Abstract

Currently, the concept of greening the Internet is emerging with the increasingly acute energy crisis. Reducing the power consumption in IP over wavelength-division multiplexing (WDM) optical networks is of great significance. From the perspective of traffic engineering, green grooming has performed well in terms of power savings. However, in a more realistic network, some traffic characteristics are not taken into account. Moreover, most methods of green grooming are applied to a single network. As the network scale continuously becomes larger, the backbone presents a multidomain structure. Considering the peak traffic distribution in the multidomain network, i.e., that the peak traffic tends to scatter over boundary nodes, we propose a novel hose-model separation to emulate the limited traffic information in a more realistic optical network. To maximize the power efficiency, we determine the inverse power-efficiency ratio by theoretical analysis. We then utilize a heuristic, referred to as minimizing the total inverse power-efficiency ratio (MTPR), to establish lightpaths. The simulation results have demonstrated the effectiveness of MTPR under different topologies and various traffic patterns.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (37)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription