Abstract

The effect of thermal noise and avalanche photodiode (APD) noise in a code division multiple access (CDMA) system using generalized optical orthogonal codes (GOOC) are investigated for the first time. The modulations used are pulse position modulation (PPM) and overlapping PPM (OPPM). Double optical hardlimiter receiver structure is selected because of its efficient performance. We show that, in a system with all mentioned noise sources, known parameter values, and a bit error rate of 107, GOOC codes with cross correlation (λ) equal to 2 support 20 more users compared to strict OOC. We have also analyzed the spectral efficiency of the GOOC OPPM system and compared it with GOOC PPM. The results demonstrate that GOOC OPPM has a better spectral efficiency. Using the obtained results, we have provided a parameter selection procedure that can be used to choose a good set of signaling parameters for GOOC OPPM modulation systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Mashhadi and J. A. Salehi, “Optimum code structure for positive optical CDMA using normalized divergence maximization criterion,” IEEE Trans. Commun., vol.  56, pp. 1414–1421, Sept. 2008.
    [CrossRef]
  2. J. A. Salehi and C. A. Brackett, “Code division multiple-access techniques in optical fiber networks—Part II: system performance analysis,” IEEE Trans. Commun., vol.  37, pp. 834–842, Aug. 1989.
    [CrossRef]
  3. S. Mashhadi and J. A. Salehi, “Code division multiple-access techniques in optical fiber networks—Part III: optical AND gate receiver structure with generalized optical orthogonal codes,” IEEE Trans. Commun., vol.  54, pp. 1457–1468, Aug. 2006.
    [CrossRef]
  4. M. Azizoglu, J. A. Salehi, and Y. Li, “Optical CDMA via temporal codes,” IEEE Trans. Commun., vol.  40, no. 7, pp. 1162–1170, July 1992.
    [CrossRef]
  5. M. A. Shoaie, S. Khazraei, and M. R. Pakravan, “Performance analysis of slotted ALOHA random access packet-switching optical CDMA networks using generalized optical orthogonal codes and M-ary overlapping PPM signaling,” J. Opt. Commun. Netw., vol.  3, no. 7, pp. 568–576, July 2011.
    [CrossRef]
  6. H. M. H. Shalaby, “Performance analysis of optical synchronous CDMA communication systems with PPM signaling,” IEEE Trans. Commun., vol.  43, no. 2/3/4, pp. 624–634, Apr. 1995.
    [CrossRef]
  7. S. Khazraei, M. R. Pakravan, and A. Aminzadeh-Gohari, “Analysis of power control for indoor optical wireless code division multiple access networks using on–off keying and binary pulse position modulation,” IET Commun., vol.  4, no. 16, pp. 1919–1933, Nov. 2010.
    [CrossRef]
  8. S. Khazraei and M. R. Pakravan, “Analysis of generalized optical orthogonal codes in optical wireless local area networks,” IEEE J. Sel. Areas Commun., vol.  27, no. 9, pp. 1572–1581, Dec. 2009.
    [CrossRef]
  9. D. Shiu and J. M. Kahn, “Differential pulse position modulation for power-efficient optical communication,” IEEE Trans. Commun., vol.  47, no. 8, pp. 1201–1210, Aug. 1999.
    [CrossRef]
  10. H. M. H. Shalaby, “Effect of thermal noise and APD noise on the performance of OPPM-CDMA receivers,” J. Lightwave Technol., vol.  18, no. 7, pp. 905–914, July 2000.
    [CrossRef]
  11. H. M. H. Shalaby, “A performance analysis of optical overlapping PPM-CDMA communication systems,” J. Lightwave Technol., vol.  17, no. 3, pp. 426–433, 1999.
    [CrossRef]
  12. H. M. H. Shalaby, “Direct detection optical overlapping PPM-CDMA communication systems with double optical hardlimiters,” J. Lightwave Technol., vol.  17, no. 7, pp. 1158–1165, July 1999.
    [CrossRef]
  13. H. M. H. Shalaby, “Chip-level detection in optical code-division multiple access,” J. Lightwave Technol., vol.  16, no. 6, pp. 1077–1087, June 1998.
    [CrossRef]
  14. H. M. R. Al-Khafaji, S. A. Aljunid, and H. A. Fadhil, “Improved BER based on intensity noise alleviation using developed detection technique for incoherent SAC-OCDMA systems,” J. Mod. Opt., vol.  59, no. 10, pp. 878–886, June 2012.
    [CrossRef]
  15. H. M. R. Al-Khafaji, S. A. Aljunid, A. Amphawan, and H. A. Fadhil, “Improving spectral efficiency of SAC-OCDMA systems by SPD scheme,” IEICE Electron. Express, vol.  9, no. 24, pp. 1829–1834, Dec. 2012.
    [CrossRef]
  16. S. Verdu and S. Shamai, “Spectral efficiency of CDMA with random signaling,” IEEE Trans. Inf. Theory, vol.  45, no. 2, pp. 622–640, Mar. 1999.
    [CrossRef]
  17. R. M. Gagliardi and S. Karp, “Optical digital communications,” in Optical Communications, 2nd ed. New York: Wiley, 1995, ch. 6, sec. 6, pp. 205–206.
  18. J. C. Campbell, “Recent advances in telecommunications avalanche photodiodes,” J. Lightwave Technol., vol.  25, no. 1, pp. 109–121, Jan. 2007.
    [CrossRef]

2012 (2)

H. M. R. Al-Khafaji, S. A. Aljunid, and H. A. Fadhil, “Improved BER based on intensity noise alleviation using developed detection technique for incoherent SAC-OCDMA systems,” J. Mod. Opt., vol.  59, no. 10, pp. 878–886, June 2012.
[CrossRef]

H. M. R. Al-Khafaji, S. A. Aljunid, A. Amphawan, and H. A. Fadhil, “Improving spectral efficiency of SAC-OCDMA systems by SPD scheme,” IEICE Electron. Express, vol.  9, no. 24, pp. 1829–1834, Dec. 2012.
[CrossRef]

2011 (1)

2010 (1)

S. Khazraei, M. R. Pakravan, and A. Aminzadeh-Gohari, “Analysis of power control for indoor optical wireless code division multiple access networks using on–off keying and binary pulse position modulation,” IET Commun., vol.  4, no. 16, pp. 1919–1933, Nov. 2010.
[CrossRef]

2009 (1)

S. Khazraei and M. R. Pakravan, “Analysis of generalized optical orthogonal codes in optical wireless local area networks,” IEEE J. Sel. Areas Commun., vol.  27, no. 9, pp. 1572–1581, Dec. 2009.
[CrossRef]

2008 (1)

S. Mashhadi and J. A. Salehi, “Optimum code structure for positive optical CDMA using normalized divergence maximization criterion,” IEEE Trans. Commun., vol.  56, pp. 1414–1421, Sept. 2008.
[CrossRef]

2007 (1)

2006 (1)

S. Mashhadi and J. A. Salehi, “Code division multiple-access techniques in optical fiber networks—Part III: optical AND gate receiver structure with generalized optical orthogonal codes,” IEEE Trans. Commun., vol.  54, pp. 1457–1468, Aug. 2006.
[CrossRef]

2000 (1)

1999 (4)

H. M. H. Shalaby, “A performance analysis of optical overlapping PPM-CDMA communication systems,” J. Lightwave Technol., vol.  17, no. 3, pp. 426–433, 1999.
[CrossRef]

H. M. H. Shalaby, “Direct detection optical overlapping PPM-CDMA communication systems with double optical hardlimiters,” J. Lightwave Technol., vol.  17, no. 7, pp. 1158–1165, July 1999.
[CrossRef]

S. Verdu and S. Shamai, “Spectral efficiency of CDMA with random signaling,” IEEE Trans. Inf. Theory, vol.  45, no. 2, pp. 622–640, Mar. 1999.
[CrossRef]

D. Shiu and J. M. Kahn, “Differential pulse position modulation for power-efficient optical communication,” IEEE Trans. Commun., vol.  47, no. 8, pp. 1201–1210, Aug. 1999.
[CrossRef]

1998 (1)

1995 (1)

H. M. H. Shalaby, “Performance analysis of optical synchronous CDMA communication systems with PPM signaling,” IEEE Trans. Commun., vol.  43, no. 2/3/4, pp. 624–634, Apr. 1995.
[CrossRef]

1992 (1)

M. Azizoglu, J. A. Salehi, and Y. Li, “Optical CDMA via temporal codes,” IEEE Trans. Commun., vol.  40, no. 7, pp. 1162–1170, July 1992.
[CrossRef]

1989 (1)

J. A. Salehi and C. A. Brackett, “Code division multiple-access techniques in optical fiber networks—Part II: system performance analysis,” IEEE Trans. Commun., vol.  37, pp. 834–842, Aug. 1989.
[CrossRef]

Aljunid, S. A.

H. M. R. Al-Khafaji, S. A. Aljunid, A. Amphawan, and H. A. Fadhil, “Improving spectral efficiency of SAC-OCDMA systems by SPD scheme,” IEICE Electron. Express, vol.  9, no. 24, pp. 1829–1834, Dec. 2012.
[CrossRef]

H. M. R. Al-Khafaji, S. A. Aljunid, and H. A. Fadhil, “Improved BER based on intensity noise alleviation using developed detection technique for incoherent SAC-OCDMA systems,” J. Mod. Opt., vol.  59, no. 10, pp. 878–886, June 2012.
[CrossRef]

Al-Khafaji, H. M. R.

H. M. R. Al-Khafaji, S. A. Aljunid, and H. A. Fadhil, “Improved BER based on intensity noise alleviation using developed detection technique for incoherent SAC-OCDMA systems,” J. Mod. Opt., vol.  59, no. 10, pp. 878–886, June 2012.
[CrossRef]

H. M. R. Al-Khafaji, S. A. Aljunid, A. Amphawan, and H. A. Fadhil, “Improving spectral efficiency of SAC-OCDMA systems by SPD scheme,” IEICE Electron. Express, vol.  9, no. 24, pp. 1829–1834, Dec. 2012.
[CrossRef]

Aminzadeh-Gohari, A.

S. Khazraei, M. R. Pakravan, and A. Aminzadeh-Gohari, “Analysis of power control for indoor optical wireless code division multiple access networks using on–off keying and binary pulse position modulation,” IET Commun., vol.  4, no. 16, pp. 1919–1933, Nov. 2010.
[CrossRef]

Amphawan, A.

H. M. R. Al-Khafaji, S. A. Aljunid, A. Amphawan, and H. A. Fadhil, “Improving spectral efficiency of SAC-OCDMA systems by SPD scheme,” IEICE Electron. Express, vol.  9, no. 24, pp. 1829–1834, Dec. 2012.
[CrossRef]

Azizoglu, M.

M. Azizoglu, J. A. Salehi, and Y. Li, “Optical CDMA via temporal codes,” IEEE Trans. Commun., vol.  40, no. 7, pp. 1162–1170, July 1992.
[CrossRef]

Brackett, C. A.

J. A. Salehi and C. A. Brackett, “Code division multiple-access techniques in optical fiber networks—Part II: system performance analysis,” IEEE Trans. Commun., vol.  37, pp. 834–842, Aug. 1989.
[CrossRef]

Campbell, J. C.

Fadhil, H. A.

H. M. R. Al-Khafaji, S. A. Aljunid, and H. A. Fadhil, “Improved BER based on intensity noise alleviation using developed detection technique for incoherent SAC-OCDMA systems,” J. Mod. Opt., vol.  59, no. 10, pp. 878–886, June 2012.
[CrossRef]

H. M. R. Al-Khafaji, S. A. Aljunid, A. Amphawan, and H. A. Fadhil, “Improving spectral efficiency of SAC-OCDMA systems by SPD scheme,” IEICE Electron. Express, vol.  9, no. 24, pp. 1829–1834, Dec. 2012.
[CrossRef]

Gagliardi, R. M.

R. M. Gagliardi and S. Karp, “Optical digital communications,” in Optical Communications, 2nd ed. New York: Wiley, 1995, ch. 6, sec. 6, pp. 205–206.

Kahn, J. M.

D. Shiu and J. M. Kahn, “Differential pulse position modulation for power-efficient optical communication,” IEEE Trans. Commun., vol.  47, no. 8, pp. 1201–1210, Aug. 1999.
[CrossRef]

Karp, S.

R. M. Gagliardi and S. Karp, “Optical digital communications,” in Optical Communications, 2nd ed. New York: Wiley, 1995, ch. 6, sec. 6, pp. 205–206.

Khazraei, S.

M. A. Shoaie, S. Khazraei, and M. R. Pakravan, “Performance analysis of slotted ALOHA random access packet-switching optical CDMA networks using generalized optical orthogonal codes and M-ary overlapping PPM signaling,” J. Opt. Commun. Netw., vol.  3, no. 7, pp. 568–576, July 2011.
[CrossRef]

S. Khazraei, M. R. Pakravan, and A. Aminzadeh-Gohari, “Analysis of power control for indoor optical wireless code division multiple access networks using on–off keying and binary pulse position modulation,” IET Commun., vol.  4, no. 16, pp. 1919–1933, Nov. 2010.
[CrossRef]

S. Khazraei and M. R. Pakravan, “Analysis of generalized optical orthogonal codes in optical wireless local area networks,” IEEE J. Sel. Areas Commun., vol.  27, no. 9, pp. 1572–1581, Dec. 2009.
[CrossRef]

Li, Y.

M. Azizoglu, J. A. Salehi, and Y. Li, “Optical CDMA via temporal codes,” IEEE Trans. Commun., vol.  40, no. 7, pp. 1162–1170, July 1992.
[CrossRef]

Mashhadi, S.

S. Mashhadi and J. A. Salehi, “Optimum code structure for positive optical CDMA using normalized divergence maximization criterion,” IEEE Trans. Commun., vol.  56, pp. 1414–1421, Sept. 2008.
[CrossRef]

S. Mashhadi and J. A. Salehi, “Code division multiple-access techniques in optical fiber networks—Part III: optical AND gate receiver structure with generalized optical orthogonal codes,” IEEE Trans. Commun., vol.  54, pp. 1457–1468, Aug. 2006.
[CrossRef]

Pakravan, M. R.

M. A. Shoaie, S. Khazraei, and M. R. Pakravan, “Performance analysis of slotted ALOHA random access packet-switching optical CDMA networks using generalized optical orthogonal codes and M-ary overlapping PPM signaling,” J. Opt. Commun. Netw., vol.  3, no. 7, pp. 568–576, July 2011.
[CrossRef]

S. Khazraei, M. R. Pakravan, and A. Aminzadeh-Gohari, “Analysis of power control for indoor optical wireless code division multiple access networks using on–off keying and binary pulse position modulation,” IET Commun., vol.  4, no. 16, pp. 1919–1933, Nov. 2010.
[CrossRef]

S. Khazraei and M. R. Pakravan, “Analysis of generalized optical orthogonal codes in optical wireless local area networks,” IEEE J. Sel. Areas Commun., vol.  27, no. 9, pp. 1572–1581, Dec. 2009.
[CrossRef]

Salehi, J. A.

S. Mashhadi and J. A. Salehi, “Optimum code structure for positive optical CDMA using normalized divergence maximization criterion,” IEEE Trans. Commun., vol.  56, pp. 1414–1421, Sept. 2008.
[CrossRef]

S. Mashhadi and J. A. Salehi, “Code division multiple-access techniques in optical fiber networks—Part III: optical AND gate receiver structure with generalized optical orthogonal codes,” IEEE Trans. Commun., vol.  54, pp. 1457–1468, Aug. 2006.
[CrossRef]

M. Azizoglu, J. A. Salehi, and Y. Li, “Optical CDMA via temporal codes,” IEEE Trans. Commun., vol.  40, no. 7, pp. 1162–1170, July 1992.
[CrossRef]

J. A. Salehi and C. A. Brackett, “Code division multiple-access techniques in optical fiber networks—Part II: system performance analysis,” IEEE Trans. Commun., vol.  37, pp. 834–842, Aug. 1989.
[CrossRef]

Shalaby, H. M. H.

Shamai, S.

S. Verdu and S. Shamai, “Spectral efficiency of CDMA with random signaling,” IEEE Trans. Inf. Theory, vol.  45, no. 2, pp. 622–640, Mar. 1999.
[CrossRef]

Shiu, D.

D. Shiu and J. M. Kahn, “Differential pulse position modulation for power-efficient optical communication,” IEEE Trans. Commun., vol.  47, no. 8, pp. 1201–1210, Aug. 1999.
[CrossRef]

Shoaie, M. A.

Verdu, S.

S. Verdu and S. Shamai, “Spectral efficiency of CDMA with random signaling,” IEEE Trans. Inf. Theory, vol.  45, no. 2, pp. 622–640, Mar. 1999.
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

S. Khazraei and M. R. Pakravan, “Analysis of generalized optical orthogonal codes in optical wireless local area networks,” IEEE J. Sel. Areas Commun., vol.  27, no. 9, pp. 1572–1581, Dec. 2009.
[CrossRef]

IEEE Trans. Commun. (6)

D. Shiu and J. M. Kahn, “Differential pulse position modulation for power-efficient optical communication,” IEEE Trans. Commun., vol.  47, no. 8, pp. 1201–1210, Aug. 1999.
[CrossRef]

S. Mashhadi and J. A. Salehi, “Optimum code structure for positive optical CDMA using normalized divergence maximization criterion,” IEEE Trans. Commun., vol.  56, pp. 1414–1421, Sept. 2008.
[CrossRef]

J. A. Salehi and C. A. Brackett, “Code division multiple-access techniques in optical fiber networks—Part II: system performance analysis,” IEEE Trans. Commun., vol.  37, pp. 834–842, Aug. 1989.
[CrossRef]

S. Mashhadi and J. A. Salehi, “Code division multiple-access techniques in optical fiber networks—Part III: optical AND gate receiver structure with generalized optical orthogonal codes,” IEEE Trans. Commun., vol.  54, pp. 1457–1468, Aug. 2006.
[CrossRef]

M. Azizoglu, J. A. Salehi, and Y. Li, “Optical CDMA via temporal codes,” IEEE Trans. Commun., vol.  40, no. 7, pp. 1162–1170, July 1992.
[CrossRef]

H. M. H. Shalaby, “Performance analysis of optical synchronous CDMA communication systems with PPM signaling,” IEEE Trans. Commun., vol.  43, no. 2/3/4, pp. 624–634, Apr. 1995.
[CrossRef]

IEEE Trans. Inf. Theory (1)

S. Verdu and S. Shamai, “Spectral efficiency of CDMA with random signaling,” IEEE Trans. Inf. Theory, vol.  45, no. 2, pp. 622–640, Mar. 1999.
[CrossRef]

IEICE Electron. Express (1)

H. M. R. Al-Khafaji, S. A. Aljunid, A. Amphawan, and H. A. Fadhil, “Improving spectral efficiency of SAC-OCDMA systems by SPD scheme,” IEICE Electron. Express, vol.  9, no. 24, pp. 1829–1834, Dec. 2012.
[CrossRef]

IET Commun. (1)

S. Khazraei, M. R. Pakravan, and A. Aminzadeh-Gohari, “Analysis of power control for indoor optical wireless code division multiple access networks using on–off keying and binary pulse position modulation,” IET Commun., vol.  4, no. 16, pp. 1919–1933, Nov. 2010.
[CrossRef]

J. Lightwave Technol. (5)

J. Mod. Opt. (1)

H. M. R. Al-Khafaji, S. A. Aljunid, and H. A. Fadhil, “Improved BER based on intensity noise alleviation using developed detection technique for incoherent SAC-OCDMA systems,” J. Mod. Opt., vol.  59, no. 10, pp. 878–886, June 2012.
[CrossRef]

J. Opt. Commun. Netw. (1)

Other (1)

R. M. Gagliardi and S. Karp, “Optical digital communications,” in Optical Communications, 2nd ed. New York: Wiley, 1995, ch. 6, sec. 6, pp. 205–206.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

OPPM signaling scheme with M=4, γ=4 and OOC parameters L=12, w=4 and λa=λc=1.

Fig. 2.
Fig. 2.

GOOC decoder structure.

Fig. 3.
Fig. 3.

Transmitter and receiver structures.

Fig. 4.
Fig. 4.

BER of PPM versus average received laser power for different values of λ.

Fig. 5.
Fig. 5.

BER of OPPM versus average received laser power for different values of λ.

Fig. 6.
Fig. 6.

BER of PPM and OPPM versus N for different values of λ.

Fig. 7.
Fig. 7.

BER of OPPM versus APD gain for different values of average received power.

Fig. 8.
Fig. 8.

Spectral efficiency of PPM and OPPM versus BER for different values of γ.

Fig. 9.
Fig. 9.

BER versus number of users for different values of γ.

Fig. 10.
Fig. 10.

BER versus M and γ for (a) λ=1, (b) λ=2, and (c) λ=3.

Tables (1)

Tables Icon

TABLE I Typical Parameters

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

gi(x)={PpifxPp0else,
BER=M2(M1)Ps.
Ps=i=0M1P{YjYi,someji|D=i}×P{D=i}.
Ps=P{YjY0,somej0|D=0}j=1M1P{YjY0|D=0}=(M1)P{Y1Y0|D=0}.
P{Y1Y0|D=0}=P{Y1Y0|D=0,Z1=w}×P{Z1=w}+P{Y1Y0|D=0,Z1w}×P{Z1w},
P{Z1w}=1P{Z1=w}.
P{Y1Y0|D=0,Z1=w}=Q(mvσv)mv=G(qw+qd)G(qw+qd)=0σv2=σYj2+σn2+σY02+σn2=2G2F(qw+qd)+2σn2.
F=keffG+(21/G)(1keff).
P{Y1Y0|D=0,Z1w}=Q(muσu)mu=G(0+qd)G(qw+qd)=Gqwσu2=σY12+σn2+σY02+σn2=G2F(qw+2qd)+2σn2.
qw=ηPpTchf,
Pav=PpwTcT.
qw=ηPavThfw.
P{Z1=w}=Pr{ki11,i{1,2,,w}}=1Pr{ki1=0,somei{1,2,,w}}=1+i=1w(1)i(wi)Pr{k11=k21==ki1=0}.
Pr{k11=k21==ki1=0}=[1n=1λcwpnn×(1(wn)(wn1)(wni+1)w(w1)(wi+1))]N1,
pn=pn(w1n1).
j=1λcj(wj)pj=w2ML,
pλc=w2MLλc(wλc).
Pr{k11=k21==ki1=0}=[1w3(w1λc1)MLλc2(wλc)×(1(wλc)(wλc1)(wλci+1)w(w1)(wi+1))](N1).
PsO=1Mi=0M1P{XjXi,someji|D=i}.
P{XjXi,someji|D=i}P{XjXa,someja|D=a},
P{XjXa,someja|D=a}j=0,jaM1P{XjXa|D=a}.
P{XjXa|D=a}P{XbXa|D=a};
P{XjXi,someji|D=i}j=0,jaM1P{XbXa|D=a},
PsOM1MP{XbXa|D=a}.
P{XbXa|D=a}=P{XbXa|D=a,Ub=w}×P{Ub=w}+P{XbXa|D=a,Ubw}×P{Ubw},
P{XbXa|D=a,Ub=w}=Q(m1σ1),m1=G(qw+qd)G(qw+qd)=0,
σ12=σXb2+σn2+σXa2+σn2=2G2F(qw+qd)+2σn2,
P{XbXa|D=a,Ubw}=Q(m2σ2),m2=G(0+qd)G(qw+qd)=Gqw,σ22=σXb2+σn2+σXa2+σn2=G2F(qw+2qd)+2σn2.
P{Ub=w}=1+i=1w(1)i(wi)P{ξ1=ξ2==ξi=0},
P{ξ1=ξ2==ξi=0}=αN1β.
α=1n=1λcwqnn(1(wn)(wn1)(wni+1)w(w1)(wi+1)),
qn=qn(w1n1).
j=1λcj(wj)qj=γw2(M1+γ)L.
j=1λcj(wj)πj=(γ1)w2γL,
β=1t=1λawπtt(1(wt)(wt1)(wti+1)w(w1)(wi+1)),
πt=πt(w1t1).
β=1w3(γ1)(w1λa1)γLλa2(wλa)×(1(wλa)(wλa1)(wλai+1)w(w1)(wi+1)).
R0=γlogM(M1+γ)L.
N(L,w,λ)(L1)(Lλ)w(w1)(wλ).
Spectral Efficiency=N·R0bits/s/Hz.
BERmin={3.9636×1010(560,960,1)1.6666×1019(488,1000,2)2.8424×1026(920,720,3).