Abstract

The emergence of beyond high definition digital media formats is a key driver for future networked media applications and services. The data transport and computational requirements of these emerging digital media formats are significantly greater than those of pre-existing media formats. Therefore, there is the need to deploy high-end media processing and storage resources interconnected by high-performance optical networks. To this end, a service-oriented control framework is proposed to facilitate user context-, media-, and network-aware service provisioning. We investigate one of the principal functionalities of this framework: Joint scheduling of media and optical network resources. The immediate and advance user request models are presented. These models are applied to several proposed heuristic algorithms and mathematical formulations based on integer linear programming (ILP). These algorithms and ILPs are comparatively investigated by simulations. The results show that our algorithms and ILPs are able to facilitate high acceptance of user requests as well as effective and efficient use of available media and optical network resources.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cisco, “The zettabyte era,” White Paper, May 2012.
  2. Future Media Network Cluster of Networked Media Systems FP7 Projects, “Future media networks. Research challenges 2010,” White Paper, Oct. 2010.
  3. Digital Cinema Initiatives, “Digital cinema systems specification V1.2,” Oct. 2012.
  4. SMPTE, “Ultra high definition television—image parameter values for program production,” , Oct. 2007.
  5. D. Simeonidou, D. Hunter, M. Ghandour, and R. Nejabati, “Optical network services for ultra high definition digital media distribution,” in Proc. 5th Int. Conf. on Broadband Communications, Networks and Systems (BROADNETS), London, UK, Sept. 2008, pp. 165–168.
  6. K. Oyamada, T. Nakatogawa, and M. Nakamura, “Ultra-high-definition television and its optical transmission,” IEICE Trans. Commun., vol.  E94-B, pp. 876–883, Apr. 2011.
    [CrossRef]
  7. A. Bilgin and M. Marcellin, “JPEG2000 for digital cinema,” in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), Island of Kos, Greece, May 2006.
  8. Y. Shishikui, K. Iguchi, S. Sakaida, K. Kazui, and A. Nakagawa, “High-performance video codec for super hi-vision,” Proc. IEEE, vol.  101, no. 1, pp. 130–139, Jan. 2013.
  9. T. Fujii, D. Shirai, Y. Tonomura, M. Kitamura, T. Nakachi, T. Sawabe, M. Ogawara, T. Yamaguchi, M. Nomura, and K. Shirakawa, “Digital cinema and super-high-definition content distribution on optical high-speed networks,” Proc. IEEE, vol.  101, no. 1, pp. 140–153, Jan. 2013.
    [CrossRef]
  10. M. Kitamura, T. Murooka, M. Teshima, H. Hadama, and A. Takahara, “A study on the correlation between QoE of 4K super high definition video streamings and QoS of network,” in Proc. 18th Int. Conf. on Computer Communications and Networks (ICCCN), San Francisco, CA, Aug. 2009.
  11. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, Nov. 2009.
    [CrossRef]
  12. A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and multiple modulation formats,” J. Lightwave Technol., vol.  28, no. 4, pp. 466–475, Feb. 2010.
    [CrossRef]
  13. J. Kim, S. Han, D.-H. Yi, and N. Kim, “Media-oriented service composition with service overlay networks: Challenges, approaches, and future trends,” J. Commun., vol.  5, pp. 374–389, 2010.
  14. Y. Wang, Y. Jin, W. Guo, W. Sun, and W. Hu, “Joint scheduling for optical grid applications,” J. Opt. Netw., vol.  6, no. 3, pp. 304–318, Mar. 2007.
    [CrossRef]
  15. H.-H. Nguyen, M. Gurusamy, and L. Zhou, “Scheduling network and computing resources for sliding demands in optical grids,” J. Lightwave Technol., vol.  27, no. 12, pp. 1827–1836, June 2009.
    [CrossRef]
  16. C. Abosi, R. Nejabati, and D. Simeonidou, “Service oriented resource orchestration in future optical networks,” in Proc. 20th Int. Conf. on Computer Communications and Networks (ICCCN), Lahaina, HI, Aug. 2011.
  17. “Resource Description Framework (RDF) Primer,” W3C Recommendation, Feb. 2004 [Online]. Available: http://www.w3.org/TR/rdf-primer/ .
  18. “OWL 2 Web Ontology Language Primer (Second Edition),” W3C Recommendation, Dec. 2012 [Online]. Available: http://www.w3.org/TR/owl2-primer/ .
  19. E. E. Mannie, “Generalized multi-protocol label switching (GMPLS) architecture,” , Oct. 2004.
  20. Open Networking Foundation, “Software-defined networking: The new norm for networks,” White Paper, Apr. 2012.
  21. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, and J. Rexford, “OpenFlow: Enabling innovation in campus networks,” Comput. Commun. Rev., vol.  38, no. 2, pp. 69–74, 2008.
    [CrossRef]
  22. S. Das, G. Parulkar, and N. McKeown, “Packet and circuit network convergence with OpenFlow,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, Mar. 2010, paper OTuG1.
  23. L. Lui, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “Experimental validation and performance evaluation of OpenFlow-based wavelength path control in transparent optical networks,” Opt. Express, vol.  19, no. 27, pp. 26578–26593, 2011.
    [CrossRef]
  24. O.-D. Ntofon, M. Channegowda, N. Efstathiou, M. Rashidi-Fard, R. Nejabati, D. Hunter, and D. Simeonidou, “Experimental demonstration of OpenFlow-enabled media ecosystem architecture for high-end applications over metro and core networks,” Opt. Express, vol.  21, no. 4, pp. 4811–4816, 2013.
    [CrossRef]
  25. O.-D. Ntofon, D. Simeonidou, and D. Hunter, “Cloud-based architecture for deploying ultra-high-definition media over intelligent optical networks,” in Proc. 16th Int. Conf. on Optical Network Design and Modeling (ONDM), Colchester, Apr. 2012.
  26. JGraphT [Online]. Available: http://www.jgrapht.org .
  27. IBM CPLEX Optimization Studio [Online]. Available: http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/ .
  28. Network Research Topologies [Online]. Available: http://www.optical-network.com/topology.php .
  29. openJPEG [Online]. Available: http://www.openjpeg.org .
  30. Valgrind [Online]. http://www.valgrind.org .

2013 (3)

Y. Shishikui, K. Iguchi, S. Sakaida, K. Kazui, and A. Nakagawa, “High-performance video codec for super hi-vision,” Proc. IEEE, vol.  101, no. 1, pp. 130–139, Jan. 2013.

T. Fujii, D. Shirai, Y. Tonomura, M. Kitamura, T. Nakachi, T. Sawabe, M. Ogawara, T. Yamaguchi, M. Nomura, and K. Shirakawa, “Digital cinema and super-high-definition content distribution on optical high-speed networks,” Proc. IEEE, vol.  101, no. 1, pp. 140–153, Jan. 2013.
[CrossRef]

O.-D. Ntofon, M. Channegowda, N. Efstathiou, M. Rashidi-Fard, R. Nejabati, D. Hunter, and D. Simeonidou, “Experimental demonstration of OpenFlow-enabled media ecosystem architecture for high-end applications over metro and core networks,” Opt. Express, vol.  21, no. 4, pp. 4811–4816, 2013.
[CrossRef]

2011 (2)

K. Oyamada, T. Nakatogawa, and M. Nakamura, “Ultra-high-definition television and its optical transmission,” IEICE Trans. Commun., vol.  E94-B, pp. 876–883, Apr. 2011.
[CrossRef]

L. Lui, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “Experimental validation and performance evaluation of OpenFlow-based wavelength path control in transparent optical networks,” Opt. Express, vol.  19, no. 27, pp. 26578–26593, 2011.
[CrossRef]

2010 (2)

A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and multiple modulation formats,” J. Lightwave Technol., vol.  28, no. 4, pp. 466–475, Feb. 2010.
[CrossRef]

J. Kim, S. Han, D.-H. Yi, and N. Kim, “Media-oriented service composition with service overlay networks: Challenges, approaches, and future trends,” J. Commun., vol.  5, pp. 374–389, 2010.

2009 (2)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, Nov. 2009.
[CrossRef]

H.-H. Nguyen, M. Gurusamy, and L. Zhou, “Scheduling network and computing resources for sliding demands in optical grids,” J. Lightwave Technol., vol.  27, no. 12, pp. 1827–1836, June 2009.
[CrossRef]

2008 (1)

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, and J. Rexford, “OpenFlow: Enabling innovation in campus networks,” Comput. Commun. Rev., vol.  38, no. 2, pp. 69–74, 2008.
[CrossRef]

2007 (1)

Abosi, C.

C. Abosi, R. Nejabati, and D. Simeonidou, “Service oriented resource orchestration in future optical networks,” in Proc. 20th Int. Conf. on Computer Communications and Networks (ICCCN), Lahaina, HI, Aug. 2011.

Anderson, T.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, and J. Rexford, “OpenFlow: Enabling innovation in campus networks,” Comput. Commun. Rev., vol.  38, no. 2, pp. 69–74, 2008.
[CrossRef]

Balakrishnan, H.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, and J. Rexford, “OpenFlow: Enabling innovation in campus networks,” Comput. Commun. Rev., vol.  38, no. 2, pp. 69–74, 2008.
[CrossRef]

Bilgin, A.

A. Bilgin and M. Marcellin, “JPEG2000 for digital cinema,” in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), Island of Kos, Greece, May 2006.

Channegowda, M.

Das, S.

S. Das, G. Parulkar, and N. McKeown, “Packet and circuit network convergence with OpenFlow,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, Mar. 2010, paper OTuG1.

Efstathiou, N.

Fujii, T.

T. Fujii, D. Shirai, Y. Tonomura, M. Kitamura, T. Nakachi, T. Sawabe, M. Ogawara, T. Yamaguchi, M. Nomura, and K. Shirakawa, “Digital cinema and super-high-definition content distribution on optical high-speed networks,” Proc. IEEE, vol.  101, no. 1, pp. 140–153, Jan. 2013.
[CrossRef]

Ghandour, M.

D. Simeonidou, D. Hunter, M. Ghandour, and R. Nejabati, “Optical network services for ultra high definition digital media distribution,” in Proc. 5th Int. Conf. on Broadband Communications, Networks and Systems (BROADNETS), London, UK, Sept. 2008, pp. 165–168.

Guo, H.

Guo, W.

Gurusamy, M.

Hadama, H.

M. Kitamura, T. Murooka, M. Teshima, H. Hadama, and A. Takahara, “A study on the correlation between QoE of 4K super high definition video streamings and QoS of network,” in Proc. 18th Int. Conf. on Computer Communications and Networks (ICCCN), San Francisco, CA, Aug. 2009.

Han, S.

J. Kim, S. Han, D.-H. Yi, and N. Kim, “Media-oriented service composition with service overlay networks: Challenges, approaches, and future trends,” J. Commun., vol.  5, pp. 374–389, 2010.

Hu, W.

Hunter, D.

O.-D. Ntofon, M. Channegowda, N. Efstathiou, M. Rashidi-Fard, R. Nejabati, D. Hunter, and D. Simeonidou, “Experimental demonstration of OpenFlow-enabled media ecosystem architecture for high-end applications over metro and core networks,” Opt. Express, vol.  21, no. 4, pp. 4811–4816, 2013.
[CrossRef]

O.-D. Ntofon, D. Simeonidou, and D. Hunter, “Cloud-based architecture for deploying ultra-high-definition media over intelligent optical networks,” in Proc. 16th Int. Conf. on Optical Network Design and Modeling (ONDM), Colchester, Apr. 2012.

D. Simeonidou, D. Hunter, M. Ghandour, and R. Nejabati, “Optical network services for ultra high definition digital media distribution,” in Proc. 5th Int. Conf. on Broadband Communications, Networks and Systems (BROADNETS), London, UK, Sept. 2008, pp. 165–168.

Iguchi, K.

Y. Shishikui, K. Iguchi, S. Sakaida, K. Kazui, and A. Nakagawa, “High-performance video codec for super hi-vision,” Proc. IEEE, vol.  101, no. 1, pp. 130–139, Jan. 2013.

Jin, Y.

Jinno, M.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, Nov. 2009.
[CrossRef]

Kazui, K.

Y. Shishikui, K. Iguchi, S. Sakaida, K. Kazui, and A. Nakagawa, “High-performance video codec for super hi-vision,” Proc. IEEE, vol.  101, no. 1, pp. 130–139, Jan. 2013.

Kim, J.

J. Kim, S. Han, D.-H. Yi, and N. Kim, “Media-oriented service composition with service overlay networks: Challenges, approaches, and future trends,” J. Commun., vol.  5, pp. 374–389, 2010.

Kim, N.

J. Kim, S. Han, D.-H. Yi, and N. Kim, “Media-oriented service composition with service overlay networks: Challenges, approaches, and future trends,” J. Commun., vol.  5, pp. 374–389, 2010.

Kitamura, M.

T. Fujii, D. Shirai, Y. Tonomura, M. Kitamura, T. Nakachi, T. Sawabe, M. Ogawara, T. Yamaguchi, M. Nomura, and K. Shirakawa, “Digital cinema and super-high-definition content distribution on optical high-speed networks,” Proc. IEEE, vol.  101, no. 1, pp. 140–153, Jan. 2013.
[CrossRef]

M. Kitamura, T. Murooka, M. Teshima, H. Hadama, and A. Takahara, “A study on the correlation between QoE of 4K super high definition video streamings and QoS of network,” in Proc. 18th Int. Conf. on Computer Communications and Networks (ICCCN), San Francisco, CA, Aug. 2009.

Kozicki, B.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, Nov. 2009.
[CrossRef]

Lui, L.

Mannie, E. E.

E. E. Mannie, “Generalized multi-protocol label switching (GMPLS) architecture,” , Oct. 2004.

Marcellin, M.

A. Bilgin and M. Marcellin, “JPEG2000 for digital cinema,” in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), Island of Kos, Greece, May 2006.

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, Nov. 2009.
[CrossRef]

McKeown, N.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, and J. Rexford, “OpenFlow: Enabling innovation in campus networks,” Comput. Commun. Rev., vol.  38, no. 2, pp. 69–74, 2008.
[CrossRef]

S. Das, G. Parulkar, and N. McKeown, “Packet and circuit network convergence with OpenFlow,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, Mar. 2010, paper OTuG1.

Morita, I.

Mukherjee, B.

Murooka, T.

M. Kitamura, T. Murooka, M. Teshima, H. Hadama, and A. Takahara, “A study on the correlation between QoE of 4K super high definition video streamings and QoS of network,” in Proc. 18th Int. Conf. on Computer Communications and Networks (ICCCN), San Francisco, CA, Aug. 2009.

Nag, A.

Nakachi, T.

T. Fujii, D. Shirai, Y. Tonomura, M. Kitamura, T. Nakachi, T. Sawabe, M. Ogawara, T. Yamaguchi, M. Nomura, and K. Shirakawa, “Digital cinema and super-high-definition content distribution on optical high-speed networks,” Proc. IEEE, vol.  101, no. 1, pp. 140–153, Jan. 2013.
[CrossRef]

Nakagawa, A.

Y. Shishikui, K. Iguchi, S. Sakaida, K. Kazui, and A. Nakagawa, “High-performance video codec for super hi-vision,” Proc. IEEE, vol.  101, no. 1, pp. 130–139, Jan. 2013.

Nakamura, M.

K. Oyamada, T. Nakatogawa, and M. Nakamura, “Ultra-high-definition television and its optical transmission,” IEICE Trans. Commun., vol.  E94-B, pp. 876–883, Apr. 2011.
[CrossRef]

Nakatogawa, T.

K. Oyamada, T. Nakatogawa, and M. Nakamura, “Ultra-high-definition television and its optical transmission,” IEICE Trans. Commun., vol.  E94-B, pp. 876–883, Apr. 2011.
[CrossRef]

Nejabati, R.

O.-D. Ntofon, M. Channegowda, N. Efstathiou, M. Rashidi-Fard, R. Nejabati, D. Hunter, and D. Simeonidou, “Experimental demonstration of OpenFlow-enabled media ecosystem architecture for high-end applications over metro and core networks,” Opt. Express, vol.  21, no. 4, pp. 4811–4816, 2013.
[CrossRef]

D. Simeonidou, D. Hunter, M. Ghandour, and R. Nejabati, “Optical network services for ultra high definition digital media distribution,” in Proc. 5th Int. Conf. on Broadband Communications, Networks and Systems (BROADNETS), London, UK, Sept. 2008, pp. 165–168.

C. Abosi, R. Nejabati, and D. Simeonidou, “Service oriented resource orchestration in future optical networks,” in Proc. 20th Int. Conf. on Computer Communications and Networks (ICCCN), Lahaina, HI, Aug. 2011.

Nguyen, H.-H.

Nomura, M.

T. Fujii, D. Shirai, Y. Tonomura, M. Kitamura, T. Nakachi, T. Sawabe, M. Ogawara, T. Yamaguchi, M. Nomura, and K. Shirakawa, “Digital cinema and super-high-definition content distribution on optical high-speed networks,” Proc. IEEE, vol.  101, no. 1, pp. 140–153, Jan. 2013.
[CrossRef]

Ntofon, O.-D.

O.-D. Ntofon, M. Channegowda, N. Efstathiou, M. Rashidi-Fard, R. Nejabati, D. Hunter, and D. Simeonidou, “Experimental demonstration of OpenFlow-enabled media ecosystem architecture for high-end applications over metro and core networks,” Opt. Express, vol.  21, no. 4, pp. 4811–4816, 2013.
[CrossRef]

O.-D. Ntofon, D. Simeonidou, and D. Hunter, “Cloud-based architecture for deploying ultra-high-definition media over intelligent optical networks,” in Proc. 16th Int. Conf. on Optical Network Design and Modeling (ONDM), Colchester, Apr. 2012.

Ogawara, M.

T. Fujii, D. Shirai, Y. Tonomura, M. Kitamura, T. Nakachi, T. Sawabe, M. Ogawara, T. Yamaguchi, M. Nomura, and K. Shirakawa, “Digital cinema and super-high-definition content distribution on optical high-speed networks,” Proc. IEEE, vol.  101, no. 1, pp. 140–153, Jan. 2013.
[CrossRef]

Oyamada, K.

K. Oyamada, T. Nakatogawa, and M. Nakamura, “Ultra-high-definition television and its optical transmission,” IEICE Trans. Commun., vol.  E94-B, pp. 876–883, Apr. 2011.
[CrossRef]

Parulkar, G.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, and J. Rexford, “OpenFlow: Enabling innovation in campus networks,” Comput. Commun. Rev., vol.  38, no. 2, pp. 69–74, 2008.
[CrossRef]

S. Das, G. Parulkar, and N. McKeown, “Packet and circuit network convergence with OpenFlow,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, Mar. 2010, paper OTuG1.

Peterson, L.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, and J. Rexford, “OpenFlow: Enabling innovation in campus networks,” Comput. Commun. Rev., vol.  38, no. 2, pp. 69–74, 2008.
[CrossRef]

Rashidi-Fard, M.

Rexford, J.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, and J. Rexford, “OpenFlow: Enabling innovation in campus networks,” Comput. Commun. Rev., vol.  38, no. 2, pp. 69–74, 2008.
[CrossRef]

Sakaida, S.

Y. Shishikui, K. Iguchi, S. Sakaida, K. Kazui, and A. Nakagawa, “High-performance video codec for super hi-vision,” Proc. IEEE, vol.  101, no. 1, pp. 130–139, Jan. 2013.

Sawabe, T.

T. Fujii, D. Shirai, Y. Tonomura, M. Kitamura, T. Nakachi, T. Sawabe, M. Ogawara, T. Yamaguchi, M. Nomura, and K. Shirakawa, “Digital cinema and super-high-definition content distribution on optical high-speed networks,” Proc. IEEE, vol.  101, no. 1, pp. 140–153, Jan. 2013.
[CrossRef]

Shirai, D.

T. Fujii, D. Shirai, Y. Tonomura, M. Kitamura, T. Nakachi, T. Sawabe, M. Ogawara, T. Yamaguchi, M. Nomura, and K. Shirakawa, “Digital cinema and super-high-definition content distribution on optical high-speed networks,” Proc. IEEE, vol.  101, no. 1, pp. 140–153, Jan. 2013.
[CrossRef]

Shirakawa, K.

T. Fujii, D. Shirai, Y. Tonomura, M. Kitamura, T. Nakachi, T. Sawabe, M. Ogawara, T. Yamaguchi, M. Nomura, and K. Shirakawa, “Digital cinema and super-high-definition content distribution on optical high-speed networks,” Proc. IEEE, vol.  101, no. 1, pp. 140–153, Jan. 2013.
[CrossRef]

Shishikui, Y.

Y. Shishikui, K. Iguchi, S. Sakaida, K. Kazui, and A. Nakagawa, “High-performance video codec for super hi-vision,” Proc. IEEE, vol.  101, no. 1, pp. 130–139, Jan. 2013.

Simeonidou, D.

O.-D. Ntofon, M. Channegowda, N. Efstathiou, M. Rashidi-Fard, R. Nejabati, D. Hunter, and D. Simeonidou, “Experimental demonstration of OpenFlow-enabled media ecosystem architecture for high-end applications over metro and core networks,” Opt. Express, vol.  21, no. 4, pp. 4811–4816, 2013.
[CrossRef]

D. Simeonidou, D. Hunter, M. Ghandour, and R. Nejabati, “Optical network services for ultra high definition digital media distribution,” in Proc. 5th Int. Conf. on Broadband Communications, Networks and Systems (BROADNETS), London, UK, Sept. 2008, pp. 165–168.

C. Abosi, R. Nejabati, and D. Simeonidou, “Service oriented resource orchestration in future optical networks,” in Proc. 20th Int. Conf. on Computer Communications and Networks (ICCCN), Lahaina, HI, Aug. 2011.

O.-D. Ntofon, D. Simeonidou, and D. Hunter, “Cloud-based architecture for deploying ultra-high-definition media over intelligent optical networks,” in Proc. 16th Int. Conf. on Optical Network Design and Modeling (ONDM), Colchester, Apr. 2012.

Sone, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, Nov. 2009.
[CrossRef]

Sun, W.

Takahara, A.

M. Kitamura, T. Murooka, M. Teshima, H. Hadama, and A. Takahara, “A study on the correlation between QoE of 4K super high definition video streamings and QoS of network,” in Proc. 18th Int. Conf. on Computer Communications and Networks (ICCCN), San Francisco, CA, Aug. 2009.

Takara, H.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, Nov. 2009.
[CrossRef]

Teshima, M.

M. Kitamura, T. Murooka, M. Teshima, H. Hadama, and A. Takahara, “A study on the correlation between QoE of 4K super high definition video streamings and QoS of network,” in Proc. 18th Int. Conf. on Computer Communications and Networks (ICCCN), San Francisco, CA, Aug. 2009.

Tonomura, Y.

T. Fujii, D. Shirai, Y. Tonomura, M. Kitamura, T. Nakachi, T. Sawabe, M. Ogawara, T. Yamaguchi, M. Nomura, and K. Shirakawa, “Digital cinema and super-high-definition content distribution on optical high-speed networks,” Proc. IEEE, vol.  101, no. 1, pp. 140–153, Jan. 2013.
[CrossRef]

Tornatore, M.

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, Nov. 2009.
[CrossRef]

Tsuritani, T.

Wang, Y.

Wu, J.

Yamaguchi, T.

T. Fujii, D. Shirai, Y. Tonomura, M. Kitamura, T. Nakachi, T. Sawabe, M. Ogawara, T. Yamaguchi, M. Nomura, and K. Shirakawa, “Digital cinema and super-high-definition content distribution on optical high-speed networks,” Proc. IEEE, vol.  101, no. 1, pp. 140–153, Jan. 2013.
[CrossRef]

Yi, D.-H.

J. Kim, S. Han, D.-H. Yi, and N. Kim, “Media-oriented service composition with service overlay networks: Challenges, approaches, and future trends,” J. Commun., vol.  5, pp. 374–389, 2010.

Zhou, L.

Comput. Commun. Rev. (1)

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, and J. Rexford, “OpenFlow: Enabling innovation in campus networks,” Comput. Commun. Rev., vol.  38, no. 2, pp. 69–74, 2008.
[CrossRef]

IEEE Commun. Mag. (1)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, Nov. 2009.
[CrossRef]

IEICE Trans. Commun. (1)

K. Oyamada, T. Nakatogawa, and M. Nakamura, “Ultra-high-definition television and its optical transmission,” IEICE Trans. Commun., vol.  E94-B, pp. 876–883, Apr. 2011.
[CrossRef]

J. Commun. (1)

J. Kim, S. Han, D.-H. Yi, and N. Kim, “Media-oriented service composition with service overlay networks: Challenges, approaches, and future trends,” J. Commun., vol.  5, pp. 374–389, 2010.

J. Lightwave Technol. (2)

J. Opt. Netw. (1)

Opt. Express (2)

Proc. IEEE (2)

Y. Shishikui, K. Iguchi, S. Sakaida, K. Kazui, and A. Nakagawa, “High-performance video codec for super hi-vision,” Proc. IEEE, vol.  101, no. 1, pp. 130–139, Jan. 2013.

T. Fujii, D. Shirai, Y. Tonomura, M. Kitamura, T. Nakachi, T. Sawabe, M. Ogawara, T. Yamaguchi, M. Nomura, and K. Shirakawa, “Digital cinema and super-high-definition content distribution on optical high-speed networks,” Proc. IEEE, vol.  101, no. 1, pp. 140–153, Jan. 2013.
[CrossRef]

Other (19)

M. Kitamura, T. Murooka, M. Teshima, H. Hadama, and A. Takahara, “A study on the correlation between QoE of 4K super high definition video streamings and QoS of network,” in Proc. 18th Int. Conf. on Computer Communications and Networks (ICCCN), San Francisco, CA, Aug. 2009.

A. Bilgin and M. Marcellin, “JPEG2000 for digital cinema,” in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), Island of Kos, Greece, May 2006.

Cisco, “The zettabyte era,” White Paper, May 2012.

Future Media Network Cluster of Networked Media Systems FP7 Projects, “Future media networks. Research challenges 2010,” White Paper, Oct. 2010.

Digital Cinema Initiatives, “Digital cinema systems specification V1.2,” Oct. 2012.

SMPTE, “Ultra high definition television—image parameter values for program production,” , Oct. 2007.

D. Simeonidou, D. Hunter, M. Ghandour, and R. Nejabati, “Optical network services for ultra high definition digital media distribution,” in Proc. 5th Int. Conf. on Broadband Communications, Networks and Systems (BROADNETS), London, UK, Sept. 2008, pp. 165–168.

C. Abosi, R. Nejabati, and D. Simeonidou, “Service oriented resource orchestration in future optical networks,” in Proc. 20th Int. Conf. on Computer Communications and Networks (ICCCN), Lahaina, HI, Aug. 2011.

“Resource Description Framework (RDF) Primer,” W3C Recommendation, Feb. 2004 [Online]. Available: http://www.w3.org/TR/rdf-primer/ .

“OWL 2 Web Ontology Language Primer (Second Edition),” W3C Recommendation, Dec. 2012 [Online]. Available: http://www.w3.org/TR/owl2-primer/ .

E. E. Mannie, “Generalized multi-protocol label switching (GMPLS) architecture,” , Oct. 2004.

Open Networking Foundation, “Software-defined networking: The new norm for networks,” White Paper, Apr. 2012.

O.-D. Ntofon, D. Simeonidou, and D. Hunter, “Cloud-based architecture for deploying ultra-high-definition media over intelligent optical networks,” in Proc. 16th Int. Conf. on Optical Network Design and Modeling (ONDM), Colchester, Apr. 2012.

JGraphT [Online]. Available: http://www.jgrapht.org .

IBM CPLEX Optimization Studio [Online]. Available: http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/ .

Network Research Topologies [Online]. Available: http://www.optical-network.com/topology.php .

openJPEG [Online]. Available: http://www.openjpeg.org .

Valgrind [Online]. http://www.valgrind.org .

S. Das, G. Parulkar, and N. McKeown, “Packet and circuit network convergence with OpenFlow,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, Mar. 2010, paper OTuG1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Proposed service-oriented control framework architecture.

Fig. 2.
Fig. 2.

Network topologies for simulations of online schedulers. (a) EON and (b) NSFNET.

Fig. 3.
Fig. 3.

Network topologies for simulations of offline schedulers. (a) SmallNet and (b) 6-node network.

Fig. 4.
Fig. 4.

Acceptance ratio over the entire simulated period. (a) EON and (b) NSFNET.

Fig. 5.
Fig. 5.

Peak operating period for 180 user request set—EON.

Fig. 6.
Fig. 6.

Acceptance ratio during peak operating period. (a) EON and (b) NSFNET.

Fig. 7.
Fig. 7.

Request-to-site mapping during peak operating period—EON. (a) MinSCCA, (b) MaxSCCA, and (c) RanSCCA.

Fig. 8.
Fig. 8.

Number of hops scheduled during peak operating period—EON. (a) Total hops and (b) mean hops.

Fig. 9.
Fig. 9.

Peak utilization for each request set during an entire simulated period—EON. (a) MinSCCA, (b) MaxSCCA, and (c) RanSCCA.

Fig. 10.
Fig. 10.

Acceptance ratio over the entire simulated period. (a) SmallNet and (b) 6-node network.

Fig. 11.
Fig. 11.

Number of accepted requests per format over the entire simulated period—SmallNet. (a) MCSD, (b) LCSD, (c) NMNA, and (d) AMNA.

Fig. 12.
Fig. 12.

Number of hops scheduled—SmallNet. (a) Total hops and (b) mean hops.

Fig. 13.
Fig. 13.

Peak utilization during entire simulated period—SmallNet. (a) MCSD, (b) LCSD, (c) NMNA, and (d) AMNA.

Fig. 14.
Fig. 14.

Peak utilization during entire simulated period—6-node network. (a) NMNA and (b) AMNA.

Tables (7)

Tables Icon

TABLE I Parameters for Online Scheduling

Tables Icon

Algorithm 1 MinSCCA and MaxSCCA Algorithms

Tables Icon

Algorithm 2 RanSCCA Algorithm

Tables Icon

TABLE II Parameters for Offline Scheduling

Tables Icon

Algorithm 3 MCSD and LCSD Algorithms

Tables Icon

TABLE III Computational Requirements Measured in Instructions (Instr) Observed Via Empirical Profiling of Media Formats

Tables Icon

TABLE IV Bit Rates and User Preference Values for Simulations

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

max u r U α u .
s i S ϱ ( u , s ) = α u ; u r U .
ϱ u , s κ s , c , f ; u r U , s i S .
ι u , e α u ; u r U , e e E .
u r U ϱ u , s , t × ς ¯ f r θ s , t 1 ; s i S , t T .
s i S , t T ; θ s , t = θ s , t 1 ( u r U ϱ u , s , t str × ς ¯ f ) + ( u r U ϱ u , s , t stp × ς ¯ f ) .
u r U ι u , e , t × δ f b e , t 1 ; e ( i , j ) E , t T .
e ( i , j ) E , t T ; b e , t = b e , t 1 ( u r U ι u , e , t str × δ f ) + ( u r U ι u , e , t stp × δ f ) .
u r U , i V ; j V e ( i , j ) E ι u , ( i , j ) j V e ( j , i ) E ι u , ( j , i ) = { ϱ u , s if i s i S , α u if i u i U 0 otherwise . ,
ι u , ( i , j ) + ι u , ( j , i ) 1 ; u r U , e ( i , j ) E .
min u r U ι u , e .
u r U α u T .
u r U α u r , f A f ; f F .
max u r U f i F α u , f · ω ( u , f ) .
f F α u , f 1 ; u r U .
s i S ϱ u , s , f = α u , f ; u r U , f i F .
f F ϱ u , s , f κ s , c , f ; u r U , s i S .
ι u , e , f α u , f ; u r U , f i F , e ( i , j ) E .
u r U f i F ϱ u , s , f , t × ς ¯ f θ s , t 1 ; s i S , t T .
θ s , t = θ s , t 1 ( u r U f i F ϱ u , s , f , t str × ς ¯ f ) + ( u r U f i F ϱ u , s , f , t stp × ς ¯ f ) ; s i S , t T .
u r U f i F ι u , e , f × δ f b e , t 1 ; e ( i , j ) E , t T .
b e , t = b e , t 1 ( u r U f i F ι u , e , f , t str × δ f ) + ( u r U f F ι u , e , f , t stp × δ f ) ; e ( i , j ) E , t T .
u r U , f i F , i V ; j V e ( i , j ) E ι u , ( i , j ) , f j V e ( j , i ) E ι u , ( j , i ) , f = { ϱ u , s , f if i s i S , α u , f if i u r U , 0 otherwise .
ι u , ( i , j ) , f + ι u , ( j , i ) , f 1 ; u r U , f i F , e ( i , j ) E .
min u r U f i F ι u , e , f .
u r U f i F α u , r · ω ( u , f ) Q .
u r U α u , f A f ; f i F .
Instructions / s = Instructions / frame × Frames / s .