Abstract

Transferring wireless broadband services across extremely far distances on Earth is usually implemented nowadays either by ground-based or satellite communications. Terrestrial networks require, however, heavy installation and maintenance costs, whereas satellite networks suffer from excessively high power requirements. An alternative but highly challenging solution is to employ a network consisting of high-altitude platforms (HAPs). In this paper, we propose a way of delivering WiMAX traffic using a serial multi-hop HAP network configuration. HAPs are located at specific locations in the stratosphere, pick up the traffic from the Earth region they cover, and communicate with each other using optical links. In such a configuration, we determine the WiMAX quality of service by evaluating the outage probability for the entire HAP network. The overall performance is examined by using a channel model that takes into account laser path loss and pointing error effects. The findings of the present study indicate that the consideration of specific network and channel model parameters is crucial toward the design and implementation of future multi-hop HAP networks.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription