Abstract

We propose a novel scheme based on asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) for upstream transmission in next-generation passive optical networks, which features low power consumption, colorlessness, and cost effectiveness. An experiment with 5Gbits/s ACO-OFDM upstream transmission has been carried out to investigate its performance. Meanwhile, a 2-ONU upstream transmission scheme utilizing ACO-OFDM has also been proposed, and important issues such as optical beat interference and symbol delay are studied.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40  Gb/s MIMO-OFDM-PON using polarization multiplexing and direct-detection,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OMV3.
  2. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108  Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol.  28, no. 4, pp. 484–493, 2010.
    [CrossRef]
  3. J. Yu, Z. Jia, P. N. Ji, and T. Wang, “40  Gb/s Wavelength-division-multiplexing passive optical network with centralized lightwave source,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2008, paper OTuH8.
  4. Y. Ji, D. Ren, H. Li, X. Liu, and Z. Wang, “Analysis and experimentation of key technologies in service-oriented optical internet,” Sci. China Inf. Sci., vol.  54, no. 2, pp. 215–226, 2011.
  5. L. G. Kazovsky, W. Shaw, D. Gutierrez, C. Ning, and S. Wong, “Next-generation optical access networks,” J. Lightwave Technol., vol.  25, no. 11, pp. 3428–3442, Nov. 2007.
    [CrossRef]
  6. J. Kani, F. Bourgart, A. Cui, A. Rafel, and M. Campbell, “Next-generation PON—part I: technology roadmap and general requirements” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov. 2009.
    [CrossRef]
  7. J. F. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—part II: candidate systems for next-generation PON,” IEEE Commun. Mag., vol.  47, no. 11, pp. 50–57, Nov. 2009.
    [CrossRef]
  8. J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett., vol.  42, no. 6, pp. 370–372, 2006.
    [CrossRef]
  9. J. I. Kani, S. Shimazu, N. Yoshimoto, and H. Hadama, “Energy efficient optical access network technologies,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2011, paper OThB1.
  10. R. G. Hunsperger, Integrated Optics: Theory and Technology. Berlin: Springer Verlag, 2002.
  11. Y. Zhao, Y. Qiao, and Y. Ji, “Power efficient and colorless PON upstream system using asymmetric clipping optical OFDM and TDMA technologies,” Opt. Commun., vol.  285, no. 7, pp. 1787–1791, 2012.
    [CrossRef]
  12. D. Qian, N. Cvijetic, Y. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36  Gb/s-OFDMA-PON over a single wavelength with source-free ONUs,” in 35th European Conf. on Optical Communication (ECOC), Sept.20–24, 2009, pp. 1–2.
  13. M. S. Moreolo and G. Junyent, “Novel power efficient optical OFDM based on Hartley transform for intensity-modulated direct-detection systems,” J. Lightwave Technol., vol.  28, pp. 798–805, 2010.
    [CrossRef]
  14. A. J. Lowery, “Optical OFDM,” in Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf. and Photonic Applications Systems Technologies, 2008, paper CWN1.
  15. J. Armstrong and B. J. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett., vol.  12. no. 5, pp. 343–345, 2008.
    [CrossRef]
  16. S. D. Dissanayake, K. Panta, and J. Armstrong, “A novel technique to simultaneously transmit ACO-OFDM and DCO-OFDM in IM/DD systems,” in IEEE GLOBECOM Workshops, Dec.5–9, 2011, pp. 782–786.
  17. H. C. Chien, R. J. Chen, M. F. Huang, and G. K. Chang, “Comparison of OFDMA and SC-FDMA channel access techniques in a passive optical network environment,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2011, paper OTuK2.
  18. X. Xie, Y. Qiao, and Y. Ji, “The study of wavelength interval between adjacent ONUs in OFDMA-PON,” in Optical Transmission Systems, Switching, and Subsystems VIII, Y. Su, E. Ciaramella, X. Liu, and N. Wada, Eds. (Proceedings of SPIE-OSA-IEEE Asia Communications and Photonics, Vol. 7988). Washington, D.C.: Optical Society of America, 2010, paper 79881B.

2012 (1)

Y. Zhao, Y. Qiao, and Y. Ji, “Power efficient and colorless PON upstream system using asymmetric clipping optical OFDM and TDMA technologies,” Opt. Commun., vol.  285, no. 7, pp. 1787–1791, 2012.
[CrossRef]

2011 (1)

Y. Ji, D. Ren, H. Li, X. Liu, and Z. Wang, “Analysis and experimentation of key technologies in service-oriented optical internet,” Sci. China Inf. Sci., vol.  54, no. 2, pp. 215–226, 2011.

2010 (2)

2009 (2)

J. Kani, F. Bourgart, A. Cui, A. Rafel, and M. Campbell, “Next-generation PON—part I: technology roadmap and general requirements” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov. 2009.
[CrossRef]

J. F. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—part II: candidate systems for next-generation PON,” IEEE Commun. Mag., vol.  47, no. 11, pp. 50–57, Nov. 2009.
[CrossRef]

2008 (1)

J. Armstrong and B. J. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett., vol.  12. no. 5, pp. 343–345, 2008.
[CrossRef]

2007 (1)

2006 (1)

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett., vol.  42, no. 6, pp. 370–372, 2006.
[CrossRef]

Armstrong, J.

J. Armstrong and B. J. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett., vol.  12. no. 5, pp. 343–345, 2008.
[CrossRef]

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett., vol.  42, no. 6, pp. 370–372, 2006.
[CrossRef]

S. D. Dissanayake, K. Panta, and J. Armstrong, “A novel technique to simultaneously transmit ACO-OFDM and DCO-OFDM in IM/DD systems,” in IEEE GLOBECOM Workshops, Dec.5–9, 2011, pp. 782–786.

Bourgart, F.

J. Kani, F. Bourgart, A. Cui, A. Rafel, and M. Campbell, “Next-generation PON—part I: technology roadmap and general requirements” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov. 2009.
[CrossRef]

Campbell, M.

J. Kani, F. Bourgart, A. Cui, A. Rafel, and M. Campbell, “Next-generation PON—part I: technology roadmap and general requirements” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov. 2009.
[CrossRef]

Chang, G. K.

H. C. Chien, R. J. Chen, M. F. Huang, and G. K. Chang, “Comparison of OFDMA and SC-FDMA channel access techniques in a passive optical network environment,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2011, paper OTuK2.

Chen, R. J.

H. C. Chien, R. J. Chen, M. F. Huang, and G. K. Chang, “Comparison of OFDMA and SC-FDMA channel access techniques in a passive optical network environment,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2011, paper OTuK2.

Chien, H. C.

H. C. Chien, R. J. Chen, M. F. Huang, and G. K. Chang, “Comparison of OFDMA and SC-FDMA channel access techniques in a passive optical network environment,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2011, paper OTuK2.

Cui, A.

J. Kani, F. Bourgart, A. Cui, A. Rafel, and M. Campbell, “Next-generation PON—part I: technology roadmap and general requirements” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov. 2009.
[CrossRef]

Cvijetic, N.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108  Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol.  28, no. 4, pp. 484–493, 2010.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40  Gb/s MIMO-OFDM-PON using polarization multiplexing and direct-detection,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OMV3.

D. Qian, N. Cvijetic, Y. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36  Gb/s-OFDMA-PON over a single wavelength with source-free ONUs,” in 35th European Conf. on Optical Communication (ECOC), Sept.20–24, 2009, pp. 1–2.

Dissanayake, S. D.

S. D. Dissanayake, K. Panta, and J. Armstrong, “A novel technique to simultaneously transmit ACO-OFDM and DCO-OFDM in IM/DD systems,” in IEEE GLOBECOM Workshops, Dec.5–9, 2011, pp. 782–786.

Effenberger, J. F.

J. F. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—part II: candidate systems for next-generation PON,” IEEE Commun. Mag., vol.  47, no. 11, pp. 50–57, Nov. 2009.
[CrossRef]

Gutierrez, D.

Hadama, H.

J. I. Kani, S. Shimazu, N. Yoshimoto, and H. Hadama, “Energy efficient optical access network technologies,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2011, paper OThB1.

Hu, J.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108  Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol.  28, no. 4, pp. 484–493, 2010.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40  Gb/s MIMO-OFDM-PON using polarization multiplexing and direct-detection,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OMV3.

Huang, M. F.

H. C. Chien, R. J. Chen, M. F. Huang, and G. K. Chang, “Comparison of OFDMA and SC-FDMA channel access techniques in a passive optical network environment,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2011, paper OTuK2.

Huang, Y.

D. Qian, N. Cvijetic, Y. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36  Gb/s-OFDMA-PON over a single wavelength with source-free ONUs,” in 35th European Conf. on Optical Communication (ECOC), Sept.20–24, 2009, pp. 1–2.

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology. Berlin: Springer Verlag, 2002.

Ji, P. N.

J. Yu, Z. Jia, P. N. Ji, and T. Wang, “40  Gb/s Wavelength-division-multiplexing passive optical network with centralized lightwave source,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2008, paper OTuH8.

Ji, Y.

Y. Zhao, Y. Qiao, and Y. Ji, “Power efficient and colorless PON upstream system using asymmetric clipping optical OFDM and TDMA technologies,” Opt. Commun., vol.  285, no. 7, pp. 1787–1791, 2012.
[CrossRef]

Y. Ji, D. Ren, H. Li, X. Liu, and Z. Wang, “Analysis and experimentation of key technologies in service-oriented optical internet,” Sci. China Inf. Sci., vol.  54, no. 2, pp. 215–226, 2011.

X. Xie, Y. Qiao, and Y. Ji, “The study of wavelength interval between adjacent ONUs in OFDMA-PON,” in Optical Transmission Systems, Switching, and Subsystems VIII, Y. Su, E. Ciaramella, X. Liu, and N. Wada, Eds. (Proceedings of SPIE-OSA-IEEE Asia Communications and Photonics, Vol. 7988). Washington, D.C.: Optical Society of America, 2010, paper 79881B.

Jia, Z.

J. Yu, Z. Jia, P. N. Ji, and T. Wang, “40  Gb/s Wavelength-division-multiplexing passive optical network with centralized lightwave source,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2008, paper OTuH8.

Junyent, G.

Kani, J.

J. Kani, F. Bourgart, A. Cui, A. Rafel, and M. Campbell, “Next-generation PON—part I: technology roadmap and general requirements” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov. 2009.
[CrossRef]

Kani, J. I.

J. I. Kani, S. Shimazu, N. Yoshimoto, and H. Hadama, “Energy efficient optical access network technologies,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2011, paper OThB1.

Kazovsky, L. G.

Li, H.

Y. Ji, D. Ren, H. Li, X. Liu, and Z. Wang, “Analysis and experimentation of key technologies in service-oriented optical internet,” Sci. China Inf. Sci., vol.  54, no. 2, pp. 215–226, 2011.

Liu, X.

Y. Ji, D. Ren, H. Li, X. Liu, and Z. Wang, “Analysis and experimentation of key technologies in service-oriented optical internet,” Sci. China Inf. Sci., vol.  54, no. 2, pp. 215–226, 2011.

Lowery, A. J.

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett., vol.  42, no. 6, pp. 370–372, 2006.
[CrossRef]

A. J. Lowery, “Optical OFDM,” in Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf. and Photonic Applications Systems Technologies, 2008, paper CWN1.

Moreolo, M. S.

Mukai, H.

J. F. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—part II: candidate systems for next-generation PON,” IEEE Commun. Mag., vol.  47, no. 11, pp. 50–57, Nov. 2009.
[CrossRef]

Ning, C.

Panta, K.

S. D. Dissanayake, K. Panta, and J. Armstrong, “A novel technique to simultaneously transmit ACO-OFDM and DCO-OFDM in IM/DD systems,” in IEEE GLOBECOM Workshops, Dec.5–9, 2011, pp. 782–786.

Park, S.

J. F. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—part II: candidate systems for next-generation PON,” IEEE Commun. Mag., vol.  47, no. 11, pp. 50–57, Nov. 2009.
[CrossRef]

Pfeiffer, T.

J. F. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—part II: candidate systems for next-generation PON,” IEEE Commun. Mag., vol.  47, no. 11, pp. 50–57, Nov. 2009.
[CrossRef]

Qian, D.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108  Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol.  28, no. 4, pp. 484–493, 2010.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40  Gb/s MIMO-OFDM-PON using polarization multiplexing and direct-detection,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OMV3.

D. Qian, N. Cvijetic, Y. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36  Gb/s-OFDMA-PON over a single wavelength with source-free ONUs,” in 35th European Conf. on Optical Communication (ECOC), Sept.20–24, 2009, pp. 1–2.

Qiao, Y.

Y. Zhao, Y. Qiao, and Y. Ji, “Power efficient and colorless PON upstream system using asymmetric clipping optical OFDM and TDMA technologies,” Opt. Commun., vol.  285, no. 7, pp. 1787–1791, 2012.
[CrossRef]

X. Xie, Y. Qiao, and Y. Ji, “The study of wavelength interval between adjacent ONUs in OFDMA-PON,” in Optical Transmission Systems, Switching, and Subsystems VIII, Y. Su, E. Ciaramella, X. Liu, and N. Wada, Eds. (Proceedings of SPIE-OSA-IEEE Asia Communications and Photonics, Vol. 7988). Washington, D.C.: Optical Society of America, 2010, paper 79881B.

Rafel, A.

J. Kani, F. Bourgart, A. Cui, A. Rafel, and M. Campbell, “Next-generation PON—part I: technology roadmap and general requirements” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov. 2009.
[CrossRef]

Ren, D.

Y. Ji, D. Ren, H. Li, X. Liu, and Z. Wang, “Analysis and experimentation of key technologies in service-oriented optical internet,” Sci. China Inf. Sci., vol.  54, no. 2, pp. 215–226, 2011.

Schmidt, B. J.

J. Armstrong and B. J. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett., vol.  12. no. 5, pp. 343–345, 2008.
[CrossRef]

Shaw, W.

Shimazu, S.

J. I. Kani, S. Shimazu, N. Yoshimoto, and H. Hadama, “Energy efficient optical access network technologies,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2011, paper OThB1.

Wang, T.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108  Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol.  28, no. 4, pp. 484–493, 2010.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40  Gb/s MIMO-OFDM-PON using polarization multiplexing and direct-detection,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OMV3.

J. Yu, Z. Jia, P. N. Ji, and T. Wang, “40  Gb/s Wavelength-division-multiplexing passive optical network with centralized lightwave source,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2008, paper OTuH8.

D. Qian, N. Cvijetic, Y. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36  Gb/s-OFDMA-PON over a single wavelength with source-free ONUs,” in 35th European Conf. on Optical Communication (ECOC), Sept.20–24, 2009, pp. 1–2.

Wang, Z.

Y. Ji, D. Ren, H. Li, X. Liu, and Z. Wang, “Analysis and experimentation of key technologies in service-oriented optical internet,” Sci. China Inf. Sci., vol.  54, no. 2, pp. 215–226, 2011.

Wong, S.

Xie, X.

X. Xie, Y. Qiao, and Y. Ji, “The study of wavelength interval between adjacent ONUs in OFDMA-PON,” in Optical Transmission Systems, Switching, and Subsystems VIII, Y. Su, E. Ciaramella, X. Liu, and N. Wada, Eds. (Proceedings of SPIE-OSA-IEEE Asia Communications and Photonics, Vol. 7988). Washington, D.C.: Optical Society of America, 2010, paper 79881B.

Yoshimoto, N.

J. I. Kani, S. Shimazu, N. Yoshimoto, and H. Hadama, “Energy efficient optical access network technologies,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2011, paper OThB1.

Yu, J.

J. Yu, Z. Jia, P. N. Ji, and T. Wang, “40  Gb/s Wavelength-division-multiplexing passive optical network with centralized lightwave source,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2008, paper OTuH8.

D. Qian, N. Cvijetic, Y. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36  Gb/s-OFDMA-PON over a single wavelength with source-free ONUs,” in 35th European Conf. on Optical Communication (ECOC), Sept.20–24, 2009, pp. 1–2.

Zhao, Y.

Y. Zhao, Y. Qiao, and Y. Ji, “Power efficient and colorless PON upstream system using asymmetric clipping optical OFDM and TDMA technologies,” Opt. Commun., vol.  285, no. 7, pp. 1787–1791, 2012.
[CrossRef]

Electron. Lett. (1)

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett., vol.  42, no. 6, pp. 370–372, 2006.
[CrossRef]

IEEE Commun. Lett. (1)

J. Armstrong and B. J. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett., vol.  12. no. 5, pp. 343–345, 2008.
[CrossRef]

IEEE Commun. Mag. (2)

J. Kani, F. Bourgart, A. Cui, A. Rafel, and M. Campbell, “Next-generation PON—part I: technology roadmap and general requirements” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov. 2009.
[CrossRef]

J. F. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—part II: candidate systems for next-generation PON,” IEEE Commun. Mag., vol.  47, no. 11, pp. 50–57, Nov. 2009.
[CrossRef]

J. Lightwave Technol. (3)

Opt. Commun. (1)

Y. Zhao, Y. Qiao, and Y. Ji, “Power efficient and colorless PON upstream system using asymmetric clipping optical OFDM and TDMA technologies,” Opt. Commun., vol.  285, no. 7, pp. 1787–1791, 2012.
[CrossRef]

Sci. China Inf. Sci. (1)

Y. Ji, D. Ren, H. Li, X. Liu, and Z. Wang, “Analysis and experimentation of key technologies in service-oriented optical internet,” Sci. China Inf. Sci., vol.  54, no. 2, pp. 215–226, 2011.

Other (9)

A. J. Lowery, “Optical OFDM,” in Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf. and Photonic Applications Systems Technologies, 2008, paper CWN1.

S. D. Dissanayake, K. Panta, and J. Armstrong, “A novel technique to simultaneously transmit ACO-OFDM and DCO-OFDM in IM/DD systems,” in IEEE GLOBECOM Workshops, Dec.5–9, 2011, pp. 782–786.

H. C. Chien, R. J. Chen, M. F. Huang, and G. K. Chang, “Comparison of OFDMA and SC-FDMA channel access techniques in a passive optical network environment,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2011, paper OTuK2.

X. Xie, Y. Qiao, and Y. Ji, “The study of wavelength interval between adjacent ONUs in OFDMA-PON,” in Optical Transmission Systems, Switching, and Subsystems VIII, Y. Su, E. Ciaramella, X. Liu, and N. Wada, Eds. (Proceedings of SPIE-OSA-IEEE Asia Communications and Photonics, Vol. 7988). Washington, D.C.: Optical Society of America, 2010, paper 79881B.

D. Qian, N. Cvijetic, Y. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36  Gb/s-OFDMA-PON over a single wavelength with source-free ONUs,” in 35th European Conf. on Optical Communication (ECOC), Sept.20–24, 2009, pp. 1–2.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40  Gb/s MIMO-OFDM-PON using polarization multiplexing and direct-detection,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OMV3.

J. Yu, Z. Jia, P. N. Ji, and T. Wang, “40  Gb/s Wavelength-division-multiplexing passive optical network with centralized lightwave source,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2008, paper OTuH8.

J. I. Kani, S. Shimazu, N. Yoshimoto, and H. Hadama, “Energy efficient optical access network technologies,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2011, paper OThB1.

R. G. Hunsperger, Integrated Optics: Theory and Technology. Berlin: Springer Verlag, 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Real-valued conventional OFDM signal and the corresponding ACO-OFDM signal.

Fig. 2.
Fig. 2.

Experimental setup for ACO-OFDM PON upstream transmission. DML, directly modulated laser; PD, photodiode; S/P, serial-to-parallel conversion; P/S, parallel-to-serial conversion; A/D, analog-to-digital conversion; D/A, digital-to-analog conversion; VOA, variable optical attenuator; SSMF, standard single-mode fiber.

Fig. 3.
Fig. 3.

BER measurements against received optical power for the ACO-OFDM systems.

Fig. 4.
Fig. 4.

BER measurements against received optical power for ACO-OFDM and conventional OFDM systems with different offset voltages.

Fig. 5.
Fig. 5.

Simulation setup for the 2-ONU ACO-OFDM upstream transmission scheme. (a) Block diagram setup of 2-ONU based on ACO-OFDMA PON. (b) Transmitter.

Fig. 6.
Fig. 6.

Spectrum of the upstream signals of the two ONUs.

Fig. 7.
Fig. 7.

EVMs of the upstream signal for ONU-1 and ONU-2 as functions of P2 when P1 is fixed at (a) 9, (b) 6, (c) 3, and (d) 0 dBm.

Fig. 8.
Fig. 8.

Total EVM performance of the upstream signal against relative OFDM symbol delay between the signals from ONU-1 and ONU-2.

Fig. 9.
Fig. 9.

Average BER of the upstream signal against relative OFDM symbol delay between the signals from ONU-1 and ONU-2.

Fig. 10.
Fig. 10.

Average EVM of the upstream signal against the relative OFDM symbol delay with different CP lengths.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P={S(iith)iith0ith,
i=d(t)+ith.
P={Sd(t)d(t)00d(t)<0.