Abstract

Next-generation optical access networks should not only increase capacity but also be able to redistribute capacity on the fly in order to manage larger variations in traffic patterns. Wavelength reconfigurability is an instrument that can enable such capability of network-wide bandwidth redistribution since it allows dynamic sharing of both wavelengths and timeslots in WDM-TDM optical access networks. However, reconfigurability typically requires tunable lasers and tunable filters at the user side, resulting in cost-prohibitive optical network units (ONUs). In this paper, we propose a novel concept, named cyclic-linked flexibility, to address the cost-prohibitive problem. By using cyclic-linked flexibility, the ONU needs to switch only within a subset of two preplanned wavelengths, but the cyclic-linked structure of wavelengths allows free bandwidth to be shifted to any wavelength by a rearrangement process. A basic rearrangement algorithm is developed to demonstrate that cyclic-linked flexibility performs close to a fully flexible network in terms of blocking probability, packet delay, and packet loss. Furthermore, we show that the rearrangement process has minimum impact on in-service ONUs. To realize cyclic-linked flexibility, a physical implementation is proposed with a feasible cost and wavelength-agnostic ONU design.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Cisco Visual Networking Index: Forecast and Methodology, 2010–2015,” Cisco White Paper, June 2011 [Online]. Available: http://www.cisco.com .
  2. “Cisco Visual Networking Index: Usage Study,” Cisco White Paper, Oct. 2010 [Online]. Available: http://www.cisco.com .
  3. “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2011–2016,” Cisco White Paper, Feb. 2012 [Online]. Available: http://www.cisco.com .
  4. T. Koonen, “Fiber to the home/fiber to the premises: What, where, and when?” Proc. IEEE, vol.  94, no. 5, pp. 911–934, 2006.
    [CrossRef]
  5. N. C. Tran, E. Tangdiongga, C. M. Okonkwo, H. D. Jung, and A. M. J. Koonen, “Flexibility level adjustment in reconfigurable WDM-TDM optical access networks,” J. Lightwave Technol., vol.  30, no. 15, pp. 2542–2550, Aug. 2012.
    [CrossRef]
  6. F. T. An, K. S. Kim, D. Gutierrez, S. Yam, E. Hu, K. Shrikhande, and L. G. Kazovsky, “SUCCESS: A next-generation hybrid WDM/TDM optical access network architecture,” J. Lightwave Technol., vol.  22, no. 11, pp. 2557–2569, Nov. 2004.
    [CrossRef]
  7. G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightwave Technol., vol.  24, pp. 2827–2834, July 2006.
    [CrossRef]
  8. P. Ossieur, C. Antony, A. Naughton, A. M. Clarke, H.-G. Krimmel, X. Yin, X.-Z. Qiu, C. Ford, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, S. Smolorz, H. Rohde, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a 32×512 split, 100 km reach, 2×32×10  Gb/s hybrid DWDM-TDMA PON using tunable external cavity lasers in the ONUs,” J. Lightwave Technol., vol.  29, no. 24, pp. 3705–3718, Dec. 2011.
    [CrossRef]
  9. R. Glatty, P. Guignard, and P. Chanclou, “Flexible optical access network with SOA amplification,” in Proc. Int. Conf. Communication (ICC), 2008, pp. 5182–5185.
  10. N. C. Tran, H. D. Jung, C. Okonkwo, E. Tangdiongga, and T. Koonen, “A 10  Gb/s passive-components-based WDM-TDM reconfigurable optical access network architecture,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2011, paper OThT1.
  11. R. Glatty, P. Guignard, and P. Chanclou, “Flexibility in access networks: A novel WDMA/TDMA scheme for passive optical networks,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2007, paper JThA77.
  12. G. Puerto, J. Mora, B. Ortega, and J. Capmany, “Selective multicast in a dynamic wavelength router for DWDM converged wired/wireless access networks,” in Proc. Optical Fiber Communication Conf. (OFC), 2010, paper OWQ3.
  13. N. C. Tran, H. D. Jung, C. Okonkwo, E. Tangdiongga, and T. Koonen, “ARON: A SOA array-based WDM-TDM reconfigurable optical access network,” Proc. Future Network & Mobile Summit, Florence, Italy, 2010, pp. 1–7.
  14. P. J. Urban, B. Huiszoon, R. Roy, M. M. de Laat, F. M. Huijskens, E. J. Klein, G. D. Khoe, A. M. J. Koonen, and H. de Waardt, “High-bit-rate dynamically reconfigurable WDM–TDM access network,” J. Opt. Commun. Netw., vol.  1, no. 2, pp. A143–A158, July 2009.
    [CrossRef]
  15. M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. De Vries, B. Smalbrugge, Y.-S. Oei, R. Notzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” Photon. Technol. Lett., vol.  21, no. 13, pp. 905–907, July 2009.
    [CrossRef]
  16. D. C. Kim, H.-S. Kim, K. S. Kim, B.-S. Choi, J.-S. Jeong, and O.-K. Kwon, “10 Gbps SOA-REAM using monolithic integration of planar buried-heterostructure SOA with deep-ridge waveguide EA modulator for colourless optical source in WDM-PON,” in Proc. 37th European Conf. Exhibition Optical Communication (ECOC), Sept. 18–22, 2011, pp. 1–3.
  17. J. Bauwelinck, B. Schrenk, C. Kazmierski, J. A. Lazaro, J. Prat, and X. Z. Qiu, “Multi-operability and dynamic bandwidth allocation in PONs with electrically reconfigurable SOA/REAM-based ONUs,” in Proc. 36th European Conf. and Exhibition on Optical Communication (ECOC), Sept. 19–23, 2010, paper Th.10.B.4.
  18. “88-channel 50 GHz AWG datasheet,” Enablence Technologies Inc., 2010 [Online]. Available: http://www.enablence.com .
  19. “10-gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification,” ITU-T Recommendation G.987.3, Oct. 2010.
  20. “Requirements for European next-generation optical access networks,” European FP7 project OASE, Sept. 2010 [Online]. Available: http://www.ict-oase.eu .

2012 (1)

2011 (1)

2009 (2)

P. J. Urban, B. Huiszoon, R. Roy, M. M. de Laat, F. M. Huijskens, E. J. Klein, G. D. Khoe, A. M. J. Koonen, and H. de Waardt, “High-bit-rate dynamically reconfigurable WDM–TDM access network,” J. Opt. Commun. Netw., vol.  1, no. 2, pp. A143–A158, July 2009.
[CrossRef]

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. De Vries, B. Smalbrugge, Y.-S. Oei, R. Notzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” Photon. Technol. Lett., vol.  21, no. 13, pp. 905–907, July 2009.
[CrossRef]

2006 (2)

T. Koonen, “Fiber to the home/fiber to the premises: What, where, and when?” Proc. IEEE, vol.  94, no. 5, pp. 911–934, 2006.
[CrossRef]

G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightwave Technol., vol.  24, pp. 2827–2834, July 2006.
[CrossRef]

2004 (1)

An, F. T.

Antony, C.

Augustin, L. M.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. De Vries, B. Smalbrugge, Y.-S. Oei, R. Notzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” Photon. Technol. Lett., vol.  21, no. 13, pp. 905–907, July 2009.
[CrossRef]

Bauwelinck, J.

J. Bauwelinck, B. Schrenk, C. Kazmierski, J. A. Lazaro, J. Prat, and X. Z. Qiu, “Multi-operability and dynamic bandwidth allocation in PONs with electrically reconfigurable SOA/REAM-based ONUs,” in Proc. 36th European Conf. and Exhibition on Optical Communication (ECOC), Sept. 19–23, 2010, paper Th.10.B.4.

Borghesani, A.

Capmany, J.

G. Puerto, J. Mora, B. Ortega, and J. Capmany, “Selective multicast in a dynamic wavelength router for DWDM converged wired/wireless access networks,” in Proc. Optical Fiber Communication Conf. (OFC), 2010, paper OWQ3.

Chanclou, P.

R. Glatty, P. Guignard, and P. Chanclou, “Flexibility in access networks: A novel WDMA/TDMA scheme for passive optical networks,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2007, paper JThA77.

R. Glatty, P. Guignard, and P. Chanclou, “Flexible optical access network with SOA amplification,” in Proc. Int. Conf. Communication (ICC), 2008, pp. 5182–5185.

Choi, B.-S.

D. C. Kim, H.-S. Kim, K. S. Kim, B.-S. Choi, J.-S. Jeong, and O.-K. Kwon, “10 Gbps SOA-REAM using monolithic integration of planar buried-heterostructure SOA with deep-ridge waveguide EA modulator for colourless optical source in WDM-PON,” in Proc. 37th European Conf. Exhibition Optical Communication (ECOC), Sept. 18–22, 2011, pp. 1–3.

Clarke, A. M.

Davey, R. P.

de Laat, M. M.

De Vries, T.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. De Vries, B. Smalbrugge, Y.-S. Oei, R. Notzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” Photon. Technol. Lett., vol.  21, no. 13, pp. 905–907, July 2009.
[CrossRef]

de Waardt, H.

Ford, C.

Gaudino, R.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. De Vries, B. Smalbrugge, Y.-S. Oei, R. Notzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” Photon. Technol. Lett., vol.  21, no. 13, pp. 905–907, July 2009.
[CrossRef]

Glatty, R.

R. Glatty, P. Guignard, and P. Chanclou, “Flexible optical access network with SOA amplification,” in Proc. Int. Conf. Communication (ICC), 2008, pp. 5182–5185.

R. Glatty, P. Guignard, and P. Chanclou, “Flexibility in access networks: A novel WDMA/TDMA scheme for passive optical networks,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2007, paper JThA77.

Guignard, P.

R. Glatty, P. Guignard, and P. Chanclou, “Flexibility in access networks: A novel WDMA/TDMA scheme for passive optical networks,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2007, paper JThA77.

R. Glatty, P. Guignard, and P. Chanclou, “Flexible optical access network with SOA amplification,” in Proc. Int. Conf. Communication (ICC), 2008, pp. 5182–5185.

Gutierrez, D.

Harmon, B.

Heck, M. J. R.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. De Vries, B. Smalbrugge, Y.-S. Oei, R. Notzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” Photon. Technol. Lett., vol.  21, no. 13, pp. 905–907, July 2009.
[CrossRef]

Hu, E.

Huijskens, F. M.

Huiszoon, B.

Jeong, J.-S.

D. C. Kim, H.-S. Kim, K. S. Kim, B.-S. Choi, J.-S. Jeong, and O.-K. Kwon, “10 Gbps SOA-REAM using monolithic integration of planar buried-heterostructure SOA with deep-ridge waveguide EA modulator for colourless optical source in WDM-PON,” in Proc. 37th European Conf. Exhibition Optical Communication (ECOC), Sept. 18–22, 2011, pp. 1–3.

Jung, H. D.

N. C. Tran, E. Tangdiongga, C. M. Okonkwo, H. D. Jung, and A. M. J. Koonen, “Flexibility level adjustment in reconfigurable WDM-TDM optical access networks,” J. Lightwave Technol., vol.  30, no. 15, pp. 2542–2550, Aug. 2012.
[CrossRef]

N. C. Tran, H. D. Jung, C. Okonkwo, E. Tangdiongga, and T. Koonen, “ARON: A SOA array-based WDM-TDM reconfigurable optical access network,” Proc. Future Network & Mobile Summit, Florence, Italy, 2010, pp. 1–7.

N. C. Tran, H. D. Jung, C. Okonkwo, E. Tangdiongga, and T. Koonen, “A 10  Gb/s passive-components-based WDM-TDM reconfigurable optical access network architecture,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2011, paper OThT1.

Kazmierski, C.

J. Bauwelinck, B. Schrenk, C. Kazmierski, J. A. Lazaro, J. Prat, and X. Z. Qiu, “Multi-operability and dynamic bandwidth allocation in PONs with electrically reconfigurable SOA/REAM-based ONUs,” in Proc. 36th European Conf. and Exhibition on Optical Communication (ECOC), Sept. 19–23, 2010, paper Th.10.B.4.

Kazovsky, L. G.

Khoe, G. D.

Kim, D. C.

D. C. Kim, H.-S. Kim, K. S. Kim, B.-S. Choi, J.-S. Jeong, and O.-K. Kwon, “10 Gbps SOA-REAM using monolithic integration of planar buried-heterostructure SOA with deep-ridge waveguide EA modulator for colourless optical source in WDM-PON,” in Proc. 37th European Conf. Exhibition Optical Communication (ECOC), Sept. 18–22, 2011, pp. 1–3.

Kim, H.-S.

D. C. Kim, H.-S. Kim, K. S. Kim, B.-S. Choi, J.-S. Jeong, and O.-K. Kwon, “10 Gbps SOA-REAM using monolithic integration of planar buried-heterostructure SOA with deep-ridge waveguide EA modulator for colourless optical source in WDM-PON,” in Proc. 37th European Conf. Exhibition Optical Communication (ECOC), Sept. 18–22, 2011, pp. 1–3.

Kim, K. S.

F. T. An, K. S. Kim, D. Gutierrez, S. Yam, E. Hu, K. Shrikhande, and L. G. Kazovsky, “SUCCESS: A next-generation hybrid WDM/TDM optical access network architecture,” J. Lightwave Technol., vol.  22, no. 11, pp. 2557–2569, Nov. 2004.
[CrossRef]

D. C. Kim, H.-S. Kim, K. S. Kim, B.-S. Choi, J.-S. Jeong, and O.-K. Kwon, “10 Gbps SOA-REAM using monolithic integration of planar buried-heterostructure SOA with deep-ridge waveguide EA modulator for colourless optical source in WDM-PON,” in Proc. 37th European Conf. Exhibition Optical Communication (ECOC), Sept. 18–22, 2011, pp. 1–3.

Klein, E. J.

Koonen, A. M. J.

Koonen, T.

T. Koonen, “Fiber to the home/fiber to the premises: What, where, and when?” Proc. IEEE, vol.  94, no. 5, pp. 911–934, 2006.
[CrossRef]

N. C. Tran, H. D. Jung, C. Okonkwo, E. Tangdiongga, and T. Koonen, “ARON: A SOA array-based WDM-TDM reconfigurable optical access network,” Proc. Future Network & Mobile Summit, Florence, Italy, 2010, pp. 1–7.

N. C. Tran, H. D. Jung, C. Okonkwo, E. Tangdiongga, and T. Koonen, “A 10  Gb/s passive-components-based WDM-TDM reconfigurable optical access network architecture,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2011, paper OThT1.

Krimmel, H.-G.

Kwon, O.-K.

D. C. Kim, H.-S. Kim, K. S. Kim, B.-S. Choi, J.-S. Jeong, and O.-K. Kwon, “10 Gbps SOA-REAM using monolithic integration of planar buried-heterostructure SOA with deep-ridge waveguide EA modulator for colourless optical source in WDM-PON,” in Proc. 37th European Conf. Exhibition Optical Communication (ECOC), Sept. 18–22, 2011, pp. 1–3.

La Porta, A.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. De Vries, B. Smalbrugge, Y.-S. Oei, R. Notzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” Photon. Technol. Lett., vol.  21, no. 13, pp. 905–907, July 2009.
[CrossRef]

Lazaro, J. A.

J. Bauwelinck, B. Schrenk, C. Kazmierski, J. A. Lazaro, J. Prat, and X. Z. Qiu, “Multi-operability and dynamic bandwidth allocation in PONs with electrically reconfigurable SOA/REAM-based ONUs,” in Proc. 36th European Conf. and Exhibition on Optical Communication (ECOC), Sept. 19–23, 2010, paper Th.10.B.4.

Lealman, I.

Leijtens, X. J. M.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. De Vries, B. Smalbrugge, Y.-S. Oei, R. Notzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” Photon. Technol. Lett., vol.  21, no. 13, pp. 905–907, July 2009.
[CrossRef]

Maxwell, G.

Moodie, D.

Mora, J.

G. Puerto, J. Mora, B. Ortega, and J. Capmany, “Selective multicast in a dynamic wavelength router for DWDM converged wired/wireless access networks,” in Proc. Optical Fiber Communication Conf. (OFC), 2010, paper OWQ3.

Naughton, A.

Nesset, D.

Notzel, R.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. De Vries, B. Smalbrugge, Y.-S. Oei, R. Notzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” Photon. Technol. Lett., vol.  21, no. 13, pp. 905–907, July 2009.
[CrossRef]

Oei, Y.-S.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. De Vries, B. Smalbrugge, Y.-S. Oei, R. Notzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” Photon. Technol. Lett., vol.  21, no. 13, pp. 905–907, July 2009.
[CrossRef]

Okonkwo, C.

N. C. Tran, H. D. Jung, C. Okonkwo, E. Tangdiongga, and T. Koonen, “A 10  Gb/s passive-components-based WDM-TDM reconfigurable optical access network architecture,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2011, paper OThT1.

N. C. Tran, H. D. Jung, C. Okonkwo, E. Tangdiongga, and T. Koonen, “ARON: A SOA array-based WDM-TDM reconfigurable optical access network,” Proc. Future Network & Mobile Summit, Florence, Italy, 2010, pp. 1–7.

Okonkwo, C. M.

Ortega, B.

G. Puerto, J. Mora, B. Ortega, and J. Capmany, “Selective multicast in a dynamic wavelength router for DWDM converged wired/wireless access networks,” in Proc. Optical Fiber Communication Conf. (OFC), 2010, paper OWQ3.

Ossieur, P.

Poustie, A.

Prat, J.

J. Bauwelinck, B. Schrenk, C. Kazmierski, J. A. Lazaro, J. Prat, and X. Z. Qiu, “Multi-operability and dynamic bandwidth allocation in PONs with electrically reconfigurable SOA/REAM-based ONUs,” in Proc. 36th European Conf. and Exhibition on Optical Communication (ECOC), Sept. 19–23, 2010, paper Th.10.B.4.

Puerto, G.

G. Puerto, J. Mora, B. Ortega, and J. Capmany, “Selective multicast in a dynamic wavelength router for DWDM converged wired/wireless access networks,” in Proc. Optical Fiber Communication Conf. (OFC), 2010, paper OWQ3.

Qiu, X. Z.

J. Bauwelinck, B. Schrenk, C. Kazmierski, J. A. Lazaro, J. Prat, and X. Z. Qiu, “Multi-operability and dynamic bandwidth allocation in PONs with electrically reconfigurable SOA/REAM-based ONUs,” in Proc. 36th European Conf. and Exhibition on Optical Communication (ECOC), Sept. 19–23, 2010, paper Th.10.B.4.

Qiu, X.-Z.

Robbins, D. J.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. De Vries, B. Smalbrugge, Y.-S. Oei, R. Notzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” Photon. Technol. Lett., vol.  21, no. 13, pp. 905–907, July 2009.
[CrossRef]

Rogers, D.

Rohde, H.

Roy, R.

Schrenk, B.

J. Bauwelinck, B. Schrenk, C. Kazmierski, J. A. Lazaro, J. Prat, and X. Z. Qiu, “Multi-operability and dynamic bandwidth allocation in PONs with electrically reconfigurable SOA/REAM-based ONUs,” in Proc. 36th European Conf. and Exhibition on Optical Communication (ECOC), Sept. 19–23, 2010, paper Th.10.B.4.

Shrikhande, K.

Smalbrugge, B.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. De Vries, B. Smalbrugge, Y.-S. Oei, R. Notzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” Photon. Technol. Lett., vol.  21, no. 13, pp. 905–907, July 2009.
[CrossRef]

Smit, M. K.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. De Vries, B. Smalbrugge, Y.-S. Oei, R. Notzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” Photon. Technol. Lett., vol.  21, no. 13, pp. 905–907, July 2009.
[CrossRef]

Smith, D. W.

Smolorz, S.

Talli, G.

Tangdiongga, E.

N. C. Tran, E. Tangdiongga, C. M. Okonkwo, H. D. Jung, and A. M. J. Koonen, “Flexibility level adjustment in reconfigurable WDM-TDM optical access networks,” J. Lightwave Technol., vol.  30, no. 15, pp. 2542–2550, Aug. 2012.
[CrossRef]

N. C. Tran, H. D. Jung, C. Okonkwo, E. Tangdiongga, and T. Koonen, “ARON: A SOA array-based WDM-TDM reconfigurable optical access network,” Proc. Future Network & Mobile Summit, Florence, Italy, 2010, pp. 1–7.

N. C. Tran, H. D. Jung, C. Okonkwo, E. Tangdiongga, and T. Koonen, “A 10  Gb/s passive-components-based WDM-TDM reconfigurable optical access network architecture,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2011, paper OThT1.

Townsend, P. D.

Tran, N. C.

N. C. Tran, E. Tangdiongga, C. M. Okonkwo, H. D. Jung, and A. M. J. Koonen, “Flexibility level adjustment in reconfigurable WDM-TDM optical access networks,” J. Lightwave Technol., vol.  30, no. 15, pp. 2542–2550, Aug. 2012.
[CrossRef]

N. C. Tran, H. D. Jung, C. Okonkwo, E. Tangdiongga, and T. Koonen, “A 10  Gb/s passive-components-based WDM-TDM reconfigurable optical access network architecture,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2011, paper OThT1.

N. C. Tran, H. D. Jung, C. Okonkwo, E. Tangdiongga, and T. Koonen, “ARON: A SOA array-based WDM-TDM reconfigurable optical access network,” Proc. Future Network & Mobile Summit, Florence, Italy, 2010, pp. 1–7.

Urban, P. J.

Wyatt, R.

Yam, S.

Yin, X.

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (1)

Photon. Technol. Lett. (1)

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. De Vries, B. Smalbrugge, Y.-S. Oei, R. Notzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” Photon. Technol. Lett., vol.  21, no. 13, pp. 905–907, July 2009.
[CrossRef]

Proc. IEEE (1)

T. Koonen, “Fiber to the home/fiber to the premises: What, where, and when?” Proc. IEEE, vol.  94, no. 5, pp. 911–934, 2006.
[CrossRef]

Other (13)

“Cisco Visual Networking Index: Forecast and Methodology, 2010–2015,” Cisco White Paper, June 2011 [Online]. Available: http://www.cisco.com .

“Cisco Visual Networking Index: Usage Study,” Cisco White Paper, Oct. 2010 [Online]. Available: http://www.cisco.com .

“Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2011–2016,” Cisco White Paper, Feb. 2012 [Online]. Available: http://www.cisco.com .

D. C. Kim, H.-S. Kim, K. S. Kim, B.-S. Choi, J.-S. Jeong, and O.-K. Kwon, “10 Gbps SOA-REAM using monolithic integration of planar buried-heterostructure SOA with deep-ridge waveguide EA modulator for colourless optical source in WDM-PON,” in Proc. 37th European Conf. Exhibition Optical Communication (ECOC), Sept. 18–22, 2011, pp. 1–3.

J. Bauwelinck, B. Schrenk, C. Kazmierski, J. A. Lazaro, J. Prat, and X. Z. Qiu, “Multi-operability and dynamic bandwidth allocation in PONs with electrically reconfigurable SOA/REAM-based ONUs,” in Proc. 36th European Conf. and Exhibition on Optical Communication (ECOC), Sept. 19–23, 2010, paper Th.10.B.4.

“88-channel 50 GHz AWG datasheet,” Enablence Technologies Inc., 2010 [Online]. Available: http://www.enablence.com .

“10-gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification,” ITU-T Recommendation G.987.3, Oct. 2010.

“Requirements for European next-generation optical access networks,” European FP7 project OASE, Sept. 2010 [Online]. Available: http://www.ict-oase.eu .

R. Glatty, P. Guignard, and P. Chanclou, “Flexible optical access network with SOA amplification,” in Proc. Int. Conf. Communication (ICC), 2008, pp. 5182–5185.

N. C. Tran, H. D. Jung, C. Okonkwo, E. Tangdiongga, and T. Koonen, “A 10  Gb/s passive-components-based WDM-TDM reconfigurable optical access network architecture,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2011, paper OThT1.

R. Glatty, P. Guignard, and P. Chanclou, “Flexibility in access networks: A novel WDMA/TDMA scheme for passive optical networks,” in Proc. Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2007, paper JThA77.

G. Puerto, J. Mora, B. Ortega, and J. Capmany, “Selective multicast in a dynamic wavelength router for DWDM converged wired/wireless access networks,” in Proc. Optical Fiber Communication Conf. (OFC), 2010, paper OWQ3.

N. C. Tran, H. D. Jung, C. Okonkwo, E. Tangdiongga, and T. Koonen, “ARON: A SOA array-based WDM-TDM reconfigurable optical access network,” Proc. Future Network & Mobile Summit, Florence, Italy, 2010, pp. 1–7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Daily access inbound (downstream) and outbound (upstream) traffic profiles (a) from mixed consumer and business users recorded in early 2012 at a KPN central office (CO) in Amsterdam, The Netherlands, and (b) from business users recorded in early 2012 at a KPN CO in Rotterdam.

Fig. 2.
Fig. 2.

Schematic representations of WDM-TDM access architectures: (a) static hybrid WDM-TDM, (b) broadcast-and-select reconfigurable, and (c) wavelength-routed reconfigurable. CO, OLT, ODN, RN, and ONU stand for central office, optical line terminal, optical distribution network, remote node, and optical network unit, respectively.

Fig. 3.
Fig. 3.

(a) Schematic representations of limited flexibility architecture leveraging the AWG free spectral range (FSR). (b) Schematic representation of an integrated array of transceivers for wavelength reconfigurability.

Fig. 4.
Fig. 4.

Conceptual representation of wavelength reconfigurability schemes for six wavelength channels.

Fig. 5.
Fig. 5.

Example of bandwidth rearrangement steps of cyclic-linked flexibility for a six-wavelength network.

Fig. 6.
Fig. 6.

Schematic of passive-components-based architecture in which pairs of downstream (DS) and upstream (US) wavelengths are demultiplexed and then cyclically linked at the RN.

Fig. 7.
Fig. 7.

ODN accumulated splitting loss as a function of wavelength count (on average 32 ONUs per wavelength).

Fig. 8.
Fig. 8.

Bandwidth reservation map for a 125 μs scheduling round in Resource Reservation Control in OPNET. Each BWblock is equivalent to one 4 byte word and Bmax is 39,063 for 10 Gbps.

Fig. 9.
Fig. 9.

Simplified flowchart of bandwidth allocation rearrangement algorithm by moving free BWblocks step by step from a wavelength to the congested wavelength.

Fig. 10.
Fig. 10.

Logical connection blocking probability as a function of offered load for request bandwidth of 500 Mbps, one AllocID per ONU.

Fig. 11.
Fig. 11.

Logical connection blocking probability as a function of offered load for various traffic scenarios.

Fig. 12.
Fig. 12.

Rearrangement impact probability for different traffic scenarios.

Fig. 13.
Fig. 13.

Time trace of generated traffic arriving at the ONU buffer at a resolution of 0.01 s (3000 data points per 30 s).

Fig. 14.
Fig. 14.

Time trace of network-wide queuing delay for different schemes.

Fig. 15.
Fig. 15.

Time trace of network-wide packet loss for different schemes.

Fig. 16.
Fig. 16.

Time traces of traffic loads on representative channels: (a) static flexibility, (b) full flexibility, and (c) cyclic-linked flexibility.

Tables (1)

Tables Icon

Table I. Traffic Scenarios in the Connection Level

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PbIm=1#rearrangement operationsAll#MovedONU#TotalONU.