Abstract

With traffic carried by fiber access networks continuously increasing, the survivability and scalability of networks have become critical for their applicability. In this paper, a low-redundancy passive optical network (PON) architecture using a star-cross-bus topology is presented along with a scale-differentiated, centrally controlled hybrid failure localization and restoration procedure. The network can provide protections for the feeder and distribution fibers as well as the optical line terminal transceivers, where multiple failures can be restored within 2.1–8.2 μs with local failures restored locally. Analyses show that the network is highly survivable and that its expected survivability for a 128-ONU PON with 16 failures can be 8%, 9 times, and 8 times higher than those of dual-feeder-star, ring, and dual-ring networks, respectively. In addition, the network is also scalable such that hundreds of to a thousand optical network units (ONUs) can be accessed for loss budgets of 30–40 dB.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Machuca, J. Chen, and L. Wosinska, “Cost-efficient protection in TDM PONs,” IEEE Commun. Mag., vol.  50, no. 8, pp. 110–117, 2012.
    [CrossRef]
  2. E. S. Son, K. H. Han, J. H. Lee, and Y. C. Chung, “Survivable network architectures for WDM PON,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf., 2005, paper OFI4.
  3. K. Lee, S. B. Lee, J. H. Lee, Y. G. Han, S. G. Mun, S. M. Lee, and C. H. Lee, “A self-restorable architecture for bidirectional wavelength-division-multiplexed passive optical network with colorless ONUs,” Opt. Express, vol.  15, no. 8, pp. 4863–4868, 2007.
    [CrossRef]
  4. K. Lee, S. G. Mun, C. H. Lee, and S. B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett., vol.  20, no. 9, pp. 679–681, May 2008.
    [CrossRef]
  5. X. Sun, C.-K. Chan, and L. K. Chen, “A survivable WDM-PON architecture with centralized alternate-path protection switching for traffic restoration,” IEEE Photon. Technol. Lett., vol.  18, no. 4, pp. 631–633, Feb. 2006.
    [CrossRef]
  6. C.-H. Yeh and S. Chi, “Self-healing ring-based time-sharing passive optical networks,” IEEE Photon. Technol. Lett., vol.  19, no. 15, pp. 1139–1141, 2007.
    [CrossRef]
  7. Z. Wang, X. Sun, C. Lin, C. K. Chan, and L. K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon. Technol. Lett., vol.  17, no. 3, pp. 717–719, 2005.
    [CrossRef]
  8. Y. Liu, L. Guo, and X. Wei, “Optimizing backup optical-network-units selection and backup fibers deployment in survivable hybrid wireless-optical broadband access networks,” J. Lightwave Technol., vol.  30, no. 10, pp. 1509–1523, 2012.
    [CrossRef]
  9. T. Feng and L. Ruan, “Design of a survivable hybrid wireless-optical broadband access network,” J. Opt. Commun. Netw., vol.  3, no. 5, pp. 458–464, 2011.
    [CrossRef]
  10. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol., vol.  30, no. 4, pp. 384–398, Feb. 2012.
    [CrossRef]
  11. N. Cvijetic, M. Cvijetic, M.-F. Huang, E. Ip, Y. K. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol., vol.  30, no. 4, pp. 493–503, 2012.
    [CrossRef]
  12. A. R. Dhaini, C. M. Assi, M. Maier, and A. Shami, “Dynamic wavelength and bandwidth allocation in hybrid TDM/WDM EPON Networks,” J. Lightwave Technol., vol.  25, no. 1, pp. 277–286, 2007.
    [CrossRef]
  13. Y.-L. Hsueh, M. S. Rogge, S. Yamamoto, and L. G. Kazovsky, “A highly flexible and efficient passive optical network employing dynamic wavelength allocation,” J. Lightwave Technol., vol.  23, no. 1, pp. 277–286, 2005.
    [CrossRef]
  14. M. Ruffini, D. Mehta, B. O’Sullivan, L. Quesada, L. Doyle, and D. B. Payne, “Deployment strategies for protected long-reach PON,” J. Opt. Commun. Netw., vol.  4, no. 2, pp. 118–129, 2012.
    [CrossRef]
  15. “Gigabit-Capable Passive Optical Network (GPON): General Characteristics,” , 2003.
  16. “Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification,” , 2004.
  17. W. Vivian, “General Introduction of Tunable Filters” [Online]. Available: http://www.lightwaves2020.com/publications/lightvision/newsletter-Jun-2008.pdf .
  18. S. C. Liew and K. W. Lu, “A framework for characterizing disaster-based network survivability,” IEEE J. Sel. Areas Commun., vol.  12, no. 1, pp. 52–58, 1994.
    [CrossRef]
  19. W. Molisz, “Survivability function—A measure of disaster-based routing performance,” IEEE J. Sel. Areas Commun., vol.  22, no. 9, pp. 1876–1883, 2004.
    [CrossRef]

2012 (5)

2011 (1)

2008 (1)

K. Lee, S. G. Mun, C. H. Lee, and S. B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett., vol.  20, no. 9, pp. 679–681, May 2008.
[CrossRef]

2007 (3)

2006 (1)

X. Sun, C.-K. Chan, and L. K. Chen, “A survivable WDM-PON architecture with centralized alternate-path protection switching for traffic restoration,” IEEE Photon. Technol. Lett., vol.  18, no. 4, pp. 631–633, Feb. 2006.
[CrossRef]

2005 (2)

Z. Wang, X. Sun, C. Lin, C. K. Chan, and L. K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon. Technol. Lett., vol.  17, no. 3, pp. 717–719, 2005.
[CrossRef]

Y.-L. Hsueh, M. S. Rogge, S. Yamamoto, and L. G. Kazovsky, “A highly flexible and efficient passive optical network employing dynamic wavelength allocation,” J. Lightwave Technol., vol.  23, no. 1, pp. 277–286, 2005.
[CrossRef]

2004 (1)

W. Molisz, “Survivability function—A measure of disaster-based routing performance,” IEEE J. Sel. Areas Commun., vol.  22, no. 9, pp. 1876–1883, 2004.
[CrossRef]

1994 (1)

S. C. Liew and K. W. Lu, “A framework for characterizing disaster-based network survivability,” IEEE J. Sel. Areas Commun., vol.  12, no. 1, pp. 52–58, 1994.
[CrossRef]

Assi, C. M.

Chan, C. K.

Z. Wang, X. Sun, C. Lin, C. K. Chan, and L. K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon. Technol. Lett., vol.  17, no. 3, pp. 717–719, 2005.
[CrossRef]

Chan, C.-K.

X. Sun, C.-K. Chan, and L. K. Chen, “A survivable WDM-PON architecture with centralized alternate-path protection switching for traffic restoration,” IEEE Photon. Technol. Lett., vol.  18, no. 4, pp. 631–633, Feb. 2006.
[CrossRef]

Chen, J.

C. M. Machuca, J. Chen, and L. Wosinska, “Cost-efficient protection in TDM PONs,” IEEE Commun. Mag., vol.  50, no. 8, pp. 110–117, 2012.
[CrossRef]

Chen, L. K.

X. Sun, C.-K. Chan, and L. K. Chen, “A survivable WDM-PON architecture with centralized alternate-path protection switching for traffic restoration,” IEEE Photon. Technol. Lett., vol.  18, no. 4, pp. 631–633, Feb. 2006.
[CrossRef]

Z. Wang, X. Sun, C. Lin, C. K. Chan, and L. K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon. Technol. Lett., vol.  17, no. 3, pp. 717–719, 2005.
[CrossRef]

Chi, S.

C.-H. Yeh and S. Chi, “Self-healing ring-based time-sharing passive optical networks,” IEEE Photon. Technol. Lett., vol.  19, no. 15, pp. 1139–1141, 2007.
[CrossRef]

Chung, Y. C.

E. S. Son, K. H. Han, J. H. Lee, and Y. C. Chung, “Survivable network architectures for WDM PON,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf., 2005, paper OFI4.

Cvijetic, M.

Cvijetic, N.

Dhaini, A. R.

Doyle, L.

Feng, T.

Guo, L.

Han, K. H.

E. S. Son, K. H. Han, J. H. Lee, and Y. C. Chung, “Survivable network architectures for WDM PON,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf., 2005, paper OFI4.

Han, Y. G.

Hsueh, Y.-L.

Huang, M.-F.

Huang, Y. K.

Ip, E.

Kazovsky, L. G.

Lee, C. H.

K. Lee, S. G. Mun, C. H. Lee, and S. B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett., vol.  20, no. 9, pp. 679–681, May 2008.
[CrossRef]

K. Lee, S. B. Lee, J. H. Lee, Y. G. Han, S. G. Mun, S. M. Lee, and C. H. Lee, “A self-restorable architecture for bidirectional wavelength-division-multiplexed passive optical network with colorless ONUs,” Opt. Express, vol.  15, no. 8, pp. 4863–4868, 2007.
[CrossRef]

Lee, J. H.

K. Lee, S. B. Lee, J. H. Lee, Y. G. Han, S. G. Mun, S. M. Lee, and C. H. Lee, “A self-restorable architecture for bidirectional wavelength-division-multiplexed passive optical network with colorless ONUs,” Opt. Express, vol.  15, no. 8, pp. 4863–4868, 2007.
[CrossRef]

E. S. Son, K. H. Han, J. H. Lee, and Y. C. Chung, “Survivable network architectures for WDM PON,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf., 2005, paper OFI4.

Lee, K.

K. Lee, S. G. Mun, C. H. Lee, and S. B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett., vol.  20, no. 9, pp. 679–681, May 2008.
[CrossRef]

K. Lee, S. B. Lee, J. H. Lee, Y. G. Han, S. G. Mun, S. M. Lee, and C. H. Lee, “A self-restorable architecture for bidirectional wavelength-division-multiplexed passive optical network with colorless ONUs,” Opt. Express, vol.  15, no. 8, pp. 4863–4868, 2007.
[CrossRef]

Lee, S. B.

K. Lee, S. G. Mun, C. H. Lee, and S. B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett., vol.  20, no. 9, pp. 679–681, May 2008.
[CrossRef]

K. Lee, S. B. Lee, J. H. Lee, Y. G. Han, S. G. Mun, S. M. Lee, and C. H. Lee, “A self-restorable architecture for bidirectional wavelength-division-multiplexed passive optical network with colorless ONUs,” Opt. Express, vol.  15, no. 8, pp. 4863–4868, 2007.
[CrossRef]

Lee, S. M.

Liew, S. C.

S. C. Liew and K. W. Lu, “A framework for characterizing disaster-based network survivability,” IEEE J. Sel. Areas Commun., vol.  12, no. 1, pp. 52–58, 1994.
[CrossRef]

Lin, C.

Z. Wang, X. Sun, C. Lin, C. K. Chan, and L. K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon. Technol. Lett., vol.  17, no. 3, pp. 717–719, 2005.
[CrossRef]

Liu, Y.

Lu, K. W.

S. C. Liew and K. W. Lu, “A framework for characterizing disaster-based network survivability,” IEEE J. Sel. Areas Commun., vol.  12, no. 1, pp. 52–58, 1994.
[CrossRef]

Machuca, C. M.

C. M. Machuca, J. Chen, and L. Wosinska, “Cost-efficient protection in TDM PONs,” IEEE Commun. Mag., vol.  50, no. 8, pp. 110–117, 2012.
[CrossRef]

Maier, M.

Mehta, D.

Molisz, W.

W. Molisz, “Survivability function—A measure of disaster-based routing performance,” IEEE J. Sel. Areas Commun., vol.  22, no. 9, pp. 1876–1883, 2004.
[CrossRef]

Mun, S. G.

K. Lee, S. G. Mun, C. H. Lee, and S. B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett., vol.  20, no. 9, pp. 679–681, May 2008.
[CrossRef]

K. Lee, S. B. Lee, J. H. Lee, Y. G. Han, S. G. Mun, S. M. Lee, and C. H. Lee, “A self-restorable architecture for bidirectional wavelength-division-multiplexed passive optical network with colorless ONUs,” Opt. Express, vol.  15, no. 8, pp. 4863–4868, 2007.
[CrossRef]

O’Sullivan, B.

Payne, D. B.

Quesada, L.

Rogge, M. S.

Ruan, L.

Ruffini, M.

Shami, A.

Son, E. S.

E. S. Son, K. H. Han, J. H. Lee, and Y. C. Chung, “Survivable network architectures for WDM PON,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf., 2005, paper OFI4.

Sun, X.

X. Sun, C.-K. Chan, and L. K. Chen, “A survivable WDM-PON architecture with centralized alternate-path protection switching for traffic restoration,” IEEE Photon. Technol. Lett., vol.  18, no. 4, pp. 631–633, Feb. 2006.
[CrossRef]

Z. Wang, X. Sun, C. Lin, C. K. Chan, and L. K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon. Technol. Lett., vol.  17, no. 3, pp. 717–719, 2005.
[CrossRef]

Wang, T.

Wang, Z.

Z. Wang, X. Sun, C. Lin, C. K. Chan, and L. K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon. Technol. Lett., vol.  17, no. 3, pp. 717–719, 2005.
[CrossRef]

Wei, X.

Wosinska, L.

C. M. Machuca, J. Chen, and L. Wosinska, “Cost-efficient protection in TDM PONs,” IEEE Commun. Mag., vol.  50, no. 8, pp. 110–117, 2012.
[CrossRef]

Yamamoto, S.

Yeh, C.-H.

C.-H. Yeh and S. Chi, “Self-healing ring-based time-sharing passive optical networks,” IEEE Photon. Technol. Lett., vol.  19, no. 15, pp. 1139–1141, 2007.
[CrossRef]

IEEE Commun. Mag. (1)

C. M. Machuca, J. Chen, and L. Wosinska, “Cost-efficient protection in TDM PONs,” IEEE Commun. Mag., vol.  50, no. 8, pp. 110–117, 2012.
[CrossRef]

IEEE J. Sel. Areas Commun. (2)

S. C. Liew and K. W. Lu, “A framework for characterizing disaster-based network survivability,” IEEE J. Sel. Areas Commun., vol.  12, no. 1, pp. 52–58, 1994.
[CrossRef]

W. Molisz, “Survivability function—A measure of disaster-based routing performance,” IEEE J. Sel. Areas Commun., vol.  22, no. 9, pp. 1876–1883, 2004.
[CrossRef]

IEEE Photon. Technol. Lett. (4)

K. Lee, S. G. Mun, C. H. Lee, and S. B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett., vol.  20, no. 9, pp. 679–681, May 2008.
[CrossRef]

X. Sun, C.-K. Chan, and L. K. Chen, “A survivable WDM-PON architecture with centralized alternate-path protection switching for traffic restoration,” IEEE Photon. Technol. Lett., vol.  18, no. 4, pp. 631–633, Feb. 2006.
[CrossRef]

C.-H. Yeh and S. Chi, “Self-healing ring-based time-sharing passive optical networks,” IEEE Photon. Technol. Lett., vol.  19, no. 15, pp. 1139–1141, 2007.
[CrossRef]

Z. Wang, X. Sun, C. Lin, C. K. Chan, and L. K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon. Technol. Lett., vol.  17, no. 3, pp. 717–719, 2005.
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Commun. Netw. (2)

Opt. Express (1)

Other (4)

E. S. Son, K. H. Han, J. H. Lee, and Y. C. Chung, “Survivable network architectures for WDM PON,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf., 2005, paper OFI4.

“Gigabit-Capable Passive Optical Network (GPON): General Characteristics,” , 2003.

“Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification,” , 2004.

W. Vivian, “General Introduction of Tunable Filters” [Online]. Available: http://www.lightwaves2020.com/publications/lightvision/newsletter-Jun-2008.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Proposed PON structure.

Fig. 2.
Fig. 2.

Failure restoration process.

Fig. 3.
Fig. 3.

Fiber-failure restoration.

Fig. 4.
Fig. 4.

Hybrid OLT transceiver and fiber-failure restoration.

Fig. 5.
Fig. 5.

Proposed resynchronization process.

Fig. 6.
Fig. 6.

Survivability comparison of some PON architectures with 128 ONUs.

Fig. 7.
Fig. 7.

ONU distributions in a group, which show the Maximum Physical Reach, lpm, and the Maximum Minimum Reach, lmm.

Fig. 8.
Fig. 8.

Maximum scalability of the ONU groups with even ONU distributions and (a) Lse=0.4dB or (b) Lse=0.25dB.

Fig. 9.
Fig. 9.

Scalability of the PONs with multilevel split ratios under loss budgets of (a) 30 dB and (b) 40 dB.

Fig. 10.
Fig. 10.

Types of splitters needed with respect to the number of ONUs, under loss budgets of (a) 30 dB and (b) 40 dB.

Tables (1)

Tables Icon

TABLE I Resource Requirement for PON of M ONUs

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

TsynN1×Tf+(Tpd×2+EqDmax+Tf)+Ts+2×Tf+Tpd=N=51.4ms.
Trmax=Td+Tl+Tp+Tsyn0.65ms+5.05ms+1ms+1.4ms=8.2ms.
Tr=Td+TOS+Tsyn0.65ms+20μs+1.4ms<2.1ms.
E(S|nff)=s=0nsP(S=s|nff).
lpm(lm+lmm)/2.
γ1=LbLmuxlbaO×αfLseLcoupLm,
γi=γi1+10lg(110γi/10)αf×lbaOLse.
γk>10lg(110γk/10)+αf×lbaO.
Pi=P1iαf×l0,i(i1)×10lg(110γ/10)γ(i1)×Lse,