Abstract

A passive optical network (PON) is a highly capable access network that effectively converges several service providers, without suffering from any bandwidth deficiency. However, a PON consisting of a single optical line terminal (OLT) for multiple service providers increases the computational complexity for data packet processing in the OLT, resulting in a longer time delay and more packet loss. A multi-OLT PON-based access network is an effective solution for reducing the computational complexity of data packet processing in a hybrid network of multiple service providers. The most important issue concerning the multi-OLT PON is the sharing efficiency of upstream channels among multiple service providers having different packet lengths and data rates. In this paper, we propose a dynamic bandwidth allocation algorithm called adaptive limited dynamic bandwidth allocation for multi-OLT PON (ALDBAM). The proposed scheme is a modified version of adaptive limited dynamic bandwidth allocation (ALDBA) algorithms that we proposed before, where both the ALDBA1 and ALDBA2 schemes are combined with proper guard time management and a modified multipoint control protocol. The simulation results show that the ALDBAM scheme provides lower packet delay with higher bandwidth utilization, higher upstream efficiency, and higher throughput than the conventional ALDBA1 and ALDBA2 schemes.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hossen and M. Hanawa, “Adaptive limited dynamic bandwidth allocation scheme to improve bandwidth sharing efficiency in hybrid PON combining FTTH and wireless sensor networks,” IEICE Trans. Commun., vol.  E96-B, no. 1, pp. 127–134, Jan. 2013.
    [CrossRef]
  2. L. G. Kazovsky, W. Shaw, D. Gutierrez, N. Cheng, and S. Wong, “Next-generation optical access networks,” J. Lightwave Technol., vol.  25, no. 11, pp. 3428–3442, Nov. 2007.
    [CrossRef]
  3. AKARI Project Group, sponsored by NICT, “NEW generation network architecture AKARI conceptual design, ver. 2,” Aug.2009 [Online]. Available: http://www.nict.go.jp/en/photonic_nw/archi/akari/concept-design_e.html#block_top1 .
  4. G. Kramer, B. Mukherjee, and G. Pessavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, 2002.
    [CrossRef]
  5. M. Hossen and M. Hanawa, “Network architecture and performance analysis of multi-OLT PON for FTTH and wireless sensor networks,” Int. J. Wireless Mobile Netw., vol.  3, no. 6, pp. 1–15, Dec. 2011.
    [CrossRef]
  6. I. Hwang, Z. Shyu, L. Ke, and C. Chang, “A novel early DBA mechanism with prediction-based fair excessive bandwidth allocation scheme in EPON,” J. Comput. Commun., vol.  31, no. 9, pp. 1814–1823, June 2008.
    [CrossRef]
  7. C. Assi, Y. Ye, S. Dixit, and M. Ali, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol.  21, no. 9, pp. 1467–1477, Nov. 2003.
    [CrossRef]
  8. Y. Luo and N. Ansari, “Limited sharing with traffic prediction for dynamic bandwidth allocation and QoS provisioning over Ethernet passive optical networks,” J. Opt. Netw., vol.  4, no. 9, pp. 561–572, Sept. 2005.
    [CrossRef]
  9. “Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications, Amendment: Media Access Control Parameters, Physical Layers, and Management Parameters for Subscriber Access Networks,” , 2004.
  10. M. Hossen, K. Kim, and Y. Park, “A PON-based large sensor network and its performance analysis with Sync-LS MAC protocol,” Arabian J. Sci. Eng., to be published [Online]. Available: http://link.springer.com/content/pdf/10.1007%2Fs13369-013-0571-8.pdf#.
    [CrossRef]
  11. W. Willinger, M. S. Taqqu, and A. Erramilli, “A bibliographical guide to self-similar traffic and performance modeling for modern high-speed networks,” in Stochastic Networks: Theory and Applications, vol. 4Royal Statistical Society Lecture Notes Series (Oxford, UK: Oxford University, 1996), pp. 339–366.
  12. B. Lannoo, L. Verslegers, D. Colle, M. Pikavet, P. Demeester, and M. Gagnaire, “Thorough analysis of the IPACT dynamic bandwidth allocation algorithm for EPONs,” in IEEE 4th Int. Conf. Broadband Communication, Networks and Systems, Raleigh, NC, Sept. 2007, pp. 486–494.
  13. V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-efficient, collision-free medium access control for wireless sensor networks,” Wireless Netw., vol.  12, no. 1, pp. 63–78, Feb. 2006.
    [CrossRef]

2013 (1)

M. Hossen and M. Hanawa, “Adaptive limited dynamic bandwidth allocation scheme to improve bandwidth sharing efficiency in hybrid PON combining FTTH and wireless sensor networks,” IEICE Trans. Commun., vol.  E96-B, no. 1, pp. 127–134, Jan. 2013.
[CrossRef]

2011 (1)

M. Hossen and M. Hanawa, “Network architecture and performance analysis of multi-OLT PON for FTTH and wireless sensor networks,” Int. J. Wireless Mobile Netw., vol.  3, no. 6, pp. 1–15, Dec. 2011.
[CrossRef]

2008 (1)

I. Hwang, Z. Shyu, L. Ke, and C. Chang, “A novel early DBA mechanism with prediction-based fair excessive bandwidth allocation scheme in EPON,” J. Comput. Commun., vol.  31, no. 9, pp. 1814–1823, June 2008.
[CrossRef]

2007 (1)

2006 (1)

V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-efficient, collision-free medium access control for wireless sensor networks,” Wireless Netw., vol.  12, no. 1, pp. 63–78, Feb. 2006.
[CrossRef]

2005 (1)

2003 (1)

C. Assi, Y. Ye, S. Dixit, and M. Ali, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol.  21, no. 9, pp. 1467–1477, Nov. 2003.
[CrossRef]

2002 (1)

G. Kramer, B. Mukherjee, and G. Pessavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, 2002.
[CrossRef]

Ali, M.

C. Assi, Y. Ye, S. Dixit, and M. Ali, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol.  21, no. 9, pp. 1467–1477, Nov. 2003.
[CrossRef]

Ansari, N.

Assi, C.

C. Assi, Y. Ye, S. Dixit, and M. Ali, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol.  21, no. 9, pp. 1467–1477, Nov. 2003.
[CrossRef]

Chang, C.

I. Hwang, Z. Shyu, L. Ke, and C. Chang, “A novel early DBA mechanism with prediction-based fair excessive bandwidth allocation scheme in EPON,” J. Comput. Commun., vol.  31, no. 9, pp. 1814–1823, June 2008.
[CrossRef]

Cheng, N.

Colle, D.

B. Lannoo, L. Verslegers, D. Colle, M. Pikavet, P. Demeester, and M. Gagnaire, “Thorough analysis of the IPACT dynamic bandwidth allocation algorithm for EPONs,” in IEEE 4th Int. Conf. Broadband Communication, Networks and Systems, Raleigh, NC, Sept. 2007, pp. 486–494.

Demeester, P.

B. Lannoo, L. Verslegers, D. Colle, M. Pikavet, P. Demeester, and M. Gagnaire, “Thorough analysis of the IPACT dynamic bandwidth allocation algorithm for EPONs,” in IEEE 4th Int. Conf. Broadband Communication, Networks and Systems, Raleigh, NC, Sept. 2007, pp. 486–494.

Dixit, S.

C. Assi, Y. Ye, S. Dixit, and M. Ali, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol.  21, no. 9, pp. 1467–1477, Nov. 2003.
[CrossRef]

Erramilli, A.

W. Willinger, M. S. Taqqu, and A. Erramilli, “A bibliographical guide to self-similar traffic and performance modeling for modern high-speed networks,” in Stochastic Networks: Theory and Applications, vol. 4Royal Statistical Society Lecture Notes Series (Oxford, UK: Oxford University, 1996), pp. 339–366.

Gagnaire, M.

B. Lannoo, L. Verslegers, D. Colle, M. Pikavet, P. Demeester, and M. Gagnaire, “Thorough analysis of the IPACT dynamic bandwidth allocation algorithm for EPONs,” in IEEE 4th Int. Conf. Broadband Communication, Networks and Systems, Raleigh, NC, Sept. 2007, pp. 486–494.

Garcia-Luna-Aceves, J. J.

V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-efficient, collision-free medium access control for wireless sensor networks,” Wireless Netw., vol.  12, no. 1, pp. 63–78, Feb. 2006.
[CrossRef]

Gutierrez, D.

Hanawa, M.

M. Hossen and M. Hanawa, “Adaptive limited dynamic bandwidth allocation scheme to improve bandwidth sharing efficiency in hybrid PON combining FTTH and wireless sensor networks,” IEICE Trans. Commun., vol.  E96-B, no. 1, pp. 127–134, Jan. 2013.
[CrossRef]

M. Hossen and M. Hanawa, “Network architecture and performance analysis of multi-OLT PON for FTTH and wireless sensor networks,” Int. J. Wireless Mobile Netw., vol.  3, no. 6, pp. 1–15, Dec. 2011.
[CrossRef]

Hossen, M.

M. Hossen and M. Hanawa, “Adaptive limited dynamic bandwidth allocation scheme to improve bandwidth sharing efficiency in hybrid PON combining FTTH and wireless sensor networks,” IEICE Trans. Commun., vol.  E96-B, no. 1, pp. 127–134, Jan. 2013.
[CrossRef]

M. Hossen and M. Hanawa, “Network architecture and performance analysis of multi-OLT PON for FTTH and wireless sensor networks,” Int. J. Wireless Mobile Netw., vol.  3, no. 6, pp. 1–15, Dec. 2011.
[CrossRef]

M. Hossen, K. Kim, and Y. Park, “A PON-based large sensor network and its performance analysis with Sync-LS MAC protocol,” Arabian J. Sci. Eng., to be published [Online]. Available: http://link.springer.com/content/pdf/10.1007%2Fs13369-013-0571-8.pdf#.
[CrossRef]

Hwang, I.

I. Hwang, Z. Shyu, L. Ke, and C. Chang, “A novel early DBA mechanism with prediction-based fair excessive bandwidth allocation scheme in EPON,” J. Comput. Commun., vol.  31, no. 9, pp. 1814–1823, June 2008.
[CrossRef]

Kazovsky, L. G.

Ke, L.

I. Hwang, Z. Shyu, L. Ke, and C. Chang, “A novel early DBA mechanism with prediction-based fair excessive bandwidth allocation scheme in EPON,” J. Comput. Commun., vol.  31, no. 9, pp. 1814–1823, June 2008.
[CrossRef]

Kim, K.

M. Hossen, K. Kim, and Y. Park, “A PON-based large sensor network and its performance analysis with Sync-LS MAC protocol,” Arabian J. Sci. Eng., to be published [Online]. Available: http://link.springer.com/content/pdf/10.1007%2Fs13369-013-0571-8.pdf#.
[CrossRef]

Kramer, G.

G. Kramer, B. Mukherjee, and G. Pessavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, 2002.
[CrossRef]

Lannoo, B.

B. Lannoo, L. Verslegers, D. Colle, M. Pikavet, P. Demeester, and M. Gagnaire, “Thorough analysis of the IPACT dynamic bandwidth allocation algorithm for EPONs,” in IEEE 4th Int. Conf. Broadband Communication, Networks and Systems, Raleigh, NC, Sept. 2007, pp. 486–494.

Luo, Y.

Mukherjee, B.

G. Kramer, B. Mukherjee, and G. Pessavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, 2002.
[CrossRef]

Obraczka, K.

V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-efficient, collision-free medium access control for wireless sensor networks,” Wireless Netw., vol.  12, no. 1, pp. 63–78, Feb. 2006.
[CrossRef]

Park, Y.

M. Hossen, K. Kim, and Y. Park, “A PON-based large sensor network and its performance analysis with Sync-LS MAC protocol,” Arabian J. Sci. Eng., to be published [Online]. Available: http://link.springer.com/content/pdf/10.1007%2Fs13369-013-0571-8.pdf#.
[CrossRef]

Pessavento, G.

G. Kramer, B. Mukherjee, and G. Pessavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, 2002.
[CrossRef]

Pikavet, M.

B. Lannoo, L. Verslegers, D. Colle, M. Pikavet, P. Demeester, and M. Gagnaire, “Thorough analysis of the IPACT dynamic bandwidth allocation algorithm for EPONs,” in IEEE 4th Int. Conf. Broadband Communication, Networks and Systems, Raleigh, NC, Sept. 2007, pp. 486–494.

Rajendran, V.

V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-efficient, collision-free medium access control for wireless sensor networks,” Wireless Netw., vol.  12, no. 1, pp. 63–78, Feb. 2006.
[CrossRef]

Shaw, W.

Shyu, Z.

I. Hwang, Z. Shyu, L. Ke, and C. Chang, “A novel early DBA mechanism with prediction-based fair excessive bandwidth allocation scheme in EPON,” J. Comput. Commun., vol.  31, no. 9, pp. 1814–1823, June 2008.
[CrossRef]

Taqqu, M. S.

W. Willinger, M. S. Taqqu, and A. Erramilli, “A bibliographical guide to self-similar traffic and performance modeling for modern high-speed networks,” in Stochastic Networks: Theory and Applications, vol. 4Royal Statistical Society Lecture Notes Series (Oxford, UK: Oxford University, 1996), pp. 339–366.

Verslegers, L.

B. Lannoo, L. Verslegers, D. Colle, M. Pikavet, P. Demeester, and M. Gagnaire, “Thorough analysis of the IPACT dynamic bandwidth allocation algorithm for EPONs,” in IEEE 4th Int. Conf. Broadband Communication, Networks and Systems, Raleigh, NC, Sept. 2007, pp. 486–494.

Willinger, W.

W. Willinger, M. S. Taqqu, and A. Erramilli, “A bibliographical guide to self-similar traffic and performance modeling for modern high-speed networks,” in Stochastic Networks: Theory and Applications, vol. 4Royal Statistical Society Lecture Notes Series (Oxford, UK: Oxford University, 1996), pp. 339–366.

Wong, S.

Ye, Y.

C. Assi, Y. Ye, S. Dixit, and M. Ali, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol.  21, no. 9, pp. 1467–1477, Nov. 2003.
[CrossRef]

IEEE Commun. Mag. (1)

G. Kramer, B. Mukherjee, and G. Pessavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, 2002.
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

C. Assi, Y. Ye, S. Dixit, and M. Ali, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol.  21, no. 9, pp. 1467–1477, Nov. 2003.
[CrossRef]

IEICE Trans. Commun. (1)

M. Hossen and M. Hanawa, “Adaptive limited dynamic bandwidth allocation scheme to improve bandwidth sharing efficiency in hybrid PON combining FTTH and wireless sensor networks,” IEICE Trans. Commun., vol.  E96-B, no. 1, pp. 127–134, Jan. 2013.
[CrossRef]

Int. J. Wireless Mobile Netw. (1)

M. Hossen and M. Hanawa, “Network architecture and performance analysis of multi-OLT PON for FTTH and wireless sensor networks,” Int. J. Wireless Mobile Netw., vol.  3, no. 6, pp. 1–15, Dec. 2011.
[CrossRef]

J. Comput. Commun. (1)

I. Hwang, Z. Shyu, L. Ke, and C. Chang, “A novel early DBA mechanism with prediction-based fair excessive bandwidth allocation scheme in EPON,” J. Comput. Commun., vol.  31, no. 9, pp. 1814–1823, June 2008.
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Netw. (1)

Wireless Netw. (1)

V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-efficient, collision-free medium access control for wireless sensor networks,” Wireless Netw., vol.  12, no. 1, pp. 63–78, Feb. 2006.
[CrossRef]

Other (5)

“Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications, Amendment: Media Access Control Parameters, Physical Layers, and Management Parameters for Subscriber Access Networks,” , 2004.

M. Hossen, K. Kim, and Y. Park, “A PON-based large sensor network and its performance analysis with Sync-LS MAC protocol,” Arabian J. Sci. Eng., to be published [Online]. Available: http://link.springer.com/content/pdf/10.1007%2Fs13369-013-0571-8.pdf#.
[CrossRef]

W. Willinger, M. S. Taqqu, and A. Erramilli, “A bibliographical guide to self-similar traffic and performance modeling for modern high-speed networks,” in Stochastic Networks: Theory and Applications, vol. 4Royal Statistical Society Lecture Notes Series (Oxford, UK: Oxford University, 1996), pp. 339–366.

B. Lannoo, L. Verslegers, D. Colle, M. Pikavet, P. Demeester, and M. Gagnaire, “Thorough analysis of the IPACT dynamic bandwidth allocation algorithm for EPONs,” in IEEE 4th Int. Conf. Broadband Communication, Networks and Systems, Raleigh, NC, Sept. 2007, pp. 486–494.

AKARI Project Group, sponsored by NICT, “NEW generation network architecture AKARI conceptual design, ver. 2,” Aug.2009 [Online]. Available: http://www.nict.go.jp/en/photonic_nw/archi/akari/concept-design_e.html#block_top1 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Network structure and data transmission for a hybrid multi-OLT PON.

Fig. 2.
Fig. 2.

(a) Downstream data transmission and (b) upstream data transmission in a hybrid multi-OLT PON.

Fig. 3.
Fig. 3.

MPCP operation in a hybrid multi-OLT PON.

Fig. 4.
Fig. 4.

Guard time management in a conventional PON.

Fig. 5.
Fig. 5.

Guard time management in a multi-OLT PON.

Fig. 6.
Fig. 6.

Illustrative example of the ALDBAM scheme for heavily loaded ONUs.

Fig. 7.
Fig. 7.

Scheduling diagram for a Gate message in a multi-OLT PON.

Fig. 8.
Fig. 8.

Average packet delay in milliseconds for NFTTHNWSN=1616.

Fig. 9.
Fig. 9.

Comparison of average packet delay for a 2 ms cycle time.

Fig. 10.
Fig. 10.

Bandwidth utilization for NFTTHNWSN=1616.

Fig. 11.
Fig. 11.

Comparison of bandwidth utilization for a 2 ms cycle time.

Fig. 12.
Fig. 12.

Jitter in milliseconds for NFTTHNWSN=1616.

Fig. 13.
Fig. 13.

Comparison of jitter for a 2 ms cycle time.

Fig. 14.
Fig. 14.

Upstream efficiency for NFTTHNWSN=1616.

Fig. 15.
Fig. 15.

Comparison of upstream efficiency for a 2 ms cycle time.

Fig. 16.
Fig. 16.

Throughput for NFTTHNWSN=1616.

Fig. 17.
Fig. 17.

Comparison of throughput for a 2 ms cycle time.

Tables (1)

Tables Icon

TABLE I Simulation Parameters

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

TG=Toff+TFRTT+Ton+TCDR,
GOLT=Ωmax=Ton+TCDR+TDmax+Toff,
TG_M=TFRTT+TCDR.
TGS_T=N(TGTG_M)=N(Ton+Toff).
GOLT1=WFTTHmax=TCDR+TD(FTTH)max,
GOLT2=WWSNmax=TCDR+TD(WSN)max,
WTS=NWSN(WFTTHmaxWWSNmax).
Wi,jpred=Wi,jR(RTTi+TGD)Ti,jacq,
WTotal,jexcess=m=1LFTTH(WFTTH,jmaxWm,jR)+n=1LWSN(WWSN,jmaxWn,jR),
Wi,jexcess=(WTotal,jexcess+TGS_T)Wi,jRk=1HWk,jR,
GOLT1i,j={Wi,jR+Wi,jpredFor lightly loaded ONUsWFTTHmax+Wi,jexcess+Wi,jpredFor heavily loaded ONUs,
GOLT2i,j={Wi,jR+Wi,jpredFor lightly loaded ONUsWWSNmax+Wi,jexcess+Wi,jpredFor heavily loaded ONUs,
TG2i+1,j=TG1i,j+(RTTi+TFRTT)+TCDR+TD(FTTH)(RTTi+1+TFRTT),
TG1i+2,j=TG2i+1,j+(RTTi+1+TFRTT)+TCDR+TD(WSN)(RTTi+2+TFRTT),
BWU=NFTTHGOLT1+NWSNGOLT2NFTTHGOLT1+NWSNGOLT2+NTC,
Jitter=1n(TavljTavlj1)2,
UE=NFTTHGOLT1+NWSNGOLT2NFTTHPBFTTHmax+NWSNPBWSNmax+NTC,