Abstract

A wavelength division multiplexing (WDM) access network using high-speed free-space optical (FSO) communication for the distribution link is proposed. Combining FSO communication with optical fiber can reduce the system cost and provide high-bandwidth access in regions where optical fiber installation is problematic. The WDM channels suffer from interchannel crosstalk, while the FSO communication performance in a clear atmosphere is limited by atmospherically induced scintillation. These impairments, plus the amplified spontaneous emission noise from optical amplification, combine in a potentially problematic way, particularly in the upstream direction, which is investigated here. This turbulence-accentuated crosstalk effect is considered for the cases of 1) signal turbulent but crosstalk not and 2) crosstalk turbulent but signal not. Error floors are obtained in each case. The FSO link length that can be supported in the general case of the hybrid network is investigated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol., vol.  24, pp. 4568–4583, 2006.
    [CrossRef]
  2. J. Prat, Next-Generation FTTH Passive Optical Networks: Research Towards Unlimited Bandwidth Access.Springer, 2008.
  3. S. Bloom, E. Korevaar, J. Schuster, and H. A. Willebrand, “Understanding the performance of free-space optics,” J. Opt. Netw., vol.  2, pp. 178–200, June 2003.
  4. D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep., vol.  4, pp. 225–362, 2007.
    [CrossRef]
  5. T. H. Carbonneau and D. R. Wisely, “Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today’s crowded marketplace,” Proc. SPIE, vol.  3232, pp. 119–128, Jan. 1998.
    [CrossRef]
  6. D. Killinger, “Free space optics for laser communication through the air,” Opt. Photon. News, vol.  13, no. 10, pp. 36–42, Oct. 2002.
    [CrossRef]
  7. S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water and the Atmosphere.New York: Plenum, 1988.
  8. R. Ramaswami and K. N. Sivarajan, Optical Networks—A Pratical Perspective, 2nd ed.London: Academic, 2002.
  9. R. P. Davey, D. B. Grossman, M. Rasztovits-Wiech, D. B. Payne, D. Nesset, A. E. Kelly, A. Rafel, S. Appathurai, and S. Yang, “Long-reach passive optical networks,” J. Lightwave Technol., vol.  27, pp. 273–291, Feb. 2009.
    [CrossRef]
  10. E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun., vol.  27, pp. 1639–1645, 2009.
    [CrossRef]
  11. L. Kazovsky, S.-W. Wong, T. Ayhan, K. M. Albeyoglu, M. R. N. Ribeiro, and A. Shastri, “Hybrid optical wireless access networks,” Proc. IEEE, vol.  100, pp. 1197–1225, 2012.
    [CrossRef]
  12. E. S. Son, K. H. Han, J. H. Lee, and Y. C. Chung, “Survivable network architectures for WDM PON,” Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 2005, paper OFI4.
  13. E. Leitgeb, M. Gedhart, and U. Birnbacher, “Optical networks, last mile access and applications,” J. Opt. Fiber Commun. Rep., vol.  2, pp. 56–85, 2005.
    [CrossRef]
  14. A. K. Majumdar, “Free-space laser communication performance in the atmospheric channel,” J. Opt. Fiber Commun. Rep., vol.  2, pp. 345–396, 2005.
    [CrossRef]
  15. J. C. Ricklin, S. M. Hammel, F. D. Eaton, and S. L. Lachinova, “Atmospheric channel effects on free-space laser communication,” J. Opt. Fiber Commun. Rep., vol.  3, pp. 111–158, 2006.
    [CrossRef]
  16. H. A. Willebrand and B. S. Ghuman, Free-Space Optics: Enabling Optical Connectivity in Today’s Networks.Indianapolis, IN: Sams, 2002.
  17. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed.Bellingham, WA: SPIE, 2005.
  18. E. Korevaar, I. Kim, and B. McArthur, “Atmospheric propagation characteristics of highest importance to commercial free space optics,” Proc. SPIE, vol.  4976, pp. 1–12, 2003.
    [CrossRef]
  19. T. Kamalakis, I. Neokosmidis, A. Tsipouras, S. Pantazis, and I. Andrikopoulos, “Hybrid free space optical/millimeter wave outdoor links for broadband wireless access networks,” in IEEE 18th Int. Symp. on Personal, Indoor and Mobile Radio Communications, Athens, Greece, 2007.
  20. M. Abtahi, P. Lemieux, W. Mathlouthi, and L. A. Rusch, “Suppression of turbulence-induced scintillation in free-space optical communication systems using saturated optical amplifiers,” J. Lightwave Technol., vol.  24, pp. 4966–4973, 2006.
    [CrossRef]
  21. A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, “Improved bit error rate evaluation for optically pre-amplified free-space optical communication systems in turbulent atmosphere,” IET Optoelectron., vol.  6, pp. 26–33, Feb. 2012.
    [CrossRef]
  22. M. Razavi and J. H. Shapiro, “Wireless optical communications via diversity reception and optical preamplification,” IEEE Trans. Wireless Commun., vol.  4, pp. 975–983, 2005.
    [CrossRef]
  23. A. J. Phillips, J. M. Senior, R. Mercinelli, M. Valvo, P. J. Vetter, C. M. Martin, M. O. Van Deventer, P. Vaes, and X. Z. Qiu, “Redundancy strategies for a high splitting optically amplified passive optical network,” J. Lightwave Technol., vol.  19, pp. 137–149, 2001.
    [CrossRef]
  24. I. T. Monroy and E. Tangdiongga, Crosstalk in WDM Communication Networks.Norwell, MA: Kluwer Academic, 2002.
  25. D. M. Forin, S. Di Bartolo, G. M. Toshi Beleffi, F. Curti, G. Cincotti, A. Vecchi, S. Ragana, and A. L. J. Teixeira, “Giga Ethernet free-space passive optical networks,” Fiber Integr. Opt., vol.  27, pp. 229–236, Apr.2008.
    [CrossRef]
  26. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “4×12.5  Gb/s WDM optical wireless communication system for indoor applications,” J. Lightwave Technol., vol.  29, pp. 1988–1996, July 2011.
    [CrossRef]
  27. A. J. Phillips, “Power penalty for burst mode reception in the presence of interchannel crosstalk,” IET Optoelectron., vol.  1, pp. 127–134, 2007.
    [CrossRef]
  28. C. X. Yu and D. T. Neilson, “Diffraction-grating-based (de)multiplexer using image plane transformations,” IEEE J. Sel. Top. Quantum Electron., vol.  8, pp. 1194–1201, 2002.
    [CrossRef]
  29. S. B. Alexander, Optical Communication Receiver Design (Vol. TT22, SPIE Tutorial Texts in Optical Engineering) Bellingham, WA: SPIE, 1997.
  30. F. S. Vetelino, C. Young, L. Andrews, and J. Recolons, “Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence,” Appl. Opt., vol.  46, pp. 2099–2108, Apr. 2007.
    [CrossRef]
  31. “Safety of Laser Products—Part 1: Equipment Classification, Requirements, and User’s Guide, New classification standard adopted as of 1 March 2001, Amendment 2,” International Electrotechnical Commission, , 2001 [Online] Available: http://www.iec.ch/ .
  32. N. S. Kopeika and A. Zilberman, “Vertical profiles of aerosol and optical turbulence strength and their effects on atmospheric propagation,” Proc. SPIE, vol.  3927, pp. 460–467, 2000.
  33. C. Chen, H. Yang, H. Jiang, J. Fan, C. Han, and Y. Ding, “Mitigation of turbulence-induced scintillation noise in free-space optical communication links using Kalman filter,” IEEE Congr. on Image and Signal Processing, China, Hainan, May 2008, vol. 5, pp. 470–473.
  34. D. J. Wheeler and J. D. Schmidt, “Spatial coherence function of partially coherent Gaussian beams in atmospheric turbulence,” Appl. Opt., vol.  50, pp. 3907–3917, 2011.
    [CrossRef]
  35. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng., vol.  40, pp. 1554–1562, Aug.2001.
    [CrossRef]
  36. M. A. Khalighi, N. Schwartz, N. Aitamer, and S. Bourennane, “Fading reduction by aperture averaging and spatial diversity in optical wireless systems,” J. Opt. Commun. Netw., vol.  1, pp. 580–593, 2009.
    [CrossRef]
  37. Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt., vol.  44, pp. 4946–4952, Aug. 2005.
    [CrossRef]
  38. S. Spaunhorst, P. G. LoPresti, S. Pondelik, and H. Refai, “Evaluation of a novel FSO receiver for mitigating alignment errors,” Proc. SPIE, vol.  7324, 73240H, 2009.
    [CrossRef]
  39. A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, “Performance evaluation of optically preamplified digital pulse position modulation turbulent free-space optical communication systems,” IET Optoelectron., vol.  6, pp. 66–74, Feb. 2012.
    [CrossRef]
  40. A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, “DPPM FSO communication systems impaired by turbulence, pointing error and ASE noise,” in 14th Int. Conf. on Transparent Optical Networks (ICTON), Coventry, UK, 2012.

2012 (3)

L. Kazovsky, S.-W. Wong, T. Ayhan, K. M. Albeyoglu, M. R. N. Ribeiro, and A. Shastri, “Hybrid optical wireless access networks,” Proc. IEEE, vol.  100, pp. 1197–1225, 2012.
[CrossRef]

A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, “Improved bit error rate evaluation for optically pre-amplified free-space optical communication systems in turbulent atmosphere,” IET Optoelectron., vol.  6, pp. 26–33, Feb. 2012.
[CrossRef]

A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, “Performance evaluation of optically preamplified digital pulse position modulation turbulent free-space optical communication systems,” IET Optoelectron., vol.  6, pp. 66–74, Feb. 2012.
[CrossRef]

2011 (2)

2009 (4)

R. P. Davey, D. B. Grossman, M. Rasztovits-Wiech, D. B. Payne, D. Nesset, A. E. Kelly, A. Rafel, S. Appathurai, and S. Yang, “Long-reach passive optical networks,” J. Lightwave Technol., vol.  27, pp. 273–291, Feb. 2009.
[CrossRef]

M. A. Khalighi, N. Schwartz, N. Aitamer, and S. Bourennane, “Fading reduction by aperture averaging and spatial diversity in optical wireless systems,” J. Opt. Commun. Netw., vol.  1, pp. 580–593, 2009.
[CrossRef]

S. Spaunhorst, P. G. LoPresti, S. Pondelik, and H. Refai, “Evaluation of a novel FSO receiver for mitigating alignment errors,” Proc. SPIE, vol.  7324, 73240H, 2009.
[CrossRef]

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun., vol.  27, pp. 1639–1645, 2009.
[CrossRef]

2008 (1)

D. M. Forin, S. Di Bartolo, G. M. Toshi Beleffi, F. Curti, G. Cincotti, A. Vecchi, S. Ragana, and A. L. J. Teixeira, “Giga Ethernet free-space passive optical networks,” Fiber Integr. Opt., vol.  27, pp. 229–236, Apr.2008.
[CrossRef]

2007 (3)

A. J. Phillips, “Power penalty for burst mode reception in the presence of interchannel crosstalk,” IET Optoelectron., vol.  1, pp. 127–134, 2007.
[CrossRef]

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep., vol.  4, pp. 225–362, 2007.
[CrossRef]

F. S. Vetelino, C. Young, L. Andrews, and J. Recolons, “Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence,” Appl. Opt., vol.  46, pp. 2099–2108, Apr. 2007.
[CrossRef]

2006 (3)

2005 (4)

E. Leitgeb, M. Gedhart, and U. Birnbacher, “Optical networks, last mile access and applications,” J. Opt. Fiber Commun. Rep., vol.  2, pp. 56–85, 2005.
[CrossRef]

A. K. Majumdar, “Free-space laser communication performance in the atmospheric channel,” J. Opt. Fiber Commun. Rep., vol.  2, pp. 345–396, 2005.
[CrossRef]

M. Razavi and J. H. Shapiro, “Wireless optical communications via diversity reception and optical preamplification,” IEEE Trans. Wireless Commun., vol.  4, pp. 975–983, 2005.
[CrossRef]

Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt., vol.  44, pp. 4946–4952, Aug. 2005.
[CrossRef]

2003 (2)

S. Bloom, E. Korevaar, J. Schuster, and H. A. Willebrand, “Understanding the performance of free-space optics,” J. Opt. Netw., vol.  2, pp. 178–200, June 2003.

E. Korevaar, I. Kim, and B. McArthur, “Atmospheric propagation characteristics of highest importance to commercial free space optics,” Proc. SPIE, vol.  4976, pp. 1–12, 2003.
[CrossRef]

2002 (2)

D. Killinger, “Free space optics for laser communication through the air,” Opt. Photon. News, vol.  13, no. 10, pp. 36–42, Oct. 2002.
[CrossRef]

C. X. Yu and D. T. Neilson, “Diffraction-grating-based (de)multiplexer using image plane transformations,” IEEE J. Sel. Top. Quantum Electron., vol.  8, pp. 1194–1201, 2002.
[CrossRef]

2001 (2)

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng., vol.  40, pp. 1554–1562, Aug.2001.
[CrossRef]

A. J. Phillips, J. M. Senior, R. Mercinelli, M. Valvo, P. J. Vetter, C. M. Martin, M. O. Van Deventer, P. Vaes, and X. Z. Qiu, “Redundancy strategies for a high splitting optically amplified passive optical network,” J. Lightwave Technol., vol.  19, pp. 137–149, 2001.
[CrossRef]

2000 (1)

N. S. Kopeika and A. Zilberman, “Vertical profiles of aerosol and optical turbulence strength and their effects on atmospheric propagation,” Proc. SPIE, vol.  3927, pp. 460–467, 2000.

1998 (1)

T. H. Carbonneau and D. R. Wisely, “Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today’s crowded marketplace,” Proc. SPIE, vol.  3232, pp. 119–128, Jan. 1998.
[CrossRef]

Abtahi, M.

Aitamer, N.

Aladeloba, A. O.

A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, “Improved bit error rate evaluation for optically pre-amplified free-space optical communication systems in turbulent atmosphere,” IET Optoelectron., vol.  6, pp. 26–33, Feb. 2012.
[CrossRef]

A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, “Performance evaluation of optically preamplified digital pulse position modulation turbulent free-space optical communication systems,” IET Optoelectron., vol.  6, pp. 66–74, Feb. 2012.
[CrossRef]

A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, “DPPM FSO communication systems impaired by turbulence, pointing error and ASE noise,” in 14th Int. Conf. on Transparent Optical Networks (ICTON), Coventry, UK, 2012.

Albeyoglu, K. M.

L. Kazovsky, S.-W. Wong, T. Ayhan, K. M. Albeyoglu, M. R. N. Ribeiro, and A. Shastri, “Hybrid optical wireless access networks,” Proc. IEEE, vol.  100, pp. 1197–1225, 2012.
[CrossRef]

Alexander, S. B.

S. B. Alexander, Optical Communication Receiver Design (Vol. TT22, SPIE Tutorial Texts in Optical Engineering) Bellingham, WA: SPIE, 1997.

Al-Habash, M. A.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng., vol.  40, pp. 1554–1562, Aug.2001.
[CrossRef]

Andrews, L.

Andrews, L. C.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng., vol.  40, pp. 1554–1562, Aug.2001.
[CrossRef]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed.Bellingham, WA: SPIE, 2005.

Andrikopoulos, I.

T. Kamalakis, I. Neokosmidis, A. Tsipouras, S. Pantazis, and I. Andrikopoulos, “Hybrid free space optical/millimeter wave outdoor links for broadband wireless access networks,” in IEEE 18th Int. Symp. on Personal, Indoor and Mobile Radio Communications, Athens, Greece, 2007.

Appathurai, S.

Arimoto, Y.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun., vol.  27, pp. 1639–1645, 2009.
[CrossRef]

Ayhan, T.

L. Kazovsky, S.-W. Wong, T. Ayhan, K. M. Albeyoglu, M. R. N. Ribeiro, and A. Shastri, “Hybrid optical wireless access networks,” Proc. IEEE, vol.  100, pp. 1197–1225, 2012.
[CrossRef]

Birnbacher, U.

E. Leitgeb, M. Gedhart, and U. Birnbacher, “Optical networks, last mile access and applications,” J. Opt. Fiber Commun. Rep., vol.  2, pp. 56–85, 2005.
[CrossRef]

Bloom, S.

Bourennane, S.

Caplan, D. O.

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep., vol.  4, pp. 225–362, 2007.
[CrossRef]

Carbonneau, T. H.

T. H. Carbonneau and D. R. Wisely, “Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today’s crowded marketplace,” Proc. SPIE, vol.  3232, pp. 119–128, Jan. 1998.
[CrossRef]

Chen, C.

C. Chen, H. Yang, H. Jiang, J. Fan, C. Han, and Y. Ding, “Mitigation of turbulence-induced scintillation noise in free-space optical communication links using Kalman filter,” IEEE Congr. on Image and Signal Processing, China, Hainan, May 2008, vol. 5, pp. 470–473.

Chung, Y. C.

E. S. Son, K. H. Han, J. H. Lee, and Y. C. Chung, “Survivable network architectures for WDM PON,” Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 2005, paper OFI4.

Ciaramella, E.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun., vol.  27, pp. 1639–1645, 2009.
[CrossRef]

Cincotti, G.

D. M. Forin, S. Di Bartolo, G. M. Toshi Beleffi, F. Curti, G. Cincotti, A. Vecchi, S. Ragana, and A. L. J. Teixeira, “Giga Ethernet free-space passive optical networks,” Fiber Integr. Opt., vol.  27, pp. 229–236, Apr.2008.
[CrossRef]

Contestabile, G.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun., vol.  27, pp. 1639–1645, 2009.
[CrossRef]

Curti, F.

D. M. Forin, S. Di Bartolo, G. M. Toshi Beleffi, F. Curti, G. Cincotti, A. Vecchi, S. Ragana, and A. L. J. Teixeira, “Giga Ethernet free-space passive optical networks,” Fiber Integr. Opt., vol.  27, pp. 229–236, Apr.2008.
[CrossRef]

D’Errico, A.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun., vol.  27, pp. 1639–1645, 2009.
[CrossRef]

Davey, R. P.

Davidson, F. M.

Di Bartolo, S.

D. M. Forin, S. Di Bartolo, G. M. Toshi Beleffi, F. Curti, G. Cincotti, A. Vecchi, S. Ragana, and A. L. J. Teixeira, “Giga Ethernet free-space passive optical networks,” Fiber Integr. Opt., vol.  27, pp. 229–236, Apr.2008.
[CrossRef]

Dikmelik, Y.

Ding, Y.

C. Chen, H. Yang, H. Jiang, J. Fan, C. Han, and Y. Ding, “Mitigation of turbulence-induced scintillation noise in free-space optical communication links using Kalman filter,” IEEE Congr. on Image and Signal Processing, China, Hainan, May 2008, vol. 5, pp. 470–473.

Eaton, F. D.

J. C. Ricklin, S. M. Hammel, F. D. Eaton, and S. L. Lachinova, “Atmospheric channel effects on free-space laser communication,” J. Opt. Fiber Commun. Rep., vol.  3, pp. 111–158, 2006.
[CrossRef]

Fan, J.

C. Chen, H. Yang, H. Jiang, J. Fan, C. Han, and Y. Ding, “Mitigation of turbulence-induced scintillation noise in free-space optical communication links using Kalman filter,” IEEE Congr. on Image and Signal Processing, China, Hainan, May 2008, vol. 5, pp. 470–473.

Forin, D. M.

D. M. Forin, S. Di Bartolo, G. M. Toshi Beleffi, F. Curti, G. Cincotti, A. Vecchi, S. Ragana, and A. L. J. Teixeira, “Giga Ethernet free-space passive optical networks,” Fiber Integr. Opt., vol.  27, pp. 229–236, Apr.2008.
[CrossRef]

Gagliardi, R. M.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water and the Atmosphere.New York: Plenum, 1988.

Gedhart, M.

E. Leitgeb, M. Gedhart, and U. Birnbacher, “Optical networks, last mile access and applications,” J. Opt. Fiber Commun. Rep., vol.  2, pp. 56–85, 2005.
[CrossRef]

Ghuman, B. S.

H. A. Willebrand and B. S. Ghuman, Free-Space Optics: Enabling Optical Connectivity in Today’s Networks.Indianapolis, IN: Sams, 2002.

Grossman, D. B.

Guarino, V.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun., vol.  27, pp. 1639–1645, 2009.
[CrossRef]

Hammel, S. M.

J. C. Ricklin, S. M. Hammel, F. D. Eaton, and S. L. Lachinova, “Atmospheric channel effects on free-space laser communication,” J. Opt. Fiber Commun. Rep., vol.  3, pp. 111–158, 2006.
[CrossRef]

Han, C.

C. Chen, H. Yang, H. Jiang, J. Fan, C. Han, and Y. Ding, “Mitigation of turbulence-induced scintillation noise in free-space optical communication links using Kalman filter,” IEEE Congr. on Image and Signal Processing, China, Hainan, May 2008, vol. 5, pp. 470–473.

Han, K. H.

E. S. Son, K. H. Han, J. H. Lee, and Y. C. Chung, “Survivable network architectures for WDM PON,” Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 2005, paper OFI4.

Jiang, H.

C. Chen, H. Yang, H. Jiang, J. Fan, C. Han, and Y. Ding, “Mitigation of turbulence-induced scintillation noise in free-space optical communication links using Kalman filter,” IEEE Congr. on Image and Signal Processing, China, Hainan, May 2008, vol. 5, pp. 470–473.

Kamalakis, T.

T. Kamalakis, I. Neokosmidis, A. Tsipouras, S. Pantazis, and I. Andrikopoulos, “Hybrid free space optical/millimeter wave outdoor links for broadband wireless access networks,” in IEEE 18th Int. Symp. on Personal, Indoor and Mobile Radio Communications, Athens, Greece, 2007.

Karp, S.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water and the Atmosphere.New York: Plenum, 1988.

Kazovsky, L.

L. Kazovsky, S.-W. Wong, T. Ayhan, K. M. Albeyoglu, M. R. N. Ribeiro, and A. Shastri, “Hybrid optical wireless access networks,” Proc. IEEE, vol.  100, pp. 1197–1225, 2012.
[CrossRef]

Kelly, A. E.

Khalighi, M. A.

Killinger, D.

D. Killinger, “Free space optics for laser communication through the air,” Opt. Photon. News, vol.  13, no. 10, pp. 36–42, Oct. 2002.
[CrossRef]

Kim, B. Y.

Kim, I.

E. Korevaar, I. Kim, and B. McArthur, “Atmospheric propagation characteristics of highest importance to commercial free space optics,” Proc. SPIE, vol.  4976, pp. 1–12, 2003.
[CrossRef]

Kopeika, N. S.

N. S. Kopeika and A. Zilberman, “Vertical profiles of aerosol and optical turbulence strength and their effects on atmospheric propagation,” Proc. SPIE, vol.  3927, pp. 460–467, 2000.

Korevaar, E.

E. Korevaar, I. Kim, and B. McArthur, “Atmospheric propagation characteristics of highest importance to commercial free space optics,” Proc. SPIE, vol.  4976, pp. 1–12, 2003.
[CrossRef]

S. Bloom, E. Korevaar, J. Schuster, and H. A. Willebrand, “Understanding the performance of free-space optics,” J. Opt. Netw., vol.  2, pp. 178–200, June 2003.

Lachinova, S. L.

J. C. Ricklin, S. M. Hammel, F. D. Eaton, and S. L. Lachinova, “Atmospheric channel effects on free-space laser communication,” J. Opt. Fiber Commun. Rep., vol.  3, pp. 111–158, 2006.
[CrossRef]

Lee, C. H.

Lee, J. H.

E. S. Son, K. H. Han, J. H. Lee, and Y. C. Chung, “Survivable network architectures for WDM PON,” Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 2005, paper OFI4.

Leitgeb, E.

E. Leitgeb, M. Gedhart, and U. Birnbacher, “Optical networks, last mile access and applications,” J. Opt. Fiber Commun. Rep., vol.  2, pp. 56–85, 2005.
[CrossRef]

Lemieux, P.

Lim, C.

LoPresti, P. G.

S. Spaunhorst, P. G. LoPresti, S. Pondelik, and H. Refai, “Evaluation of a novel FSO receiver for mitigating alignment errors,” Proc. SPIE, vol.  7324, 73240H, 2009.
[CrossRef]

Majumdar, A. K.

A. K. Majumdar, “Free-space laser communication performance in the atmospheric channel,” J. Opt. Fiber Commun. Rep., vol.  2, pp. 345–396, 2005.
[CrossRef]

Martin, C. M.

Mathlouthi, W.

Matsumoto, M.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun., vol.  27, pp. 1639–1645, 2009.
[CrossRef]

McArthur, B.

E. Korevaar, I. Kim, and B. McArthur, “Atmospheric propagation characteristics of highest importance to commercial free space optics,” Proc. SPIE, vol.  4976, pp. 1–12, 2003.
[CrossRef]

Mercinelli, R.

Monroy, I. T.

I. T. Monroy and E. Tangdiongga, Crosstalk in WDM Communication Networks.Norwell, MA: Kluwer Academic, 2002.

Moran, S. E.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water and the Atmosphere.New York: Plenum, 1988.

Neilson, D. T.

C. X. Yu and D. T. Neilson, “Diffraction-grating-based (de)multiplexer using image plane transformations,” IEEE J. Sel. Top. Quantum Electron., vol.  8, pp. 1194–1201, 2002.
[CrossRef]

Neokosmidis, I.

T. Kamalakis, I. Neokosmidis, A. Tsipouras, S. Pantazis, and I. Andrikopoulos, “Hybrid free space optical/millimeter wave outdoor links for broadband wireless access networks,” in IEEE 18th Int. Symp. on Personal, Indoor and Mobile Radio Communications, Athens, Greece, 2007.

Nesset, D.

Nirmalathas, A.

Pantazis, S.

T. Kamalakis, I. Neokosmidis, A. Tsipouras, S. Pantazis, and I. Andrikopoulos, “Hybrid free space optical/millimeter wave outdoor links for broadband wireless access networks,” in IEEE 18th Int. Symp. on Personal, Indoor and Mobile Radio Communications, Athens, Greece, 2007.

Payne, D. B.

Phillips, A. J.

A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, “Performance evaluation of optically preamplified digital pulse position modulation turbulent free-space optical communication systems,” IET Optoelectron., vol.  6, pp. 66–74, Feb. 2012.
[CrossRef]

A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, “Improved bit error rate evaluation for optically pre-amplified free-space optical communication systems in turbulent atmosphere,” IET Optoelectron., vol.  6, pp. 26–33, Feb. 2012.
[CrossRef]

A. J. Phillips, “Power penalty for burst mode reception in the presence of interchannel crosstalk,” IET Optoelectron., vol.  1, pp. 127–134, 2007.
[CrossRef]

A. J. Phillips, J. M. Senior, R. Mercinelli, M. Valvo, P. J. Vetter, C. M. Martin, M. O. Van Deventer, P. Vaes, and X. Z. Qiu, “Redundancy strategies for a high splitting optically amplified passive optical network,” J. Lightwave Technol., vol.  19, pp. 137–149, 2001.
[CrossRef]

A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, “DPPM FSO communication systems impaired by turbulence, pointing error and ASE noise,” in 14th Int. Conf. on Transparent Optical Networks (ICTON), Coventry, UK, 2012.

Phillips, R. L.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng., vol.  40, pp. 1554–1562, Aug.2001.
[CrossRef]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed.Bellingham, WA: SPIE, 2005.

Pondelik, S.

S. Spaunhorst, P. G. LoPresti, S. Pondelik, and H. Refai, “Evaluation of a novel FSO receiver for mitigating alignment errors,” Proc. SPIE, vol.  7324, 73240H, 2009.
[CrossRef]

Prat, J.

J. Prat, Next-Generation FTTH Passive Optical Networks: Research Towards Unlimited Bandwidth Access.Springer, 2008.

Presi, M.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun., vol.  27, pp. 1639–1645, 2009.
[CrossRef]

Qiu, X. Z.

Rafel, A.

Ragana, S.

D. M. Forin, S. Di Bartolo, G. M. Toshi Beleffi, F. Curti, G. Cincotti, A. Vecchi, S. Ragana, and A. L. J. Teixeira, “Giga Ethernet free-space passive optical networks,” Fiber Integr. Opt., vol.  27, pp. 229–236, Apr.2008.
[CrossRef]

Ramaswami, R.

R. Ramaswami and K. N. Sivarajan, Optical Networks—A Pratical Perspective, 2nd ed.London: Academic, 2002.

Rasztovits-Wiech, M.

Razavi, M.

M. Razavi and J. H. Shapiro, “Wireless optical communications via diversity reception and optical preamplification,” IEEE Trans. Wireless Commun., vol.  4, pp. 975–983, 2005.
[CrossRef]

Recolons, J.

Refai, H.

S. Spaunhorst, P. G. LoPresti, S. Pondelik, and H. Refai, “Evaluation of a novel FSO receiver for mitigating alignment errors,” Proc. SPIE, vol.  7324, 73240H, 2009.
[CrossRef]

Ribeiro, M. R. N.

L. Kazovsky, S.-W. Wong, T. Ayhan, K. M. Albeyoglu, M. R. N. Ribeiro, and A. Shastri, “Hybrid optical wireless access networks,” Proc. IEEE, vol.  100, pp. 1197–1225, 2012.
[CrossRef]

Ricklin, J. C.

J. C. Ricklin, S. M. Hammel, F. D. Eaton, and S. L. Lachinova, “Atmospheric channel effects on free-space laser communication,” J. Opt. Fiber Commun. Rep., vol.  3, pp. 111–158, 2006.
[CrossRef]

Rusch, L. A.

Schmidt, J. D.

Schuster, J.

Schwartz, N.

Senior, J. M.

Shapiro, J. H.

M. Razavi and J. H. Shapiro, “Wireless optical communications via diversity reception and optical preamplification,” IEEE Trans. Wireless Commun., vol.  4, pp. 975–983, 2005.
[CrossRef]

Shastri, A.

L. Kazovsky, S.-W. Wong, T. Ayhan, K. M. Albeyoglu, M. R. N. Ribeiro, and A. Shastri, “Hybrid optical wireless access networks,” Proc. IEEE, vol.  100, pp. 1197–1225, 2012.
[CrossRef]

Sivarajan, K. N.

R. Ramaswami and K. N. Sivarajan, Optical Networks—A Pratical Perspective, 2nd ed.London: Academic, 2002.

Skafidas, E.

Son, E. S.

E. S. Son, K. H. Han, J. H. Lee, and Y. C. Chung, “Survivable network architectures for WDM PON,” Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 2005, paper OFI4.

Sorin, W. V.

Spaunhorst, S.

S. Spaunhorst, P. G. LoPresti, S. Pondelik, and H. Refai, “Evaluation of a novel FSO receiver for mitigating alignment errors,” Proc. SPIE, vol.  7324, 73240H, 2009.
[CrossRef]

Stotts, L. B.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water and the Atmosphere.New York: Plenum, 1988.

Tangdiongga, E.

I. T. Monroy and E. Tangdiongga, Crosstalk in WDM Communication Networks.Norwell, MA: Kluwer Academic, 2002.

Teixeira, A. L. J.

D. M. Forin, S. Di Bartolo, G. M. Toshi Beleffi, F. Curti, G. Cincotti, A. Vecchi, S. Ragana, and A. L. J. Teixeira, “Giga Ethernet free-space passive optical networks,” Fiber Integr. Opt., vol.  27, pp. 229–236, Apr.2008.
[CrossRef]

Toshi Beleffi, G. M.

D. M. Forin, S. Di Bartolo, G. M. Toshi Beleffi, F. Curti, G. Cincotti, A. Vecchi, S. Ragana, and A. L. J. Teixeira, “Giga Ethernet free-space passive optical networks,” Fiber Integr. Opt., vol.  27, pp. 229–236, Apr.2008.
[CrossRef]

Tsipouras, A.

T. Kamalakis, I. Neokosmidis, A. Tsipouras, S. Pantazis, and I. Andrikopoulos, “Hybrid free space optical/millimeter wave outdoor links for broadband wireless access networks,” in IEEE 18th Int. Symp. on Personal, Indoor and Mobile Radio Communications, Athens, Greece, 2007.

Vaes, P.

Valvo, M.

Van Deventer, M. O.

Vecchi, A.

D. M. Forin, S. Di Bartolo, G. M. Toshi Beleffi, F. Curti, G. Cincotti, A. Vecchi, S. Ragana, and A. L. J. Teixeira, “Giga Ethernet free-space passive optical networks,” Fiber Integr. Opt., vol.  27, pp. 229–236, Apr.2008.
[CrossRef]

Vetelino, F. S.

Vetter, P. J.

Wang, K.

Wheeler, D. J.

Willebrand, H. A.

S. Bloom, E. Korevaar, J. Schuster, and H. A. Willebrand, “Understanding the performance of free-space optics,” J. Opt. Netw., vol.  2, pp. 178–200, June 2003.

H. A. Willebrand and B. S. Ghuman, Free-Space Optics: Enabling Optical Connectivity in Today’s Networks.Indianapolis, IN: Sams, 2002.

Wisely, D. R.

T. H. Carbonneau and D. R. Wisely, “Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today’s crowded marketplace,” Proc. SPIE, vol.  3232, pp. 119–128, Jan. 1998.
[CrossRef]

Wong, S.-W.

L. Kazovsky, S.-W. Wong, T. Ayhan, K. M. Albeyoglu, M. R. N. Ribeiro, and A. Shastri, “Hybrid optical wireless access networks,” Proc. IEEE, vol.  100, pp. 1197–1225, 2012.
[CrossRef]

Woolfson, M. S.

A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, “Performance evaluation of optically preamplified digital pulse position modulation turbulent free-space optical communication systems,” IET Optoelectron., vol.  6, pp. 66–74, Feb. 2012.
[CrossRef]

A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, “Improved bit error rate evaluation for optically pre-amplified free-space optical communication systems in turbulent atmosphere,” IET Optoelectron., vol.  6, pp. 26–33, Feb. 2012.
[CrossRef]

A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, “DPPM FSO communication systems impaired by turbulence, pointing error and ASE noise,” in 14th Int. Conf. on Transparent Optical Networks (ICTON), Coventry, UK, 2012.

Yang, H.

C. Chen, H. Yang, H. Jiang, J. Fan, C. Han, and Y. Ding, “Mitigation of turbulence-induced scintillation noise in free-space optical communication links using Kalman filter,” IEEE Congr. on Image and Signal Processing, China, Hainan, May 2008, vol. 5, pp. 470–473.

Yang, S.

Young, C.

Yu, C. X.

C. X. Yu and D. T. Neilson, “Diffraction-grating-based (de)multiplexer using image plane transformations,” IEEE J. Sel. Top. Quantum Electron., vol.  8, pp. 1194–1201, 2002.
[CrossRef]

Zilberman, A.

N. S. Kopeika and A. Zilberman, “Vertical profiles of aerosol and optical turbulence strength and their effects on atmospheric propagation,” Proc. SPIE, vol.  3927, pp. 460–467, 2000.

Appl. Opt. (3)

Fiber Integr. Opt. (1)

D. M. Forin, S. Di Bartolo, G. M. Toshi Beleffi, F. Curti, G. Cincotti, A. Vecchi, S. Ragana, and A. L. J. Teixeira, “Giga Ethernet free-space passive optical networks,” Fiber Integr. Opt., vol.  27, pp. 229–236, Apr.2008.
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun., vol.  27, pp. 1639–1645, 2009.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. X. Yu and D. T. Neilson, “Diffraction-grating-based (de)multiplexer using image plane transformations,” IEEE J. Sel. Top. Quantum Electron., vol.  8, pp. 1194–1201, 2002.
[CrossRef]

IEEE Trans. Wireless Commun. (1)

M. Razavi and J. H. Shapiro, “Wireless optical communications via diversity reception and optical preamplification,” IEEE Trans. Wireless Commun., vol.  4, pp. 975–983, 2005.
[CrossRef]

IET Optoelectron. (3)

A. J. Phillips, “Power penalty for burst mode reception in the presence of interchannel crosstalk,” IET Optoelectron., vol.  1, pp. 127–134, 2007.
[CrossRef]

A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, “Performance evaluation of optically preamplified digital pulse position modulation turbulent free-space optical communication systems,” IET Optoelectron., vol.  6, pp. 66–74, Feb. 2012.
[CrossRef]

A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, “Improved bit error rate evaluation for optically pre-amplified free-space optical communication systems in turbulent atmosphere,” IET Optoelectron., vol.  6, pp. 26–33, Feb. 2012.
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Commun. Netw. (1)

J. Opt. Fiber Commun. Rep. (4)

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep., vol.  4, pp. 225–362, 2007.
[CrossRef]

E. Leitgeb, M. Gedhart, and U. Birnbacher, “Optical networks, last mile access and applications,” J. Opt. Fiber Commun. Rep., vol.  2, pp. 56–85, 2005.
[CrossRef]

A. K. Majumdar, “Free-space laser communication performance in the atmospheric channel,” J. Opt. Fiber Commun. Rep., vol.  2, pp. 345–396, 2005.
[CrossRef]

J. C. Ricklin, S. M. Hammel, F. D. Eaton, and S. L. Lachinova, “Atmospheric channel effects on free-space laser communication,” J. Opt. Fiber Commun. Rep., vol.  3, pp. 111–158, 2006.
[CrossRef]

J. Opt. Netw. (1)

Opt. Eng. (1)

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng., vol.  40, pp. 1554–1562, Aug.2001.
[CrossRef]

Opt. Photon. News (1)

D. Killinger, “Free space optics for laser communication through the air,” Opt. Photon. News, vol.  13, no. 10, pp. 36–42, Oct. 2002.
[CrossRef]

Proc. IEEE (1)

L. Kazovsky, S.-W. Wong, T. Ayhan, K. M. Albeyoglu, M. R. N. Ribeiro, and A. Shastri, “Hybrid optical wireless access networks,” Proc. IEEE, vol.  100, pp. 1197–1225, 2012.
[CrossRef]

Proc. SPIE (4)

E. Korevaar, I. Kim, and B. McArthur, “Atmospheric propagation characteristics of highest importance to commercial free space optics,” Proc. SPIE, vol.  4976, pp. 1–12, 2003.
[CrossRef]

T. H. Carbonneau and D. R. Wisely, “Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today’s crowded marketplace,” Proc. SPIE, vol.  3232, pp. 119–128, Jan. 1998.
[CrossRef]

S. Spaunhorst, P. G. LoPresti, S. Pondelik, and H. Refai, “Evaluation of a novel FSO receiver for mitigating alignment errors,” Proc. SPIE, vol.  7324, 73240H, 2009.
[CrossRef]

N. S. Kopeika and A. Zilberman, “Vertical profiles of aerosol and optical turbulence strength and their effects on atmospheric propagation,” Proc. SPIE, vol.  3927, pp. 460–467, 2000.

Other (12)

C. Chen, H. Yang, H. Jiang, J. Fan, C. Han, and Y. Ding, “Mitigation of turbulence-induced scintillation noise in free-space optical communication links using Kalman filter,” IEEE Congr. on Image and Signal Processing, China, Hainan, May 2008, vol. 5, pp. 470–473.

I. T. Monroy and E. Tangdiongga, Crosstalk in WDM Communication Networks.Norwell, MA: Kluwer Academic, 2002.

S. B. Alexander, Optical Communication Receiver Design (Vol. TT22, SPIE Tutorial Texts in Optical Engineering) Bellingham, WA: SPIE, 1997.

“Safety of Laser Products—Part 1: Equipment Classification, Requirements, and User’s Guide, New classification standard adopted as of 1 March 2001, Amendment 2,” International Electrotechnical Commission, , 2001 [Online] Available: http://www.iec.ch/ .

A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, “DPPM FSO communication systems impaired by turbulence, pointing error and ASE noise,” in 14th Int. Conf. on Transparent Optical Networks (ICTON), Coventry, UK, 2012.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water and the Atmosphere.New York: Plenum, 1988.

R. Ramaswami and K. N. Sivarajan, Optical Networks—A Pratical Perspective, 2nd ed.London: Academic, 2002.

J. Prat, Next-Generation FTTH Passive Optical Networks: Research Towards Unlimited Bandwidth Access.Springer, 2008.

T. Kamalakis, I. Neokosmidis, A. Tsipouras, S. Pantazis, and I. Andrikopoulos, “Hybrid free space optical/millimeter wave outdoor links for broadband wireless access networks,” in IEEE 18th Int. Symp. on Personal, Indoor and Mobile Radio Communications, Athens, Greece, 2007.

E. S. Son, K. H. Han, J. H. Lee, and Y. C. Chung, “Survivable network architectures for WDM PON,” Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 2005, paper OFI4.

H. A. Willebrand and B. S. Ghuman, Free-Space Optics: Enabling Optical Connectivity in Today’s Networks.Indianapolis, IN: Sams, 2002.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed.Bellingham, WA: SPIE, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic representation of a WDM network using an FSO link for the final distribution stage, with an OA located at the remote node (Case A) or at the OLT demux input (Case B). ONUs will be distributed at different angles around the remote node.

Fig. 2.
Fig. 2.

BER versus average received signal optical power (dBm) for WT and ST (no amplifier): (a) CXT=30dB and (b) CXT=15dB.

Fig. 3.
Fig. 3.

BER versus average received signal optical power (dBm) for WT and ST (G=30dB): (a) CXT=30dB and (b) CXT=15dB.

Fig. 4.
Fig. 4.

Downstream required transmitted optical power (dBm) at a target BER of 106 as a function of the FSO link length (m) for no interferer and single interferer cases, (a) Ldemux,XT=30dB and (b) Ldemux,XT=15dB. The OA was at the remote node (Case A).

Fig. 5.
Fig. 5.

Downstream required transmitted optical power (dBm) at a target BER of 106 as a function of the transmitter divergence angle (rad) with lfso=1000m for no interferer and single interferer cases, (a) Ldemux,XT=30dB and (b) Ldemux,XT=15dB. The OA was at the remote node (Case A).

Fig. 6.
Fig. 6.

Upstream required transmitted optical power (dBm) at target BERs of 106 as a function of the FSO link length (m) for no interferer and single interferer cases, Ldemux,XT=30dB.

Fig. 7.
Fig. 7.

Upstream required transmitted optical power (dBm) at target BERs of 106 as a function of the transmitter divergence angle (rad) with lfso=1000m for no interferer and single interferer cases, Ldemux,XT=30dB.

Fig. 8.
Fig. 8.

Upstream required transmitted optical power (dBm) at target BERs of 106 as a function of the FSO link lengths for signal and interferer (m) for the single interferer case with Ldemux,XT=15dB.

Fig. 9.
Fig. 9.

Upstream required transmitted optical power (dBm) (under the assumption of a power control algorithm that ensures the average power at the RCL or OLT for each signal is fixed) at target BERs of 106 as a function of the FSO link lengths for signal and interferer (m) for the single interferer case with Ldemux,XT=15dB.

Tables (1)

Tables Icon

TABLE I Key Parameters Used in the Calculation

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

pGG(hX)=2(αβ)(α+β)/2Γ(α)Γ(β)hX(α+β)/21Kαβ(2αβhX);hX>0,
α={exp[0.49σR2(1+0.65d2+1.11σR12/5)7/6]1}1,
β={exp[0.51σR2(1+0.69σR12/5)5/61+0.9d2+0.62d2σR12/5]1}1,
BER¯=00BER(hsig,hint)pGG,sig(hsig)pGG,int(hint)dhsigdhint,
BER(hsig,hint)=14erfc(Q(hsig,hint)2),
Q(hsig,hint)=i1,0(hsig,hint)i0,1(hsig,hint)σ1,0(hsig,hint)+σ0,1(hsig,hint),
σshot_dsig,dint2=2qidsig,dint(hsig,hint)Be,
σshot,ASE2=2mtB0N0qRBe,
σsig_dsig,dintASE2=4RN0idsig,dint(hsig,hint)Be,
σASEASE2=2mtR2N02B0Be.
PR,sig(hsig)=GPuT,sighsigLfso,sigLbs,sigLc,sigLmuxLfiberLdemux,
PR,int(hint)=GPuT,inthintLfso,intLbs,intLc,intLmuxLfiberLdemuxLdemux,XT,
Lbs=(DRXθlfso)2
Lc=1{8a20101(exp[(a2+ARXAC)(x12+x22)]×I0(2ARXACx1x2)x1x2)dx1dx2},
BERd(hX)=14erfc(Qd(hX)2),
Qd(hX)=id1,0(hX)id0,1(hX)σd1,0(hX)+σd0,1(hX),
PdR,sig(hX)=GPdT,sighXLmuxLfiberLdemuxLfsoLbs,
PdR,int(hX)=GPdT,inthXLmuxLfiberLdemuxLdemux,XTLfsoLbs,
BERd,av¯=0BERd(hX)pGG,sig(hX)dhX.