Abstract

In this paper, we propose a WDM radio-over-fiber (RoF) passive optical network (PON) based on orthogonal frequency-division multiplexing (OFDM) and optical heterodyne. With OFDM and coherent receiving technology, the system achieves high, elastic bandwidth allocation and excellent transporting property. Using optical heterodyne, the network implements the wireless access without adding a radio source. We evaluate the performance of the system in terms of bit error rate, coverage area, and receiving eye diagram and obtain the network as an excellent wire/wireless access property.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. C. Chung, “Recent advancement in WDM PON technology,” in Proc. European Conf. on Optical Communications, 2011, paper Th.11.C.4.
  2. R. Lin, “Next generation PON in emerging networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Feb. 2008, paper OWH1.
  3. L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-generation optical access networks,” J. Lightwave Technol., vol.  25, no. 11, pp. 3428–3442, Nov. 2007.
    [CrossRef]
  4. R. Bavey, J. Kani, F. Bourgart, and K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag., vol.  44, no. 10, pp. 50–56, Oct. 2006.
  5. P.-T. Shih, C.-T. Lin, W. Jiang, Y.-H. Chen, J. Chen, and S. Chi, “Hybrid access network integrated with wireless multilevel vector and wired baseband signals using frequency doubling and no optical filtering,” IEEE Photon. Technol. Lett., vol.  21, no. 13, pp. 857–859, July 2009.
    [CrossRef]
  6. K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol., vol.  29, no. 4, pp. 456–462, 2011.
    [CrossRef]
  7. Z. Xu, X. Zhang, and J. Yu, “A simplified wavelength reuse and dispersion tolerance scheme for radio-over-fiber system,” in IEEE Int. Topical Meeting Microwave Photonics, Oct. 2007, pp. 138–140.
  8. C. W. Chow, L. Xu, C. H. Yeh, C. H. Wang, F. Y. Shih, H. K. Tsang, C. L. Pan, and S. Chi, “Bidirectional ROF transmission and signal remodulation using separate optical clock distribution to mitigate signal distortions,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Mar. 2009, paper OWP3.
  9. X. Ying, T. Xu, T. Liu, and Q. Nie, “Simulation and analysis of optical generation of millimeter-wave with imbalanced MZM,” in ICECC, Ningbo, China, Sept. 2011, pp. 1020–1023.
  10. S. B. Weinstein, “The history of orthogonal frequency division multiplexing,” IEEE Commun. Mag., vol.  47, no. 11, pp. 26–35, Nov. 2009.
    [CrossRef]
  11. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1  Tb/s single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and subwavelength bandwidth access,” J. Lightwave Technol., vol.  28, no. 4, pp. 308–315, 2010.
    [CrossRef]
  12. D. Qian, N. Cvijetic, Y.-K. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36  Gb/s-OFDMA-PON over a single wavelength with source-free ONUs,” in Proc. European Conf. on Optical Communications, Sept. 2009, paper 8.5.1.
  13. N. Cvijetic, “OFDM for next-generation optical access networks, J. Lightwave Technol., vol.  30, no. 4, pp. 384–398, Feb. 2012.
    [CrossRef]
  14. K. Y. Cho, Y. Takushima, and Y. C. Chung, “Enhanced chromatic dispersion tolerance of 11  Gb/s RSOA-based WDM PON using 4-ary PAM signal,” Electron. Lett., vol.  46, no. 22, pp. 1510–1512, 2010.
    [CrossRef]
  15. H. Kim, “Transmission of 10  Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photon. Technol. Lett., vol.  23, no. 14, pp. 965–967, July 2011.
    [CrossRef]
  16. C. Malouin, J. Bennike, and T. Schmidt, “DPSK receiver design-optical filtering considerations,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Mar. 2007, paper OThK1.
  17. J. D. Downie, J. Hurley, J. Cartledge, S. Bickham, and S. Mishra, “112  Gb/s PM-QPSK transmission up to 6000 km with 200 km amplifier spacing and a hybrid fiber span configuration,” in Proc. European Conf. on Optical Communications, 2011, paper Tu.3.B.6.

2012 (1)

2011 (2)

2010 (2)

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1  Tb/s single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and subwavelength bandwidth access,” J. Lightwave Technol., vol.  28, no. 4, pp. 308–315, 2010.
[CrossRef]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “Enhanced chromatic dispersion tolerance of 11  Gb/s RSOA-based WDM PON using 4-ary PAM signal,” Electron. Lett., vol.  46, no. 22, pp. 1510–1512, 2010.
[CrossRef]

2009 (2)

P.-T. Shih, C.-T. Lin, W. Jiang, Y.-H. Chen, J. Chen, and S. Chi, “Hybrid access network integrated with wireless multilevel vector and wired baseband signals using frequency doubling and no optical filtering,” IEEE Photon. Technol. Lett., vol.  21, no. 13, pp. 857–859, July 2009.
[CrossRef]

S. B. Weinstein, “The history of orthogonal frequency division multiplexing,” IEEE Commun. Mag., vol.  47, no. 11, pp. 26–35, Nov. 2009.
[CrossRef]

2007 (1)

2006 (1)

R. Bavey, J. Kani, F. Bourgart, and K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag., vol.  44, no. 10, pp. 50–56, Oct. 2006.

Agata, A.

Bavey, R.

R. Bavey, J. Kani, F. Bourgart, and K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag., vol.  44, no. 10, pp. 50–56, Oct. 2006.

Bennike, J.

C. Malouin, J. Bennike, and T. Schmidt, “DPSK receiver design-optical filtering considerations,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Mar. 2007, paper OThK1.

Bickham, S.

J. D. Downie, J. Hurley, J. Cartledge, S. Bickham, and S. Mishra, “112  Gb/s PM-QPSK transmission up to 6000 km with 200 km amplifier spacing and a hybrid fiber span configuration,” in Proc. European Conf. on Optical Communications, 2011, paper Tu.3.B.6.

Bourgart, F.

R. Bavey, J. Kani, F. Bourgart, and K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag., vol.  44, no. 10, pp. 50–56, Oct. 2006.

Cartledge, J.

J. D. Downie, J. Hurley, J. Cartledge, S. Bickham, and S. Mishra, “112  Gb/s PM-QPSK transmission up to 6000 km with 200 km amplifier spacing and a hybrid fiber span configuration,” in Proc. European Conf. on Optical Communications, 2011, paper Tu.3.B.6.

Chang, J. H.

Chen, J.

P.-T. Shih, C.-T. Lin, W. Jiang, Y.-H. Chen, J. Chen, and S. Chi, “Hybrid access network integrated with wireless multilevel vector and wired baseband signals using frequency doubling and no optical filtering,” IEEE Photon. Technol. Lett., vol.  21, no. 13, pp. 857–859, July 2009.
[CrossRef]

Chen, S.

Chen, Y.-H.

P.-T. Shih, C.-T. Lin, W. Jiang, Y.-H. Chen, J. Chen, and S. Chi, “Hybrid access network integrated with wireless multilevel vector and wired baseband signals using frequency doubling and no optical filtering,” IEEE Photon. Technol. Lett., vol.  21, no. 13, pp. 857–859, July 2009.
[CrossRef]

Cheng, N.

Chi, S.

P.-T. Shih, C.-T. Lin, W. Jiang, Y.-H. Chen, J. Chen, and S. Chi, “Hybrid access network integrated with wireless multilevel vector and wired baseband signals using frequency doubling and no optical filtering,” IEEE Photon. Technol. Lett., vol.  21, no. 13, pp. 857–859, July 2009.
[CrossRef]

C. W. Chow, L. Xu, C. H. Yeh, C. H. Wang, F. Y. Shih, H. K. Tsang, C. L. Pan, and S. Chi, “Bidirectional ROF transmission and signal remodulation using separate optical clock distribution to mitigate signal distortions,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Mar. 2009, paper OWP3.

Cho, K. Y.

K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol., vol.  29, no. 4, pp. 456–462, 2011.
[CrossRef]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “Enhanced chromatic dispersion tolerance of 11  Gb/s RSOA-based WDM PON using 4-ary PAM signal,” Electron. Lett., vol.  46, no. 22, pp. 1510–1512, 2010.
[CrossRef]

Chow, C. W.

C. W. Chow, L. Xu, C. H. Yeh, C. H. Wang, F. Y. Shih, H. K. Tsang, C. L. Pan, and S. Chi, “Bidirectional ROF transmission and signal remodulation using separate optical clock distribution to mitigate signal distortions,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Mar. 2009, paper OWP3.

Chung, Y. C.

K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol., vol.  29, no. 4, pp. 456–462, 2011.
[CrossRef]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “Enhanced chromatic dispersion tolerance of 11  Gb/s RSOA-based WDM PON using 4-ary PAM signal,” Electron. Lett., vol.  46, no. 22, pp. 1510–1512, 2010.
[CrossRef]

Y. C. Chung, “Recent advancement in WDM PON technology,” in Proc. European Conf. on Optical Communications, 2011, paper Th.11.C.4.

Cvijetic, N.

N. Cvijetic, “OFDM for next-generation optical access networks, J. Lightwave Technol., vol.  30, no. 4, pp. 384–398, Feb. 2012.
[CrossRef]

D. Qian, N. Cvijetic, Y.-K. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36  Gb/s-OFDMA-PON over a single wavelength with source-free ONUs,” in Proc. European Conf. on Optical Communications, Sept. 2009, paper 8.5.1.

Downie, J. D.

J. D. Downie, J. Hurley, J. Cartledge, S. Bickham, and S. Mishra, “112  Gb/s PM-QPSK transmission up to 6000 km with 200 km amplifier spacing and a hybrid fiber span configuration,” in Proc. European Conf. on Optical Communications, 2011, paper Tu.3.B.6.

Gutierrez, D.

Horiuchi, Y.

Huang, Y.-K.

D. Qian, N. Cvijetic, Y.-K. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36  Gb/s-OFDMA-PON over a single wavelength with source-free ONUs,” in Proc. European Conf. on Optical Communications, Sept. 2009, paper 8.5.1.

Hurley, J.

J. D. Downie, J. Hurley, J. Cartledge, S. Bickham, and S. Mishra, “112  Gb/s PM-QPSK transmission up to 6000 km with 200 km amplifier spacing and a hybrid fiber span configuration,” in Proc. European Conf. on Optical Communications, 2011, paper Tu.3.B.6.

Jiang, W.

P.-T. Shih, C.-T. Lin, W. Jiang, Y.-H. Chen, J. Chen, and S. Chi, “Hybrid access network integrated with wireless multilevel vector and wired baseband signals using frequency doubling and no optical filtering,” IEEE Photon. Technol. Lett., vol.  21, no. 13, pp. 857–859, July 2009.
[CrossRef]

Jung, S. P.

Kani, J.

R. Bavey, J. Kani, F. Bourgart, and K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag., vol.  44, no. 10, pp. 50–56, Oct. 2006.

Kazovsky, L. G.

Kim, H.

H. Kim, “Transmission of 10  Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photon. Technol. Lett., vol.  23, no. 14, pp. 965–967, July 2011.
[CrossRef]

Lin, C.-T.

P.-T. Shih, C.-T. Lin, W. Jiang, Y.-H. Chen, J. Chen, and S. Chi, “Hybrid access network integrated with wireless multilevel vector and wired baseband signals using frequency doubling and no optical filtering,” IEEE Photon. Technol. Lett., vol.  21, no. 13, pp. 857–859, July 2009.
[CrossRef]

Lin, R.

R. Lin, “Next generation PON in emerging networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Feb. 2008, paper OWH1.

Liu, T.

X. Ying, T. Xu, T. Liu, and Q. Nie, “Simulation and analysis of optical generation of millimeter-wave with imbalanced MZM,” in ICECC, Ningbo, China, Sept. 2011, pp. 1020–1023.

Ma, Y.

Malouin, C.

C. Malouin, J. Bennike, and T. Schmidt, “DPSK receiver design-optical filtering considerations,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Mar. 2007, paper OThK1.

McCammon, K.

R. Bavey, J. Kani, F. Bourgart, and K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag., vol.  44, no. 10, pp. 50–56, Oct. 2006.

Mishra, S.

J. D. Downie, J. Hurley, J. Cartledge, S. Bickham, and S. Mishra, “112  Gb/s PM-QPSK transmission up to 6000 km with 200 km amplifier spacing and a hybrid fiber span configuration,” in Proc. European Conf. on Optical Communications, 2011, paper Tu.3.B.6.

Nie, Q.

X. Ying, T. Xu, T. Liu, and Q. Nie, “Simulation and analysis of optical generation of millimeter-wave with imbalanced MZM,” in ICECC, Ningbo, China, Sept. 2011, pp. 1020–1023.

Pan, C. L.

C. W. Chow, L. Xu, C. H. Yeh, C. H. Wang, F. Y. Shih, H. K. Tsang, C. L. Pan, and S. Chi, “Bidirectional ROF transmission and signal remodulation using separate optical clock distribution to mitigate signal distortions,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Mar. 2009, paper OWP3.

Qian, D.

D. Qian, N. Cvijetic, Y.-K. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36  Gb/s-OFDMA-PON over a single wavelength with source-free ONUs,” in Proc. European Conf. on Optical Communications, Sept. 2009, paper 8.5.1.

Sano, T.

Schmidt, T.

C. Malouin, J. Bennike, and T. Schmidt, “DPSK receiver design-optical filtering considerations,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Mar. 2007, paper OThK1.

Shaw, W.-T.

Shieh, W.

Shih, F. Y.

C. W. Chow, L. Xu, C. H. Yeh, C. H. Wang, F. Y. Shih, H. K. Tsang, C. L. Pan, and S. Chi, “Bidirectional ROF transmission and signal remodulation using separate optical clock distribution to mitigate signal distortions,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Mar. 2009, paper OWP3.

Shih, P.-T.

P.-T. Shih, C.-T. Lin, W. Jiang, Y.-H. Chen, J. Chen, and S. Chi, “Hybrid access network integrated with wireless multilevel vector and wired baseband signals using frequency doubling and no optical filtering,” IEEE Photon. Technol. Lett., vol.  21, no. 13, pp. 857–859, July 2009.
[CrossRef]

Suzuki, M.

Takushima, Y.

K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol., vol.  29, no. 4, pp. 456–462, 2011.
[CrossRef]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “Enhanced chromatic dispersion tolerance of 11  Gb/s RSOA-based WDM PON using 4-ary PAM signal,” Electron. Lett., vol.  46, no. 22, pp. 1510–1512, 2010.
[CrossRef]

Tanaka, K.

Tang, Y.

Tsang, H. K.

C. W. Chow, L. Xu, C. H. Yeh, C. H. Wang, F. Y. Shih, H. K. Tsang, C. L. Pan, and S. Chi, “Bidirectional ROF transmission and signal remodulation using separate optical clock distribution to mitigate signal distortions,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Mar. 2009, paper OWP3.

Wang, C. H.

C. W. Chow, L. Xu, C. H. Yeh, C. H. Wang, F. Y. Shih, H. K. Tsang, C. L. Pan, and S. Chi, “Bidirectional ROF transmission and signal remodulation using separate optical clock distribution to mitigate signal distortions,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Mar. 2009, paper OWP3.

Wang, T.

D. Qian, N. Cvijetic, Y.-K. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36  Gb/s-OFDMA-PON over a single wavelength with source-free ONUs,” in Proc. European Conf. on Optical Communications, Sept. 2009, paper 8.5.1.

Weinstein, S. B.

S. B. Weinstein, “The history of orthogonal frequency division multiplexing,” IEEE Commun. Mag., vol.  47, no. 11, pp. 26–35, Nov. 2009.
[CrossRef]

Wong, S.-W.

Xu, L.

C. W. Chow, L. Xu, C. H. Yeh, C. H. Wang, F. Y. Shih, H. K. Tsang, C. L. Pan, and S. Chi, “Bidirectional ROF transmission and signal remodulation using separate optical clock distribution to mitigate signal distortions,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Mar. 2009, paper OWP3.

Xu, T.

X. Ying, T. Xu, T. Liu, and Q. Nie, “Simulation and analysis of optical generation of millimeter-wave with imbalanced MZM,” in ICECC, Ningbo, China, Sept. 2011, pp. 1020–1023.

Xu, Z.

Z. Xu, X. Zhang, and J. Yu, “A simplified wavelength reuse and dispersion tolerance scheme for radio-over-fiber system,” in IEEE Int. Topical Meeting Microwave Photonics, Oct. 2007, pp. 138–140.

Yang, Q.

Yeh, C. H.

C. W. Chow, L. Xu, C. H. Yeh, C. H. Wang, F. Y. Shih, H. K. Tsang, C. L. Pan, and S. Chi, “Bidirectional ROF transmission and signal remodulation using separate optical clock distribution to mitigate signal distortions,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Mar. 2009, paper OWP3.

Ying, X.

X. Ying, T. Xu, T. Liu, and Q. Nie, “Simulation and analysis of optical generation of millimeter-wave with imbalanced MZM,” in ICECC, Ningbo, China, Sept. 2011, pp. 1020–1023.

Yu, J.

D. Qian, N. Cvijetic, Y.-K. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36  Gb/s-OFDMA-PON over a single wavelength with source-free ONUs,” in Proc. European Conf. on Optical Communications, Sept. 2009, paper 8.5.1.

Z. Xu, X. Zhang, and J. Yu, “A simplified wavelength reuse and dispersion tolerance scheme for radio-over-fiber system,” in IEEE Int. Topical Meeting Microwave Photonics, Oct. 2007, pp. 138–140.

Zhang, X.

Z. Xu, X. Zhang, and J. Yu, “A simplified wavelength reuse and dispersion tolerance scheme for radio-over-fiber system,” in IEEE Int. Topical Meeting Microwave Photonics, Oct. 2007, pp. 138–140.

Electron. Lett. (1)

K. Y. Cho, Y. Takushima, and Y. C. Chung, “Enhanced chromatic dispersion tolerance of 11  Gb/s RSOA-based WDM PON using 4-ary PAM signal,” Electron. Lett., vol.  46, no. 22, pp. 1510–1512, 2010.
[CrossRef]

IEEE Commun. Mag. (2)

R. Bavey, J. Kani, F. Bourgart, and K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag., vol.  44, no. 10, pp. 50–56, Oct. 2006.

S. B. Weinstein, “The history of orthogonal frequency division multiplexing,” IEEE Commun. Mag., vol.  47, no. 11, pp. 26–35, Nov. 2009.
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P.-T. Shih, C.-T. Lin, W. Jiang, Y.-H. Chen, J. Chen, and S. Chi, “Hybrid access network integrated with wireless multilevel vector and wired baseband signals using frequency doubling and no optical filtering,” IEEE Photon. Technol. Lett., vol.  21, no. 13, pp. 857–859, July 2009.
[CrossRef]

H. Kim, “Transmission of 10  Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photon. Technol. Lett., vol.  23, no. 14, pp. 965–967, July 2011.
[CrossRef]

J. Lightwave Technol. (4)

Other (8)

Y. C. Chung, “Recent advancement in WDM PON technology,” in Proc. European Conf. on Optical Communications, 2011, paper Th.11.C.4.

R. Lin, “Next generation PON in emerging networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Feb. 2008, paper OWH1.

C. Malouin, J. Bennike, and T. Schmidt, “DPSK receiver design-optical filtering considerations,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Mar. 2007, paper OThK1.

J. D. Downie, J. Hurley, J. Cartledge, S. Bickham, and S. Mishra, “112  Gb/s PM-QPSK transmission up to 6000 km with 200 km amplifier spacing and a hybrid fiber span configuration,” in Proc. European Conf. on Optical Communications, 2011, paper Tu.3.B.6.

D. Qian, N. Cvijetic, Y.-K. Huang, J. Yu, and T. Wang, “100 km long reach upstream 36  Gb/s-OFDMA-PON over a single wavelength with source-free ONUs,” in Proc. European Conf. on Optical Communications, Sept. 2009, paper 8.5.1.

Z. Xu, X. Zhang, and J. Yu, “A simplified wavelength reuse and dispersion tolerance scheme for radio-over-fiber system,” in IEEE Int. Topical Meeting Microwave Photonics, Oct. 2007, pp. 138–140.

C. W. Chow, L. Xu, C. H. Yeh, C. H. Wang, F. Y. Shih, H. K. Tsang, C. L. Pan, and S. Chi, “Bidirectional ROF transmission and signal remodulation using separate optical clock distribution to mitigate signal distortions,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Mar. 2009, paper OWP3.

X. Ying, T. Xu, T. Liu, and Q. Nie, “Simulation and analysis of optical generation of millimeter-wave with imbalanced MZM,” in ICECC, Ningbo, China, Sept. 2011, pp. 1020–1023.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Structure of a WDM RoF PON. AWG, arrayed waveguide grating; Tx, transmitter; Rx, receiver; OM, LiNbO3 optical intensity modulator; OLT, optical line terminal; ODN, optical distributed networking; ONU, optical networking unit; PD, photodiode; LD, laser diode; RSOA, reflective semiconductor optical amplifier.

Fig. 2.
Fig. 2.

Structure of the ONU.

Fig. 3.
Fig. 3.

Architecture of (a) multiband OFDM transmitter and (b) multiband OFDM receiver.

Fig. 4.
Fig. 4.

Constellation of QPSK.

Fig. 5.
Fig. 5.

Output of base-band 10Gbit/s OFDM Tx.

Fig. 6.
Fig. 6.

Optical spectrum modulated by 40Gbit/s signal (a) without and (b) with OFDM.

Fig. 7.
Fig. 7.

Optical spectrum of the upstream signal: (a) filtered optical carrier and (b) modulated upstream optical signal.

Fig. 8.
Fig. 8.

Frequency spectrum of optical heterodyne.

Fig. 9.
Fig. 9.

Constellations of received downstream signal at an 80 km transmission span: (a) wire, (b) wireless receiving OFDM signals, and (c) wire receiving signals without OFDM.

Fig. 10.
Fig. 10.

Constellations of received upstream signal at an 80 km transmission span: (a) coherent receiving and (b) direct receiving.

Fig. 11.
Fig. 11.

Receiving eye diagram of downstream signal at 50 km transmission (a) with and (b) without OFDM and downstream signal at 100 km transmission (c) with and (d) without OFDM.

Fig. 12.
Fig. 12.

Receiving eye diagram of upstream signal at 50 km transmission with (a) coherent and (b) direct receiving and upstream signal at 100 km transmission with (c) coherent and (d) direct receiving.

Fig. 13.
Fig. 13.

Property of the downstream signal.

Fig. 14.
Fig. 14.

Property of the upstream signal.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

di=Einexp[jϕ(t)]=Einexp(jπIk+jπ/2Qk).
s(t)=i=0N1direct(ttsT/2)exp{j2π[iT(tts)+fIF,n]},tstts+T,s(t)=0,t<tst>ts.
E1=E0cos(ωi,DSt+πs(t)/Vπ),E2=E0cos(ωi,USt+ϕ).
iPD(E1+E2)2=(E01×cos(ωi,DSt+πs(t)/Vπ)+E02×cos(ωi,USt+φ))2=E0122(1+cos2(ωi,DSt+πs(t)/Vπ))+E0222(1+cos2(ωi,USt+ϕ))+E01E02cos((ωi,DS+ωi,US)t+ϕ+πs(t)/Vπ)+E01E02cos((ωi,DSωi,US)tϕ+πs(t)/Vπ)).
iPD(E1+E2)2E0cos(ωt+ϕ+πs(t)/Vπ),
Q=20log[2erfc1(2BER)],