paradigm for an optical Internet,” J. High Speed Netw., vol.  8, pp. 69–84, 1999.

Yoo, S.

Yoshida, M.

Youn, C. H.

Zhang, F.

C. Zhao, Y. Chen, S. Zhang, J. Li, F. Zhang, L. Zhu, and Z. Chen, “Experimental demonstration of 1.08  Tb/s PDM CO-SCFDM transmission over 3170 km SSMF,” Opt. Express, vol.  20, no. 2, pp. 787–793, 2012.
[CrossRef]

Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM functionality on an optical SCFDM superchannel,” IEEE Photon. Technol. Lett., vol.  24, pp. 215–217, 2012.

Zhang, S.

Zhao, C.

C. Zhao, Y. Chen, S. Zhang, J. Li, F. Zhang, L. Zhu, and Z. Chen, “Experimental demonstration of 1.08  Tb/s PDM CO-SCFDM transmission over 3170 km SSMF,” Opt. Express, vol.  20, no. 2, pp. 787–793, 2012.
[CrossRef]

Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM functionality on an optical SCFDM superchannel,” IEEE Photon. Technol. Lett., vol.  24, pp. 215–217, 2012.

Zhu, L.

Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM functionality on an optical SCFDM superchannel,” IEEE Photon. Technol. Lett., vol.  24, pp. 215–217, 2012.

C. Zhao, Y. Chen, S. Zhang, J. Li, F. Zhang, L. Zhu, and Z. Chen, “Experimental demonstration of 1.08  Tb/s PDM CO-SCFDM transmission over 3170 km SSMF,” Opt. Express, vol.  20, no. 2, pp. 787–793, 2012.
[CrossRef]

Comput. Netw. (2)

L. Xu, H. G. Perros, and G. N. Rouskas, “A simulation study of optical burst switching and access protocols for WDM ring networks,” Comput. Netw., vol.  41, no. 2, pp. 143–160, Feb. 2003.
[CrossRef]

A. Castro, L. Velasco, M. Ruiz, M. A. Klinkowski, J. P. Fernández-Palacios, and D. Careglio, “Dynamic routing and spectrum (re)allocation in future flexgrid optical networks,” Comput. Netw., vol.  56, pp. 2869–2883, 2012.
[CrossRef]

Electron. Commun. Jpn. (1)

Y. Arakawa, N. Yamanaka, and I. Sasase, “Optical burst switched ring network with upstream prioritized switching and distributed fairness control,” Electron. Commun. Jpn., vol.  90, pp. 30–39, 2007.

ETRI J. (2)

J. P. Park and M. S. Lee, “Simultaneous burst and burst control packet transmission protocol for optical burst switching ring networks,” ETRI J., vol.  29, pp. 116–119, 2007.
[CrossRef]

S. Oh, H. H. Hong, and M. Kang, “A data burst assembly algorithm in optical burst switching networks,” ETRI J., vol.  24, no. 4, pp. 311–322, 2002.
[CrossRef]

IEEE Commun. Lett. (1)

A. Ge, F. Callegati, and L. S. Tamil, “On optical burst switching and self-similar traffic,” IEEE Commun. Lett., vol.  4, pp. 98–100, Mar. 2000.
[CrossRef]

IEEE Commun. Mag. (1)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, pp. 66–73, 2009.

IEEE J. Sel. Top. Quantum Electron. (1)

C. Li, N. Deng, M. Li, Q. Xue, and P. Wai, “Performance analysis and experimental demonstration of a novel network architecture using optical burst rings for interpod communications in data centers,” IEEE J. Sel. Top. Quantum Electron., vol.  19, no. 2, 3700508, 2012.

IEEE Photon. Technol. Lett. (1)

Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM functionality on an optical SCFDM superchannel,” IEEE Photon. Technol. Lett., vol.  24, pp. 215–217, 2012.

J. High Speed Netw. (1)

C. M. Qiao and M. S. Yoo, “Optical burst switching (OBS)—A new paradigm for an optical Internet,” J. High Speed Netw., vol.  8, pp. 69–84, 1999.

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (1)

Opt. Express (3)

Proc. SPIE (1)

V. M. Vokkarane, K. Haridoss, and J. P. Jue, “Threshold-based burst assembly policies for QoS support in optical burst-switched networks,” in Proc. SPIE, vol.  4874, pp. 125–136, July 2002.

Other (8)

N. Deng, Q. Xue, M. Li, G. Gong, and C. Qiao, “An optical multi-ring burst network for a data center,” in Optical Fiber Communication Conf. (OFC), Anaheim, CA, 2013, paper OTh1A.5.

S. Thiagarajan, M. Frankel, and D. Boertjes, “Spectrum efficient super-channels in dynamic flexible grid networks—A blocking analysis,” in Optical Fiber Communication Conf. (OFC), Los Angeles, CA, 2011, paper OTuI6.

N. Deng, Q. Xue, M. Li, A. Lord, P. Willis, S. Cao, and Z. Feng, “Network modelling and techno-economic analysis of optical burst ring for metropolitan applications,” in Proc. European Conf. and Exhibition on Optical Communication (ECOC), Amsterdam, The Netherlands, 2012, paper P5.07.

M. Yoo and C. Qiao, “Just-enough-time (JET): A high speed protocol for bursty traffic in optical networks,” in IEEE/LEOS Technologies for a Global Information Infrastructure, 1997, pp. 26–27.

A. Fumagalli and P. Krishnamoorthy, “A low-latency and bandwidth-efficient distributed optical burst switching architecture for metro ring,” in Proc. ICC, Alaska, May 2003, vol. 2, pp. 1340–1344.

H.-T. Lin and W.-R. Chang, “CORNet: A scalable and bandwidth-efficient optical burst switching ring architecture for metro area networks,” in Proc. of 2006 Int. Conf. on Networking and Services, California, July 2006.

J. Triay and C. Cervello-Pastor, “Distributed contention avoidance in optical burst-switched ring networks,” in Proc. of 11th IEEE Int. Conf. on Communication Systems (ICCS), Singapore, 2008, pp. 715–720.

R. Dischler, F. Buchali, and A. Klekamp, “Demonstration of bit rate variable ROADM functionality on an optical OFDM superchannel,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, Mar. 2010, paper OTuM7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

BV-OBS ring network structure.

Fig. 2.
Fig. 2.

Dropping and adding process in one node: (a) renewal of burst control information in the BCP and (b) bandwidth occupation of bursts.

Fig. 3.
Fig. 3.

Node architecture of BV-OBS ring.

Fig. 4.
Fig. 4.

Illustration of two types of PDC-FDL: (a) distributed and (b) centralized.

Fig. 5.
Fig. 5.

Waveband assignment algorithms of an adding burst.

Fig. 6.
Fig. 6.

Burst scheduling order in three burst selection algorithms.

Fig. 7.
Fig. 7.

Timeslot in a BV-OBS ring network.

Fig. 8.
Fig. 8.

Impact of the timeslot size in a BV-OBS ring network.

Fig. 9.
Fig. 9.

Network throughput versus number of transmitters and receivers with uniform traffic.

Fig. 10.
Fig. 10.

Network throughput versus number of transmitters and receivers with nonuniform traffic.

Fig. 11.
Fig. 11.

Network throughput of collision-free OBS ring networks.

Fig. 12.
Fig. 12.

Network throughput of LightRing, CORNet, and BV-OBS ring networks with different burst size distributions.

Fig. 13.
Fig. 13.

End-to-end delay of collision-free OBS ring networks.

Fig. 14.
Fig. 14.

End-to-end delay of SBCT and BV-OBS ring networks with different burst size distributions and node numbers.

Fig. 15.
Fig. 15.

Average queuing delay of waveband assignment algorithms.

Fig. 16.
Fig. 16.

Average buffer size of waveband assignment algorithms.

Fig. 17.
Fig. 17.

Fairness coefficient of buffer selection algorithms.

Fig. 18.
Fig. 18.

Average queuing delay versus burst bandwidth at traffic load ρ=0.9.

Tables (2)

Tables Icon

TABLE I Comparison of Collision-Free OBS Ring Networks

Tables Icon

TABLE II Sufficient Number of Transmitters and Receivers With Different Node Number N and TUR

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

Tr=(Ts+Tg)·Nr+Tu.
Nr=TrTs+Tg.
Ut=Ts·NrTr=TrTs+Tg·TsTr.
B=L/Ts.
Ub=BB+Bg=LL+Bg·Ts.
U=Ut·Ub=TrTs+Tg·TsTr·LL+Bg·Ts.
Ts=Tr/mTg,
U=TrTs+Tg·TsTr·LL+Bg·Ts=11+Tg/Ts·11+Bg·Ts/L(11+Tg·Bg/L)2.
Ts=Tg·L/Bg.
TM·R.
TN1·N(N1)2C.
Tmin(M·R,2C/N).
Tm=2C/N.
MTx=2CN·R,
p=TT·N/2=2/N.
n=[N·T2R],
P(k)=Cnk·pk·(1p)nk.
Pr=RT·k=M+1n(kM)·P(k),
θ=N·T·(1Pr).
θm=N·Tm=2C.