Abstract

A detailed analysis and comparison is carried out for optical wireless communications (OWCs) with coherent and subcarrier-intensity-modulation-based systems, which are the two major implementations for detection-threshold-free operation without irreducible error floors. Error rate performance is studied for communications with binary phase-shift keying, differential phase-shift keying, and noncoherent frequency-shift keying over weak-to-strong (gamma–gamma distributed) turbulence conditions. Series-form error rate expressions are also derived for diversity reception schemes, including maximum ratio combining, equal gain combining, and selection combining. Based on our analysis, it is found that coherent OWC systems typically outperform subcarrier intensity modulation systems, with 24–30 dB improvements in sensitivity, mainly due to their elimination of thermal and background noise effects. The performance improvements of coherent systems are confirmed through numerical studies. The findings can offer significant benefits for future OWC systems that are subject to transmitted power limitations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol., vol.  24, pp. 4750–4762, Dec. 2006.
    [CrossRef]
  2. Q. Liu, C. Qiao, G. Mitchell, and S. Stanton, “Optical wireless communication networks for first- and last-mile broadband access,” J. Opt. Netw., vol.  4, pp. 807–828, Dec. 2005.
    [CrossRef]
  3. H. Willebrand and B. S. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today’s Networks. Indianapolis, IN:Sams, 2002.
  4. J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun., vol.  55, pp. 1598–1606, Aug. 2007.
    [CrossRef]
  5. W. Huang, J. Takayanagi, T. Sakanaka, and M. Nakagawa, “Atmospheric optical communication system using subcarrier PSK modulation,” IEICE Trans. Commun., vol.  E76-B, pp. 1169–1177, Sept. 1993.
  6. W. Popoola and Z. Ghassemlooy, “BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence,” J. Lightwave Technol., vol.  27, pp. 967–973, Apr. 2009.
    [CrossRef]
  7. W. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron., vol.  2, pp. 16–23, Feb. 2008.
    [CrossRef]
  8. X. Song, M. Niu, and J. Cheng, “Error rate of subcarrier intensity modulations for wireless optical communications,” IEEE Commun. Lett., vol.  16, pp. 540–543, Apr. 2012.
    [CrossRef]
  9. K. Kiasaleh, “Performance of coherent DPSK free-space optical communication systems in K-distributed turbulence,” IEEE Trans. Commun., vol.  54, pp. 604–607, Apr. 2006.
    [CrossRef]
  10. T. A. Tsiftsis, “Performance of heterodyne wireless optical communication systems over gamma-gamma atmospheric turbulence channels,” Electron. Lett., vol.  44, pp. 373–375, Feb. 2008.
    [CrossRef]
  11. A. Belmonte and J. M. Kahn, “Performance of synchronous optical receivers using atmospheric compensation techniques,” Opt. Express, vol.  16, pp. 14151–14162, Sept. 2008.
    [CrossRef]
  12. M. Niu, J. Cheng, and J. F. Holzman, “Error rate analysis of M-ary coherent free-space optical communication systems with K-distributed turbulence,” IEEE Trans. Commun., vol.  59, pp. 664–668, Mar. 2011.
    [CrossRef]
  13. M. Niu, J. Cheng, and J. F. Holzman, “Exact error rate analysis of equal gain and selection diversity for coherent free-space optical systems on strong turbulence channels,” Opt. Express, vol.  18, pp. 13915–13926, June 2010.
    [CrossRef]
  14. M. Niu, J. Cheng, J. F. Holzman, and R. Schober, “Coherent free-space optical transmission with diversity combining for gamma-gamma atmospheric turbulence,” in Proc. 25th Biennial Symp. Communications, Kingston, ON, May 12–14, 2010, pp. 217–220.
  15. M. Niu, J. Schlenker, J. Cheng, J. F. Holzman, and R. Schober, “Coherent wireless optical communications with predetection and postdetection EGC over gamma-gamma atmospheric turbulence channels,” J. Opt. Commun. Netw., vol.  3, pp. 860–869, Nov. 2011.
    [CrossRef]
  16. R. Lange, B. Smutny, B. Wandernoth, R. Czichy, and D. Giggenbach, “142 km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation,” Proc. SPIE, vol.  6105, 61050A, 2006.
    [CrossRef]
  17. N. Cvijetic, D. Qian, J. Yu, Y.-K. Huang, and T. Wang, “Polarization-multiplexed optical wireless transmission with coherent detection,” J. Lightwave Technol., vol.  28, pp. 1218–1227, Oct. 2010.
    [CrossRef]
  18. N. Perlot, “Turbulence-induced fading probability in coherent optical communication through the atmosphere,” Appl. Opt., vol.  46, pp. 7218–7226, Oct. 2007.
    [CrossRef]
  19. E. J. Lee and V. W. S. Chan, “Diversity coherent and incoherent receivers for free-space optical communication in the presence and absence of interference,” J. Opt. Commun. Netw., vol.  1, pp. 463–483, Oct. 2009.
    [CrossRef]
  20. G. P. Agrawal, Fiber-Optical Communication Systems, 3rd ed.New York: Wiley, 2002.
  21. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng., vol.  40, pp. 1554–1562, Aug. 2001.
    [CrossRef]
  22. L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A, vol.  16, pp. 1417–1429, June 1999.
    [CrossRef]
  23. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation With Applications. Bellingham, WA: SPIE, 2001.
  24. M. K. Simon and V. A. Vilnrotter, “Alamouti-type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wireless Commun., vol.  4, pp. 35–39, Jan. 2005.
    [CrossRef]
  25. E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Commun., vol.  57, pp. 3415–3424, Nov. 2009.
    [CrossRef]
  26. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed.San Diego: Academic, 2000.
  27. J. Park, E. Lee, and G. Yoon, “Average bit-error rate of the Alamouti scheme in gamma-gamma fading channels,” IEEE Photon. Technol. Lett., vol.  23, pp. 269–271, Feb. 2011.
    [CrossRef]
  28. M. K. Simon, S. M. Hinedi, and W. C. Lindsey, Digital Communication Techniques: Signal Design and Detection. NJ: Prentice-Hall, 1995.
  29. A. A. Farid and S. Hranilovic, “Outage capacity optimization for free space optical links with pointing errors,” J. Lightwave Technol., vol.  25, pp. 1702–1710, July 2007.
    [CrossRef]
  30. M. Khalighi, F. Xu, Y. Jaafar, and S. Bourennane, “Doublelaser differential signaling for reducing the effect of background radiation in free-space optical systems,” J. Opt. Commun. Netw., vol.  3, pp. 145–154, Feb. 2011.
    [CrossRef]
  31. J. M. Hunt, F. Holmes, and F. Amzajerdian, “Optimum local oscillator levels for coherent detection using photoconductors,” Appl. Opt., vol.  27, pp. 3135–3141, Aug. 1988.
    [CrossRef]
  32. S. Yamazaki, “A 2  Gb/s optical CPFSK heterodyne detection transmission experiment using newly developed MQW-DFB laser diodes,” in Proc. 14th European Conf. Optical Communication (ECOC’88), Brighton, Sept. 11–15, 1988, pp. 467–470.
  33. I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE, vol.  4214, pp. 26–37, Feb. 2001.
    [CrossRef]

2012 (1)

X. Song, M. Niu, and J. Cheng, “Error rate of subcarrier intensity modulations for wireless optical communications,” IEEE Commun. Lett., vol.  16, pp. 540–543, Apr. 2012.
[CrossRef]

2011 (4)

M. Niu, J. Cheng, and J. F. Holzman, “Error rate analysis of M-ary coherent free-space optical communication systems with K-distributed turbulence,” IEEE Trans. Commun., vol.  59, pp. 664–668, Mar. 2011.
[CrossRef]

J. Park, E. Lee, and G. Yoon, “Average bit-error rate of the Alamouti scheme in gamma-gamma fading channels,” IEEE Photon. Technol. Lett., vol.  23, pp. 269–271, Feb. 2011.
[CrossRef]

M. Khalighi, F. Xu, Y. Jaafar, and S. Bourennane, “Doublelaser differential signaling for reducing the effect of background radiation in free-space optical systems,” J. Opt. Commun. Netw., vol.  3, pp. 145–154, Feb. 2011.
[CrossRef]

M. Niu, J. Schlenker, J. Cheng, J. F. Holzman, and R. Schober, “Coherent wireless optical communications with predetection and postdetection EGC over gamma-gamma atmospheric turbulence channels,” J. Opt. Commun. Netw., vol.  3, pp. 860–869, Nov. 2011.
[CrossRef]

2010 (2)

2009 (3)

2008 (3)

W. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron., vol.  2, pp. 16–23, Feb. 2008.
[CrossRef]

T. A. Tsiftsis, “Performance of heterodyne wireless optical communication systems over gamma-gamma atmospheric turbulence channels,” Electron. Lett., vol.  44, pp. 373–375, Feb. 2008.
[CrossRef]

A. Belmonte and J. M. Kahn, “Performance of synchronous optical receivers using atmospheric compensation techniques,” Opt. Express, vol.  16, pp. 14151–14162, Sept. 2008.
[CrossRef]

2007 (3)

2006 (3)

K. Kiasaleh, “Performance of coherent DPSK free-space optical communication systems in K-distributed turbulence,” IEEE Trans. Commun., vol.  54, pp. 604–607, Apr. 2006.
[CrossRef]

R. Lange, B. Smutny, B. Wandernoth, R. Czichy, and D. Giggenbach, “142 km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation,” Proc. SPIE, vol.  6105, 61050A, 2006.
[CrossRef]

V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol., vol.  24, pp. 4750–4762, Dec. 2006.
[CrossRef]

2005 (2)

Q. Liu, C. Qiao, G. Mitchell, and S. Stanton, “Optical wireless communication networks for first- and last-mile broadband access,” J. Opt. Netw., vol.  4, pp. 807–828, Dec. 2005.
[CrossRef]

M. K. Simon and V. A. Vilnrotter, “Alamouti-type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wireless Commun., vol.  4, pp. 35–39, Jan. 2005.
[CrossRef]

2001 (2)

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE, vol.  4214, pp. 26–37, Feb. 2001.
[CrossRef]

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng., vol.  40, pp. 1554–1562, Aug. 2001.
[CrossRef]

1999 (1)

1993 (1)

W. Huang, J. Takayanagi, T. Sakanaka, and M. Nakagawa, “Atmospheric optical communication system using subcarrier PSK modulation,” IEICE Trans. Commun., vol.  E76-B, pp. 1169–1177, Sept. 1993.

1988 (1)

Agrawal, G. P.

G. P. Agrawal, Fiber-Optical Communication Systems, 3rd ed.New York: Wiley, 2002.

Al-Habash, M. A.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng., vol.  40, pp. 1554–1562, Aug. 2001.
[CrossRef]

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A, vol.  16, pp. 1417–1429, June 1999.
[CrossRef]

Allen, J. I. H.

W. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron., vol.  2, pp. 16–23, Feb. 2008.
[CrossRef]

Amzajerdian, F.

Andrews, L. C.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng., vol.  40, pp. 1554–1562, Aug. 2001.
[CrossRef]

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A, vol.  16, pp. 1417–1429, June 1999.
[CrossRef]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation With Applications. Bellingham, WA: SPIE, 2001.

Bayaki, E.

E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Commun., vol.  57, pp. 3415–3424, Nov. 2009.
[CrossRef]

Belmonte, A.

Bourennane, S.

Chan, V. W. S.

Cheng, J.

X. Song, M. Niu, and J. Cheng, “Error rate of subcarrier intensity modulations for wireless optical communications,” IEEE Commun. Lett., vol.  16, pp. 540–543, Apr. 2012.
[CrossRef]

M. Niu, J. Schlenker, J. Cheng, J. F. Holzman, and R. Schober, “Coherent wireless optical communications with predetection and postdetection EGC over gamma-gamma atmospheric turbulence channels,” J. Opt. Commun. Netw., vol.  3, pp. 860–869, Nov. 2011.
[CrossRef]

M. Niu, J. Cheng, and J. F. Holzman, “Error rate analysis of M-ary coherent free-space optical communication systems with K-distributed turbulence,” IEEE Trans. Commun., vol.  59, pp. 664–668, Mar. 2011.
[CrossRef]

M. Niu, J. Cheng, and J. F. Holzman, “Exact error rate analysis of equal gain and selection diversity for coherent free-space optical systems on strong turbulence channels,” Opt. Express, vol.  18, pp. 13915–13926, June 2010.
[CrossRef]

M. Niu, J. Cheng, J. F. Holzman, and R. Schober, “Coherent free-space optical transmission with diversity combining for gamma-gamma atmospheric turbulence,” in Proc. 25th Biennial Symp. Communications, Kingston, ON, May 12–14, 2010, pp. 217–220.

Cvijetic, N.

Czichy, R.

R. Lange, B. Smutny, B. Wandernoth, R. Czichy, and D. Giggenbach, “142 km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation,” Proc. SPIE, vol.  6105, 61050A, 2006.
[CrossRef]

Farid, A. A.

Gao, S.

W. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron., vol.  2, pp. 16–23, Feb. 2008.
[CrossRef]

Ghassemlooy, Z.

W. Popoola and Z. Ghassemlooy, “BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence,” J. Lightwave Technol., vol.  27, pp. 967–973, Apr. 2009.
[CrossRef]

W. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron., vol.  2, pp. 16–23, Feb. 2008.
[CrossRef]

Ghuman, B. S.

H. Willebrand and B. S. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today’s Networks. Indianapolis, IN:Sams, 2002.

Giggenbach, D.

R. Lange, B. Smutny, B. Wandernoth, R. Czichy, and D. Giggenbach, “142 km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation,” Proc. SPIE, vol.  6105, 61050A, 2006.
[CrossRef]

Gradshteyn, I. S.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed.San Diego: Academic, 2000.

Hinedi, S. M.

M. K. Simon, S. M. Hinedi, and W. C. Lindsey, Digital Communication Techniques: Signal Design and Detection. NJ: Prentice-Hall, 1995.

Holmes, F.

Holzman, J. F.

M. Niu, J. Cheng, and J. F. Holzman, “Error rate analysis of M-ary coherent free-space optical communication systems with K-distributed turbulence,” IEEE Trans. Commun., vol.  59, pp. 664–668, Mar. 2011.
[CrossRef]

M. Niu, J. Schlenker, J. Cheng, J. F. Holzman, and R. Schober, “Coherent wireless optical communications with predetection and postdetection EGC over gamma-gamma atmospheric turbulence channels,” J. Opt. Commun. Netw., vol.  3, pp. 860–869, Nov. 2011.
[CrossRef]

M. Niu, J. Cheng, and J. F. Holzman, “Exact error rate analysis of equal gain and selection diversity for coherent free-space optical systems on strong turbulence channels,” Opt. Express, vol.  18, pp. 13915–13926, June 2010.
[CrossRef]

M. Niu, J. Cheng, J. F. Holzman, and R. Schober, “Coherent free-space optical transmission with diversity combining for gamma-gamma atmospheric turbulence,” in Proc. 25th Biennial Symp. Communications, Kingston, ON, May 12–14, 2010, pp. 217–220.

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A, vol.  16, pp. 1417–1429, June 1999.
[CrossRef]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation With Applications. Bellingham, WA: SPIE, 2001.

Hranilovic, S.

Huang, W.

W. Huang, J. Takayanagi, T. Sakanaka, and M. Nakagawa, “Atmospheric optical communication system using subcarrier PSK modulation,” IEICE Trans. Commun., vol.  E76-B, pp. 1169–1177, Sept. 1993.

Huang, Y.-K.

Hunt, J. M.

Jaafar, Y.

Kahn, J. M.

Khalighi, M.

Kiasaleh, K.

K. Kiasaleh, “Performance of coherent DPSK free-space optical communication systems in K-distributed turbulence,” IEEE Trans. Commun., vol.  54, pp. 604–607, Apr. 2006.
[CrossRef]

Kim, I. I.

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE, vol.  4214, pp. 26–37, Feb. 2001.
[CrossRef]

Korevaar, E. J.

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE, vol.  4214, pp. 26–37, Feb. 2001.
[CrossRef]

Lange, R.

R. Lange, B. Smutny, B. Wandernoth, R. Czichy, and D. Giggenbach, “142 km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation,” Proc. SPIE, vol.  6105, 61050A, 2006.
[CrossRef]

Lee, E.

J. Park, E. Lee, and G. Yoon, “Average bit-error rate of the Alamouti scheme in gamma-gamma fading channels,” IEEE Photon. Technol. Lett., vol.  23, pp. 269–271, Feb. 2011.
[CrossRef]

Lee, E. J.

Leitgeb, E.

W. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron., vol.  2, pp. 16–23, Feb. 2008.
[CrossRef]

Li, J.

J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun., vol.  55, pp. 1598–1606, Aug. 2007.
[CrossRef]

Lindsey, W. C.

M. K. Simon, S. M. Hinedi, and W. C. Lindsey, Digital Communication Techniques: Signal Design and Detection. NJ: Prentice-Hall, 1995.

Liu, J. Q.

J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun., vol.  55, pp. 1598–1606, Aug. 2007.
[CrossRef]

Liu, Q.

Mallik, R. K.

E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Commun., vol.  57, pp. 3415–3424, Nov. 2009.
[CrossRef]

McArthur, B.

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE, vol.  4214, pp. 26–37, Feb. 2001.
[CrossRef]

Mitchell, G.

Nakagawa, M.

W. Huang, J. Takayanagi, T. Sakanaka, and M. Nakagawa, “Atmospheric optical communication system using subcarrier PSK modulation,” IEICE Trans. Commun., vol.  E76-B, pp. 1169–1177, Sept. 1993.

Niu, M.

X. Song, M. Niu, and J. Cheng, “Error rate of subcarrier intensity modulations for wireless optical communications,” IEEE Commun. Lett., vol.  16, pp. 540–543, Apr. 2012.
[CrossRef]

M. Niu, J. Schlenker, J. Cheng, J. F. Holzman, and R. Schober, “Coherent wireless optical communications with predetection and postdetection EGC over gamma-gamma atmospheric turbulence channels,” J. Opt. Commun. Netw., vol.  3, pp. 860–869, Nov. 2011.
[CrossRef]

M. Niu, J. Cheng, and J. F. Holzman, “Error rate analysis of M-ary coherent free-space optical communication systems with K-distributed turbulence,” IEEE Trans. Commun., vol.  59, pp. 664–668, Mar. 2011.
[CrossRef]

M. Niu, J. Cheng, and J. F. Holzman, “Exact error rate analysis of equal gain and selection diversity for coherent free-space optical systems on strong turbulence channels,” Opt. Express, vol.  18, pp. 13915–13926, June 2010.
[CrossRef]

M. Niu, J. Cheng, J. F. Holzman, and R. Schober, “Coherent free-space optical transmission with diversity combining for gamma-gamma atmospheric turbulence,” in Proc. 25th Biennial Symp. Communications, Kingston, ON, May 12–14, 2010, pp. 217–220.

Park, J.

J. Park, E. Lee, and G. Yoon, “Average bit-error rate of the Alamouti scheme in gamma-gamma fading channels,” IEEE Photon. Technol. Lett., vol.  23, pp. 269–271, Feb. 2011.
[CrossRef]

Perlot, N.

Phillips, R. L.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng., vol.  40, pp. 1554–1562, Aug. 2001.
[CrossRef]

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A, vol.  16, pp. 1417–1429, June 1999.
[CrossRef]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation With Applications. Bellingham, WA: SPIE, 2001.

Popoola, W.

W. Popoola and Z. Ghassemlooy, “BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence,” J. Lightwave Technol., vol.  27, pp. 967–973, Apr. 2009.
[CrossRef]

W. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron., vol.  2, pp. 16–23, Feb. 2008.
[CrossRef]

Qian, D.

Qiao, C.

Ryzhik, I. M.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed.San Diego: Academic, 2000.

Sakanaka, T.

W. Huang, J. Takayanagi, T. Sakanaka, and M. Nakagawa, “Atmospheric optical communication system using subcarrier PSK modulation,” IEICE Trans. Commun., vol.  E76-B, pp. 1169–1177, Sept. 1993.

Schlenker, J.

Schober, R.

M. Niu, J. Schlenker, J. Cheng, J. F. Holzman, and R. Schober, “Coherent wireless optical communications with predetection and postdetection EGC over gamma-gamma atmospheric turbulence channels,” J. Opt. Commun. Netw., vol.  3, pp. 860–869, Nov. 2011.
[CrossRef]

E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Commun., vol.  57, pp. 3415–3424, Nov. 2009.
[CrossRef]

M. Niu, J. Cheng, J. F. Holzman, and R. Schober, “Coherent free-space optical transmission with diversity combining for gamma-gamma atmospheric turbulence,” in Proc. 25th Biennial Symp. Communications, Kingston, ON, May 12–14, 2010, pp. 217–220.

Simon, M. K.

M. K. Simon and V. A. Vilnrotter, “Alamouti-type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wireless Commun., vol.  4, pp. 35–39, Jan. 2005.
[CrossRef]

M. K. Simon, S. M. Hinedi, and W. C. Lindsey, Digital Communication Techniques: Signal Design and Detection. NJ: Prentice-Hall, 1995.

Smutny, B.

R. Lange, B. Smutny, B. Wandernoth, R. Czichy, and D. Giggenbach, “142 km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation,” Proc. SPIE, vol.  6105, 61050A, 2006.
[CrossRef]

Song, X.

X. Song, M. Niu, and J. Cheng, “Error rate of subcarrier intensity modulations for wireless optical communications,” IEEE Commun. Lett., vol.  16, pp. 540–543, Apr. 2012.
[CrossRef]

Stanton, S.

Takayanagi, J.

W. Huang, J. Takayanagi, T. Sakanaka, and M. Nakagawa, “Atmospheric optical communication system using subcarrier PSK modulation,” IEICE Trans. Commun., vol.  E76-B, pp. 1169–1177, Sept. 1993.

Taylor, D. P.

J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun., vol.  55, pp. 1598–1606, Aug. 2007.
[CrossRef]

Tsiftsis, T. A.

T. A. Tsiftsis, “Performance of heterodyne wireless optical communication systems over gamma-gamma atmospheric turbulence channels,” Electron. Lett., vol.  44, pp. 373–375, Feb. 2008.
[CrossRef]

Vilnrotter, V. A.

M. K. Simon and V. A. Vilnrotter, “Alamouti-type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wireless Commun., vol.  4, pp. 35–39, Jan. 2005.
[CrossRef]

Wandernoth, B.

R. Lange, B. Smutny, B. Wandernoth, R. Czichy, and D. Giggenbach, “142 km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation,” Proc. SPIE, vol.  6105, 61050A, 2006.
[CrossRef]

Wang, T.

Willebrand, H.

H. Willebrand and B. S. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today’s Networks. Indianapolis, IN:Sams, 2002.

Xu, F.

Yamazaki, S.

S. Yamazaki, “A 2  Gb/s optical CPFSK heterodyne detection transmission experiment using newly developed MQW-DFB laser diodes,” in Proc. 14th European Conf. Optical Communication (ECOC’88), Brighton, Sept. 11–15, 1988, pp. 467–470.

Yoon, G.

J. Park, E. Lee, and G. Yoon, “Average bit-error rate of the Alamouti scheme in gamma-gamma fading channels,” IEEE Photon. Technol. Lett., vol.  23, pp. 269–271, Feb. 2011.
[CrossRef]

Yu, J.

Appl. Opt. (2)

Electron. Lett. (1)

T. A. Tsiftsis, “Performance of heterodyne wireless optical communication systems over gamma-gamma atmospheric turbulence channels,” Electron. Lett., vol.  44, pp. 373–375, Feb. 2008.
[CrossRef]

IEEE Commun. Lett. (1)

X. Song, M. Niu, and J. Cheng, “Error rate of subcarrier intensity modulations for wireless optical communications,” IEEE Commun. Lett., vol.  16, pp. 540–543, Apr. 2012.
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Park, E. Lee, and G. Yoon, “Average bit-error rate of the Alamouti scheme in gamma-gamma fading channels,” IEEE Photon. Technol. Lett., vol.  23, pp. 269–271, Feb. 2011.
[CrossRef]

IEEE Trans. Commun. (4)

E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Commun., vol.  57, pp. 3415–3424, Nov. 2009.
[CrossRef]

K. Kiasaleh, “Performance of coherent DPSK free-space optical communication systems in K-distributed turbulence,” IEEE Trans. Commun., vol.  54, pp. 604–607, Apr. 2006.
[CrossRef]

J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun., vol.  55, pp. 1598–1606, Aug. 2007.
[CrossRef]

M. Niu, J. Cheng, and J. F. Holzman, “Error rate analysis of M-ary coherent free-space optical communication systems with K-distributed turbulence,” IEEE Trans. Commun., vol.  59, pp. 664–668, Mar. 2011.
[CrossRef]

IEEE Trans. Wireless Commun. (1)

M. K. Simon and V. A. Vilnrotter, “Alamouti-type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wireless Commun., vol.  4, pp. 35–39, Jan. 2005.
[CrossRef]

IEICE Trans. Commun. (1)

W. Huang, J. Takayanagi, T. Sakanaka, and M. Nakagawa, “Atmospheric optical communication system using subcarrier PSK modulation,” IEICE Trans. Commun., vol.  E76-B, pp. 1169–1177, Sept. 1993.

IET Optoelectron. (1)

W. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron., vol.  2, pp. 16–23, Feb. 2008.
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (3)

J. Opt. Netw. (1)

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng., vol.  40, pp. 1554–1562, Aug. 2001.
[CrossRef]

Opt. Express (2)

Proc. SPIE (2)

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE, vol.  4214, pp. 26–37, Feb. 2001.
[CrossRef]

R. Lange, B. Smutny, B. Wandernoth, R. Czichy, and D. Giggenbach, “142 km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation,” Proc. SPIE, vol.  6105, 61050A, 2006.
[CrossRef]

Other (7)

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation With Applications. Bellingham, WA: SPIE, 2001.

M. Niu, J. Cheng, J. F. Holzman, and R. Schober, “Coherent free-space optical transmission with diversity combining for gamma-gamma atmospheric turbulence,” in Proc. 25th Biennial Symp. Communications, Kingston, ON, May 12–14, 2010, pp. 217–220.

S. Yamazaki, “A 2  Gb/s optical CPFSK heterodyne detection transmission experiment using newly developed MQW-DFB laser diodes,” in Proc. 14th European Conf. Optical Communication (ECOC’88), Brighton, Sept. 11–15, 1988, pp. 467–470.

M. K. Simon, S. M. Hinedi, and W. C. Lindsey, Digital Communication Techniques: Signal Design and Detection. NJ: Prentice-Hall, 1995.

G. P. Agrawal, Fiber-Optical Communication Systems, 3rd ed.New York: Wiley, 2002.

H. Willebrand and B. S. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today’s Networks. Indianapolis, IN:Sams, 2002.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed.San Diego: Academic, 2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

BER comparison of coherent and SIM BPSK OWC links subject to the same average transmitted optical power through turbulence-free channels.

Fig. 2.
Fig. 2.

BER comparison of coherent and SIM BPSK OWC links subject to the same average transmitted optical power with MRC/EGC over 2 km strong (α=2.161, β=1.058) and 900 m moderate (α=1.993, β=1.333) turbulence channels.

Fig. 3.
Fig. 3.

BER comparison of coherent and SIM BPSK OWC links subject to the same average transmitted optical power with MRC/EGC over a 700 m weak-to-moderate (α=2.314, β=1.820) turbulence channel.

Fig. 4.
Fig. 4.

BER comparison of DPSK coherent and SIM OWC links subject to the same average transmitted optical power with SC over 2 km strong (α=2.161, β=1.058), 900 m moderate (α=1.993, β=1.333), and 700 m weak-to-moderate (α=2.314, β=1.820) turbulence channels.

Fig. 5.
Fig. 5.

BER comparison of NCFSK coherent and SIM OWC links subject to the same average transmitted optical power with SC over 2 km strong (α=2.161, β=1.058), 900 m moderate (α=1.993, β=1.333), and 700 m weak-to-moderate (α=2.314, β=1.820) turbulence channels.

Equations (60)

Equations on this page are rendered with MathJax. Learn more.

P(t)=Ps+PLO+2PsPLOg(t)cos(ωIFt+ϕ),
γc=2R2PsPLO2qRΔfPLO+2Δf(qRAIb+2kbTkFn/RL)RAqΔfI=CcI,
ir(t)=RPin[1+ξm(t)]+ns(t)=RIA[1+ξcos(ωsct+ϕ)]+ns(t),
γs=(RAξ)22Δf(qRAIb+2kbTkFn/RL)I2=CsI2,
fI(I)=2Γ(α)Γ(β)(αβ)α+β2Iα+β21Kαβ(2αβI),I>0,
σsi2E[I2](E[I])21=1α+1β+1αβ,
γ¯c=E[γc]=CcE[I]=Cc.
γ¯s=E[γs]=CsE[I2]=Cs(α+1)(β+1)αβ
γs=CsI2=αβγ¯s(α+1)(β+1)I2.
γ¯e=(E[I])2γe=γe,
γc,MRC=RA(l=1LIl)qΔf=γ¯c(l=1LIl),
γs,MRC=αβγ¯s(α+1)(β+1)(l=1LIl2).
γc,EGC=RA(l=1LIl)2LqΔf=γ¯cL(l=1LIl)2.
γs,EGC=αβγ¯sL(α+1)(β+1)(l=1LIl)2.
γc,SC=RAmax{Il;l=1,,L}qΔf=γ¯cmax{Il;l=1,,L}.
γs,SC=Csmax{Il2;l=1,,L}=αβγ¯s(α+1)(β+1)max{Il2;l=1,,L}.
Pc,MRC=1π0π2[MI(γ¯c2sin2θ)]Ldθ,
Pc,MRC=1π0π2MR(γ¯c2sin2θ)dθ,
Kν(x)=π2sin(πν)p=0((x/2)2pνΓ(pν+1)p!(x/2)2p+νΓ(p+ν+1)p!),νZ,|x|<,
MR(r)=q=0L(Lq)(p=0ap(α,β)Γ(p+β)(s)(p+β))Lq×(p=0ap(β,α)Γ(p+α)(s)(p+α))q,
ap(x,y)(xy)p+yΓ(xy)Γ(yx+1)Γ(x)Γ(y)Γ(px+y+1)p!.
Pc,MRC=1πq=0L(Lq)p=0[Γ(p+β)ap(α,β)][Lq]*[Γ(p+α)ap(β,α)][q](γc¯2)pLβq(αβ)×0π2(sinθ)2[p+Lβ+q(αβ)]dθ=12πq=0L(Lq)p=0B(12,p+Lβ+q(αβ)+12)×[Γ(p+β)ap(α,β)][Lq]*[Γ(p+α)ap(β,α)][q]×(γc¯2)pLβq(αβ),
Ps,MRC=1π0π2MG(αβγ¯s2(α+1)(β+1)sin2θ)dθ,
MY(s)=12p=0[ap(α,β)Γ(p+β2)(s)p+β2ap(β,α)Γ(p+α2)(s)p+α2].
MG(s)=12Lq=0L(Lq)p=0cp(Lq,q)(s)pLβq(αβ)2,
Ps,MRC=12L+1πq=0L(Lq)p=0cp(Lq,q)×B(12,p+Lβ+q(αβ)+12)×[αβγ¯s2(α+1)(β+1)]pLβq(αβ)2.
Pc,EGC=1π0π2MU(γ¯c2sin2θ)dθ.
MU(s)=2L1q=0L(Lq)p=0Γ((p+(Lq)β+qα))Γ(2(p+(Lq)β+qα))×ηp(α,β,Lq,q)(s)[p+(Lq)β+qα],
ηp(x,y,m,n)bp[m](x,y)*bp[n](y,x)
Pc,EGC=2L2πq=0L(Lq)p=0B(12,p+(Lq)β+qα+12)×ηp(α,β,Lq,q)Γ(p+(Lq)β+qα)Γ(2(p+(Lq)β+qα))×(γ¯c2L)pLβq(αβ).
Ps,EGC=l=1LΦI*(αβγ¯sω2L(α+1)(β+1))Λ(ω)4πdω,
Λ(x)1π1F1(1,32,x24)+jω[1exp(x24)],
ΦI(ω)=ejαβ2ω(jαβω)α+β12[Γ(βα)Γ(β)Mμ1,μ2(jαβω)+Γ(αβ)Γ(α)Mμ1,μ2(jαβω)],
Ps,EGC=1π0π2MM(γ¯c2sin2θ)dθ,
MM(s)=q=0L(Lq)p=0ϑp(α,β,Lq,q)Γ(p+(Lq)β+qα2)2Γ(p+(Lq)β+qα)×(s)p+(Lq)β+qα2,
Ps,EGC=12πq=0L(Lq)p=0ϑp(α,β,Lq,q)Γ(p+(Lq)β+qα2)2Γ(p+(Lq)β+qα)×B(12,p+(Lq)β+qα+12)×[αβγ¯s2L(α+1)(β+1)]p+Lβ+q(αβ)2.
Pc,SC=120exp(ργ¯c,SCIm)[FI(Im)]L1fI(Im)dIm,
fIm(Im)=k=0L1(L1q)[p=0ep(Lk1,k,α,β)Imp+(Lk)β+kα1+p=0ep(Lk1,k,β,α)Imp+(Lk)α+kβ1].
Pc,SC=L2k=0L1(L1k)p=0ep(L1k,k,α,β)×0exp(ργ¯cIm)Imp+(L1k)β+kα+β1dIm+L2k=0L1(L1k)p=0ep(L1k,k,β,α)×0exp(ργ¯cIm)Imp+(L1k)α+kβ+α1dIm,
Pc,SC=L2k=0L1(L1k){p=0ep(L1k,k,α,β)Γ(p+(Lk)β+kα)(ργ¯c)[p+(Lk)β+kα]+p=0ep(L1k,k,β,α)Γ(p+(Lk)β+kα)(ργ¯c)[p+(Lk)α+kβ]},
Ps,SC=120exp(ραβγ¯s(α+1)(β+1)Im2)fIm(Im)dIm,
Ps,SC=L2k=0L1(L1k)p=0ep(L1k,k,α,β)×0exp(ραβγ¯sIm2(α+1)(β+1))Imp+(Lk)β+kα1dIm+L2k=0L1(L1k)p=0ep(L1k,k,β,α)×0exp(ραβγ¯sIm2(α+1)(β+1))Imp+(Lk)α+kβ1dIm.
Ps,SC=L4k=0L1(L1k){p=0ep(L1k,k,α,β)Γ(p+(Lk)β+kα2)[ραβγ¯s(α+1)(β+1)]p+(Lk)β+kα2+p=0ep(L1k,k,β,α)Γ(p+(Lk)α+kβ)[ραβγ¯s(α+1)(β+1)]p+(Lk)α+kβ2}.
γ¯s=(α+1)(β+1)γ¯eαβ=E[I2]γ¯e.
γ¯c=E[γc]=RqΔfP¯s=RgqΔfPt,
γ¯s=E[γs]=(RAξ)22Δf(qRAIb+2kbTkFn/RL)E[I2]=(Rξ)22Δf(qRAIb+2kbTkFn/RL)E[Ps2].
γ¯s=(Rξg)2(1+1α)(1+1β)2Δf(qRAIb+2kbTkFn/RL)Pt2.
fI(x)=2p=0[ap(α,β)x2(p+β)1+ap(β,α)x2(p+α)1].
MI(s)=2p=0[ap(α,β)Γ(2p+2β)(s)2(p+β)+ap(β,α)Γ(2p+2α)(s)2(p+α)].
MZ(s)=q=0L(Lq)(p=0ap(β,α)Γ(2p+2α)(s)2(p+α))q×2L(p=0ap(α,β)Γ(2p+2β)(s)2(p+β))Lq.
fZ(z)=2Lq=0L(Lq)p=0ηp(α,β,Lq,q)Γ(2p+2(Lq)β+2qα)×z2p+2(Lq)β+2qα.
fU(u)=2L1q=0L(Lq)p=0ηp(α,β,Lq,q)Γ(2(p+(Lq)β+qα))×up+(Lq)β+qα1.
MU(s)=2L1q=0L(Lq)p=0Γ(p+(Lq)β+qα)Γ(2(p+(Lq)β+qα))×ηp(α,β,Lq,q)(s)[p+(Lq)β+qα].
fI(I)=p=0[ap(α,β)Ip+β1]+p=0[ap(β,α)Ip+α1],
(π/sin[π(αβ)])[((αβI/2)β/βΓ(βα+1))F21(β,β+1,βα+1;αβI/2)((αβI/2)α/αΓ(αβ+1))×F21(α,α+1,αβ+1;αβI/2)],
FI(I)=p=0[ap(α,β)p+βIp+β+ap(β,α)p+αIp+α].
[FI(Im)]L1=k=0L1(L1k)(p=0ap(α,β)p+βImp+β)L1k×(p=0ap(β,α)p+αImp+α)k=k=0L1(L1k)p=0(ap(α,β)p+β)[L1k]*(ap(β,α)p+α)[k]Imp+(Lk1)β+kα,
[FI(Im)]L1fI(Im)=k1=0L1(L1k1)[p=0ep(Lk11,k1,α,β)Imp+(Lk1)β+k1α1]+k2=0L1(L1k2)[p=0ep(Lk21,k2,β,α)Imp+(Lk2)α+k2β1],
[FI(Im)]L1=k=0L1(L1k)(p=0ap(β,α)p+αImp+α)L1k×(p=0ap(α,β)p+βImp+β)k=k=0L1(L1k)p=0(ap(β,α)p+α)[L1k]*(ap(α,β)p+β)[k]Imp+(Lk1)α+kβ.
ep(m,n,x,y)(ap(x,y)p+y)[m]*(ap(y,x)p+x)[n]*ap(x,y).