Abstract

A wavelength division multiplexed (WDM) radio over fiber access network architecture, capable of simultaneously transmitting both 63 GHz wireless and 2.5Gb/s wired data, is proposed in this paper. An optical carrier suppression effect and multiplexing of a 50 GHz spaced arrayed waveguide grating are employed to generate a 63 GHz millimeter-wave signal based on WDM. These techniques allow the proposed scheme to simultaneously transmit both wireless and wired data. For full colorless operation, a reflective semiconductor optical amplifier is used at the central office and base station. Error-free simultaneous transmissions [wired data: bit error rate (BER) of 1012, wireless data: BER of 109] of 2.5Gb/s wired data and 1.25Gb/s wireless data are achieved. Various impacts of the downlink transmission on the performance of uplink data are investigated with the proposed scheme.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Xu, Y. J. Wen, W. D. Zhong, C. J. Chae, X. F. Cheng, Y. Wang, C. Lu, and J. Shanker, “High-speed WDM-PON using CW injection-locked Fabry–Perot laser diodes,” Opt. Express, vol.  15, no. 6, pp. 2953–2962, Mar. 2007.
    [CrossRef]
  2. M. Attygalle, T. Anderson, D. Hewitt, and A. Nirmalathas, “WDM passive optical network with subcarrier transmission and baseband detection scheme for laser-free optical network units,” IEEE Photon. Technol. Lett., vol.  18, no. 11, pp. 1279–1281, June 2006.
    [CrossRef]
  3. Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, and Y. Ma, “Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2),” J. Lightwave Technol., vol.  31, no. 4, pp. 587–593, Feb. 2013.
    [CrossRef]
  4. K. C. Reichmann, P. P. Iannone, C. Brinton, J. Nakagawa, T. Cusick, M. Kimber, C. Doerr, L. L. Buhl, M. Cappuzzo, E. Y. Chen, L. Gomez, J. Johnson, A. M. Kanan, J. Lentz, Y. F. Chang, B. Pálsdóttir, T. Tokle, and L. Spiekman, “A symmetric-rate, extended-reach 40  Gb/s CWDM-TDMA PON with downstream and upstream SOA-Raman amplification,” J. Lightwave Technol., vol.  30, no. 4, pp. 479–485, Feb. 2012.
    [CrossRef]
  5. K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103  Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett., vol.  24, no. 3, pp. 209–211, Feb. 2012.
    [CrossRef]
  6. S.-H. Cho, J.-H. Lee, J.-H. Lee, E.-G. Lee, H.-H. Lee, E.-S. Jung, B.-S. Choi, D.-C. Kim, O.-K. Kwon, and S. S. Lee, “Demonstrations of RSOA based loop-back WDM-PON with 100  Gb/s (80×1.25  Gb/s) capacity employing spectrum sliced incoherent light injection,” in Proc. ECOC, Torino, 2010, pp. 1–3.
  7. W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, no. 11, pp. 2289–2291, Nov. 2005.
    [CrossRef]
  8. G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks [Invited],” J. Opt. Commun. Netw., vol.  1, no. 4, pp. C35–C50, Sept. 2009.
    [CrossRef]
  9. L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-generation optical access networks,” J. Lightwave Technol., vol.  25, no. 11, pp. 3428–3442, Nov. 2007.
    [CrossRef]
  10. Z. Al-Qazwini and H. Kim, “Symmetric 10  Gb/s WDM-PON using directly modulated lasers for downlink and RSOAs for uplink,” J. Lightwave Technol., vol.  30, no. 12, pp. 1891–1899, June 2012.
    [CrossRef]
  11. Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8×9.95  Gb/s ultra-dense WDM-PON on a 12.5 GHz grid with digital pre-equalization,” IEEE Photon. Technol. Lett., vol.  25, no. 2, pp. 194–197, Jan. 2013.
    [CrossRef]
  12. K. Y. Cho, U. H. Hong, A. Agata, T. San, Y. Horiuchi, H. Tanaka, M. Suzuki, and Y. C. Chung, “10  Gb/s, 80 km reach RSOA-based WDM PON employing QPSK signal and self-homodyne receiver,” in Proc. OFC/NFOEC, 2012, pp. 1–3.
  13. N. Cvijetic, M. Cvijetic, M.-F. Huang, E. Ip, Y.-K. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol., vol.  30, no. 4, pp. 493–503, Feb. 2012.
    [CrossRef]
  14. Y.-Y. Won, H.-C. Kwon, and S.-K. Han, “1.25  Gb/s wavelength division multiplexed single wavelength colorless radio-on-fiber systems using reflective semiconductor optical amplifier,” J. Lightwave Technol., vol.  25, no. 11, pp. 3472–3478, Nov. 2007.
    [CrossRef]
  15. H.-S. Kim, T.-T. Pham, Y.-Y. Won, and S.-K. Han, “Simultaneous wired and wireless 1.25  Gb/s bidirectional WDM-RoF transmission using multiple optical carrier suppression in FP LD,” J. Lightwave Technol., vol.  27, no. 14, pp. 2744–2750, July 2009.
    [CrossRef]
  16. Z. Jia, J. Yu, A. Chowdhury, G. Ellinas, and G. K. Chang, “Simultaneous generation of independent wired and wireless services using a single modulator in millimeter-wave band radio-over-fiber systems,” IEEE Photon. Technol. Lett., vol.  19, no. 20, pp. 1691–1693, Oct. 2007.
    [CrossRef]
  17. Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett., vol.  18, no. 16, pp. 1726–1728, Aug. 2006.
    [CrossRef]
  18. Y.-Y. Won, H.-S. Kim, and S.-K. Han, “1.25  Gbit/s millimetre-wave band wired/wireless radio-over-fibre system based on RSOA using injection-locking effect,” Electron. Lett., vol.  45, no. 7, pp. 365–366, Mar. 2009.
    [CrossRef]
  19. V. Olmos, T. Kuri, and K. I. Kitayama, “60 GHz-band 155  Mb/s and 1.5  Gb/s baseband time-slotted full-duplex radio-over-fiber access network,” IEEE Photon. Technol. Lett., vol.  20, no. 8, pp. 617–619, Apr. 2008.
    [CrossRef]
  20. C. S. Park, C. K. Oh, C. G. Lee, D. H. Kim, and C. S. Park, “A photonic up-converter for a WDM radio-over-fiber system using cross-absorption modulation in an EAM,” IEEE Photon. Technol. Lett., vol.  17, no. 9, pp. 1950–1952, Sept. 2005.
    [CrossRef]
  21. T. Nakasyotani, H. Toda, T. Kuri, and K. I. Kitayama, “Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source,” J. Lightwave Technol., vol.  24, no. 1, pp. 404–410, Jan. 2006.
    [CrossRef]
  22. V. Olmos, T. Kuri, and K. I. Kitayama, “Dynamic reconfigurable WDM 60 GHz millimeter-waveband radio-over-fiber access network: architectural considerations and experiment,” J. Lightwave Technol., vol.  25, no. 11, pp. 3374–3380, Nov. 2007.
    [CrossRef]
  23. T. Kuri, H. Toda, and K. I. Kitayama, “Novel demultiplexer for dense wavelength-division-multiplexed millimeter-wave-band radio-over-fiber systems with optical frequency interleaving technique,” IEEE Photon. Technol. Lett., vol.  19, no. 24, pp. 2018–2020, Dec. 2007.
    [CrossRef]
  24. P. A. Gamage, A. Nirmalathas, C. Lim, M. Bakaul, D. Novak, and R. Waterhouse, “Efficient transmission scheme for AWG-based DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett., vol.  19, no. 4, pp. 206–208, Feb. 2007.
    [CrossRef]
  25. M. Li, H. Chen, F. Yin, M. Chen, and S. Xie, “DWDM-based frequency-interleaved optical distributing system merging wired and wireless services,” IEEE Photon. Technol. Lett., vol.  21, no. 15, pp. 1048–1050, Aug. 2009.
    [CrossRef]
  26. T.-T. Pham, H.-S. Kim, Y.-Y. Won, and S.-K. Han, “Bidirectional 1.25 Gbps wired/wireless optical transmission based on single sideband carriers in Fabry–Perot laser diode by multimode injection locking,” J. Lightwave Technol., vol.  27, no. 13, pp. 2457–2464, July 2009.
    [CrossRef]
  27. M.-K. Hong, Y.-Y. Won, and S.-K. Han, “Gigabit optical access link for simultaneous wired and wireless signal transmission based on dual parallel injection-locked Fabry–Perot laser diodes,” J. Lightwave Technol., vol.  26, no. 15, pp. 2725–2731, Aug. 2008.
    [CrossRef]
  28. X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, L. Deng, R. Borkowski, J. S. Pedersen, D. Zibar, X. Yu, and I. T. Monroy, “25  Gbit/s QPSK hybrid fiber-wireless transmission in the W-band (75–110 GHz) with remote antenna unit for in-building wireless networks,” IEEE Photon. J., vol.  4, no. 3, pp. 691–698, June 2012.
    [CrossRef]
  29. D. Zibar, A. Caballero, X. Yu, X. Pang, A. K. Dogadaev, and I. T. Monroy, “Hybrid optical fibre-wireless links at the 75–110 GHz band supporting 100 Gbps transmission capacities,” in Proc. MWP, 2011, pp. 445–449.
  30. A. Kanno, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K.-I. Kitayama, “20 Gbaud QPSK RoF and millimeter-wave radio transmission,” in Proc. OECC, 2012, pp. 735–736.
  31. T.-T. Pham, H.-S. Kim, Y.-Y. Won, and S.-K. Han, “Colorless WDM-PON based on a Fabry–Perot laser diode and reflective semiconductor optical amplifiers for simultaneous transmission of bidirectional gigabit baseband signals and broadcasting signal,” Opt. Express, vol.  17, no. 19, pp. 16571–16580, Sept. 2009.
    [CrossRef]

2013

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8×9.95  Gb/s ultra-dense WDM-PON on a 12.5 GHz grid with digital pre-equalization,” IEEE Photon. Technol. Lett., vol.  25, no. 2, pp. 194–197, Jan. 2013.
[CrossRef]

Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, and Y. Ma, “Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2),” J. Lightwave Technol., vol.  31, no. 4, pp. 587–593, Feb. 2013.
[CrossRef]

2012

K. C. Reichmann, P. P. Iannone, C. Brinton, J. Nakagawa, T. Cusick, M. Kimber, C. Doerr, L. L. Buhl, M. Cappuzzo, E. Y. Chen, L. Gomez, J. Johnson, A. M. Kanan, J. Lentz, Y. F. Chang, B. Pálsdóttir, T. Tokle, and L. Spiekman, “A symmetric-rate, extended-reach 40  Gb/s CWDM-TDMA PON with downstream and upstream SOA-Raman amplification,” J. Lightwave Technol., vol.  30, no. 4, pp. 479–485, Feb. 2012.
[CrossRef]

N. Cvijetic, M. Cvijetic, M.-F. Huang, E. Ip, Y.-K. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol., vol.  30, no. 4, pp. 493–503, Feb. 2012.
[CrossRef]

Z. Al-Qazwini and H. Kim, “Symmetric 10  Gb/s WDM-PON using directly modulated lasers for downlink and RSOAs for uplink,” J. Lightwave Technol., vol.  30, no. 12, pp. 1891–1899, June 2012.
[CrossRef]

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103  Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett., vol.  24, no. 3, pp. 209–211, Feb. 2012.
[CrossRef]

X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, L. Deng, R. Borkowski, J. S. Pedersen, D. Zibar, X. Yu, and I. T. Monroy, “25  Gbit/s QPSK hybrid fiber-wireless transmission in the W-band (75–110 GHz) with remote antenna unit for in-building wireless networks,” IEEE Photon. J., vol.  4, no. 3, pp. 691–698, June 2012.
[CrossRef]

2009

M. Li, H. Chen, F. Yin, M. Chen, and S. Xie, “DWDM-based frequency-interleaved optical distributing system merging wired and wireless services,” IEEE Photon. Technol. Lett., vol.  21, no. 15, pp. 1048–1050, Aug. 2009.
[CrossRef]

Y.-Y. Won, H.-S. Kim, and S.-K. Han, “1.25  Gbit/s millimetre-wave band wired/wireless radio-over-fibre system based on RSOA using injection-locking effect,” Electron. Lett., vol.  45, no. 7, pp. 365–366, Mar. 2009.
[CrossRef]

T.-T. Pham, H.-S. Kim, Y.-Y. Won, and S.-K. Han, “Bidirectional 1.25 Gbps wired/wireless optical transmission based on single sideband carriers in Fabry–Perot laser diode by multimode injection locking,” J. Lightwave Technol., vol.  27, no. 13, pp. 2457–2464, July 2009.
[CrossRef]

H.-S. Kim, T.-T. Pham, Y.-Y. Won, and S.-K. Han, “Simultaneous wired and wireless 1.25  Gb/s bidirectional WDM-RoF transmission using multiple optical carrier suppression in FP LD,” J. Lightwave Technol., vol.  27, no. 14, pp. 2744–2750, July 2009.
[CrossRef]

G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks [Invited],” J. Opt. Commun. Netw., vol.  1, no. 4, pp. C35–C50, Sept. 2009.
[CrossRef]

T.-T. Pham, H.-S. Kim, Y.-Y. Won, and S.-K. Han, “Colorless WDM-PON based on a Fabry–Perot laser diode and reflective semiconductor optical amplifiers for simultaneous transmission of bidirectional gigabit baseband signals and broadcasting signal,” Opt. Express, vol.  17, no. 19, pp. 16571–16580, Sept. 2009.
[CrossRef]

2008

M.-K. Hong, Y.-Y. Won, and S.-K. Han, “Gigabit optical access link for simultaneous wired and wireless signal transmission based on dual parallel injection-locked Fabry–Perot laser diodes,” J. Lightwave Technol., vol.  26, no. 15, pp. 2725–2731, Aug. 2008.
[CrossRef]

V. Olmos, T. Kuri, and K. I. Kitayama, “60 GHz-band 155  Mb/s and 1.5  Gb/s baseband time-slotted full-duplex radio-over-fiber access network,” IEEE Photon. Technol. Lett., vol.  20, no. 8, pp. 617–619, Apr. 2008.
[CrossRef]

2007

T. Kuri, H. Toda, and K. I. Kitayama, “Novel demultiplexer for dense wavelength-division-multiplexed millimeter-wave-band radio-over-fiber systems with optical frequency interleaving technique,” IEEE Photon. Technol. Lett., vol.  19, no. 24, pp. 2018–2020, Dec. 2007.
[CrossRef]

P. A. Gamage, A. Nirmalathas, C. Lim, M. Bakaul, D. Novak, and R. Waterhouse, “Efficient transmission scheme for AWG-based DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett., vol.  19, no. 4, pp. 206–208, Feb. 2007.
[CrossRef]

Z. Jia, J. Yu, A. Chowdhury, G. Ellinas, and G. K. Chang, “Simultaneous generation of independent wired and wireless services using a single modulator in millimeter-wave band radio-over-fiber systems,” IEEE Photon. Technol. Lett., vol.  19, no. 20, pp. 1691–1693, Oct. 2007.
[CrossRef]

Z. Xu, Y. J. Wen, W. D. Zhong, C. J. Chae, X. F. Cheng, Y. Wang, C. Lu, and J. Shanker, “High-speed WDM-PON using CW injection-locked Fabry–Perot laser diodes,” Opt. Express, vol.  15, no. 6, pp. 2953–2962, Mar. 2007.
[CrossRef]

V. Olmos, T. Kuri, and K. I. Kitayama, “Dynamic reconfigurable WDM 60 GHz millimeter-waveband radio-over-fiber access network: architectural considerations and experiment,” J. Lightwave Technol., vol.  25, no. 11, pp. 3374–3380, Nov. 2007.
[CrossRef]

L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-generation optical access networks,” J. Lightwave Technol., vol.  25, no. 11, pp. 3428–3442, Nov. 2007.
[CrossRef]

Y.-Y. Won, H.-C. Kwon, and S.-K. Han, “1.25  Gb/s wavelength division multiplexed single wavelength colorless radio-on-fiber systems using reflective semiconductor optical amplifier,” J. Lightwave Technol., vol.  25, no. 11, pp. 3472–3478, Nov. 2007.
[CrossRef]

2006

M. Attygalle, T. Anderson, D. Hewitt, and A. Nirmalathas, “WDM passive optical network with subcarrier transmission and baseband detection scheme for laser-free optical network units,” IEEE Photon. Technol. Lett., vol.  18, no. 11, pp. 1279–1281, June 2006.
[CrossRef]

T. Nakasyotani, H. Toda, T. Kuri, and K. I. Kitayama, “Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source,” J. Lightwave Technol., vol.  24, no. 1, pp. 404–410, Jan. 2006.
[CrossRef]

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett., vol.  18, no. 16, pp. 1726–1728, Aug. 2006.
[CrossRef]

2005

W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, no. 11, pp. 2289–2291, Nov. 2005.
[CrossRef]

C. S. Park, C. K. Oh, C. G. Lee, D. H. Kim, and C. S. Park, “A photonic up-converter for a WDM radio-over-fiber system using cross-absorption modulation in an EAM,” IEEE Photon. Technol. Lett., vol.  17, no. 9, pp. 1950–1952, Sept. 2005.
[CrossRef]

Agata, A.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103  Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett., vol.  24, no. 3, pp. 209–211, Feb. 2012.
[CrossRef]

K. Y. Cho, U. H. Hong, A. Agata, T. San, Y. Horiuchi, H. Tanaka, M. Suzuki, and Y. C. Chung, “10  Gb/s, 80 km reach RSOA-based WDM PON employing QPSK signal and self-homodyne receiver,” in Proc. OFC/NFOEC, 2012, pp. 1–3.

Al-Qazwini, Z.

Anderson, T.

M. Attygalle, T. Anderson, D. Hewitt, and A. Nirmalathas, “WDM passive optical network with subcarrier transmission and baseband detection scheme for laser-free optical network units,” IEEE Photon. Technol. Lett., vol.  18, no. 11, pp. 1279–1281, June 2006.
[CrossRef]

Arlunno, V.

X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, L. Deng, R. Borkowski, J. S. Pedersen, D. Zibar, X. Yu, and I. T. Monroy, “25  Gbit/s QPSK hybrid fiber-wireless transmission in the W-band (75–110 GHz) with remote antenna unit for in-building wireless networks,” IEEE Photon. J., vol.  4, no. 3, pp. 691–698, June 2012.
[CrossRef]

Attygalle, M.

M. Attygalle, T. Anderson, D. Hewitt, and A. Nirmalathas, “WDM passive optical network with subcarrier transmission and baseband detection scheme for laser-free optical network units,” IEEE Photon. Technol. Lett., vol.  18, no. 11, pp. 1279–1281, June 2006.
[CrossRef]

Bakaul, M.

P. A. Gamage, A. Nirmalathas, C. Lim, M. Bakaul, D. Novak, and R. Waterhouse, “Efficient transmission scheme for AWG-based DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett., vol.  19, no. 4, pp. 206–208, Feb. 2007.
[CrossRef]

Borkowski, R.

X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, L. Deng, R. Borkowski, J. S. Pedersen, D. Zibar, X. Yu, and I. T. Monroy, “25  Gbit/s QPSK hybrid fiber-wireless transmission in the W-band (75–110 GHz) with remote antenna unit for in-building wireless networks,” IEEE Photon. J., vol.  4, no. 3, pp. 691–698, June 2012.
[CrossRef]

Brinton, C.

Buhl, L. L.

Caballero, A.

X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, L. Deng, R. Borkowski, J. S. Pedersen, D. Zibar, X. Yu, and I. T. Monroy, “25  Gbit/s QPSK hybrid fiber-wireless transmission in the W-band (75–110 GHz) with remote antenna unit for in-building wireless networks,” IEEE Photon. J., vol.  4, no. 3, pp. 691–698, June 2012.
[CrossRef]

D. Zibar, A. Caballero, X. Yu, X. Pang, A. K. Dogadaev, and I. T. Monroy, “Hybrid optical fibre-wireless links at the 75–110 GHz band supporting 100 Gbps transmission capacities,” in Proc. MWP, 2011, pp. 445–449.

Cao, Z.

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8×9.95  Gb/s ultra-dense WDM-PON on a 12.5 GHz grid with digital pre-equalization,” IEEE Photon. Technol. Lett., vol.  25, no. 2, pp. 194–197, Jan. 2013.
[CrossRef]

Cappuzzo, M.

Chae, C. J.

Chang, G. K.

Z. Jia, J. Yu, A. Chowdhury, G. Ellinas, and G. K. Chang, “Simultaneous generation of independent wired and wireless services using a single modulator in millimeter-wave band radio-over-fiber systems,” IEEE Photon. Technol. Lett., vol.  19, no. 20, pp. 1691–1693, Oct. 2007.
[CrossRef]

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett., vol.  18, no. 16, pp. 1726–1728, Aug. 2006.
[CrossRef]

Chang, G.-K.

Chang, Y. F.

Chen, E. Y.

Chen, H.

M. Li, H. Chen, F. Yin, M. Chen, and S. Xie, “DWDM-based frequency-interleaved optical distributing system merging wired and wireless services,” IEEE Photon. Technol. Lett., vol.  21, no. 15, pp. 1048–1050, Aug. 2009.
[CrossRef]

Chen, M.

M. Li, H. Chen, F. Yin, M. Chen, and S. Xie, “DWDM-based frequency-interleaved optical distributing system merging wired and wireless services,” IEEE Photon. Technol. Lett., vol.  21, no. 15, pp. 1048–1050, Aug. 2009.
[CrossRef]

Cheng, N.

Cheng, X. F.

Chi, N.

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8×9.95  Gb/s ultra-dense WDM-PON on a 12.5 GHz grid with digital pre-equalization,” IEEE Photon. Technol. Lett., vol.  25, no. 2, pp. 194–197, Jan. 2013.
[CrossRef]

Chien, H.-C.

Cho, K. Y.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103  Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett., vol.  24, no. 3, pp. 209–211, Feb. 2012.
[CrossRef]

K. Y. Cho, U. H. Hong, A. Agata, T. San, Y. Horiuchi, H. Tanaka, M. Suzuki, and Y. C. Chung, “10  Gb/s, 80 km reach RSOA-based WDM PON employing QPSK signal and self-homodyne receiver,” in Proc. OFC/NFOEC, 2012, pp. 1–3.

Cho, S. H.

W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, no. 11, pp. 2289–2291, Nov. 2005.
[CrossRef]

Cho, S.-H.

S.-H. Cho, J.-H. Lee, J.-H. Lee, E.-G. Lee, H.-H. Lee, E.-S. Jung, B.-S. Choi, D.-C. Kim, O.-K. Kwon, and S. S. Lee, “Demonstrations of RSOA based loop-back WDM-PON with 100  Gb/s (80×1.25  Gb/s) capacity employing spectrum sliced incoherent light injection,” in Proc. ECOC, Torino, 2010, pp. 1–3.

Choi, B.-S.

S.-H. Cho, J.-H. Lee, J.-H. Lee, E.-G. Lee, H.-H. Lee, E.-S. Jung, B.-S. Choi, D.-C. Kim, O.-K. Kwon, and S. S. Lee, “Demonstrations of RSOA based loop-back WDM-PON with 100  Gb/s (80×1.25  Gb/s) capacity employing spectrum sliced incoherent light injection,” in Proc. ECOC, Torino, 2010, pp. 1–3.

Chowdhury, A.

G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks [Invited],” J. Opt. Commun. Netw., vol.  1, no. 4, pp. C35–C50, Sept. 2009.
[CrossRef]

Z. Jia, J. Yu, A. Chowdhury, G. Ellinas, and G. K. Chang, “Simultaneous generation of independent wired and wireless services using a single modulator in millimeter-wave band radio-over-fiber systems,” IEEE Photon. Technol. Lett., vol.  19, no. 20, pp. 1691–1693, Oct. 2007.
[CrossRef]

Chung, Y. C.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103  Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett., vol.  24, no. 3, pp. 209–211, Feb. 2012.
[CrossRef]

K. Y. Cho, U. H. Hong, A. Agata, T. San, Y. Horiuchi, H. Tanaka, M. Suzuki, and Y. C. Chung, “10  Gb/s, 80 km reach RSOA-based WDM PON employing QPSK signal and self-homodyne receiver,” in Proc. OFC/NFOEC, 2012, pp. 1–3.

Cusick, T.

Cvijetic, M.

Cvijetic, N.

Deng, L.

X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, L. Deng, R. Borkowski, J. S. Pedersen, D. Zibar, X. Yu, and I. T. Monroy, “25  Gbit/s QPSK hybrid fiber-wireless transmission in the W-band (75–110 GHz) with remote antenna unit for in-building wireless networks,” IEEE Photon. J., vol.  4, no. 3, pp. 691–698, June 2012.
[CrossRef]

Doerr, C.

Dogadaev, A.

X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, L. Deng, R. Borkowski, J. S. Pedersen, D. Zibar, X. Yu, and I. T. Monroy, “25  Gbit/s QPSK hybrid fiber-wireless transmission in the W-band (75–110 GHz) with remote antenna unit for in-building wireless networks,” IEEE Photon. J., vol.  4, no. 3, pp. 691–698, June 2012.
[CrossRef]

Dogadaev, A. K.

D. Zibar, A. Caballero, X. Yu, X. Pang, A. K. Dogadaev, and I. T. Monroy, “Hybrid optical fibre-wireless links at the 75–110 GHz band supporting 100 Gbps transmission capacities,” in Proc. MWP, 2011, pp. 445–449.

Dong, Z.

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8×9.95  Gb/s ultra-dense WDM-PON on a 12.5 GHz grid with digital pre-equalization,” IEEE Photon. Technol. Lett., vol.  25, no. 2, pp. 194–197, Jan. 2013.
[CrossRef]

Effenberger, F.

Ellinas, G.

G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks [Invited],” J. Opt. Commun. Netw., vol.  1, no. 4, pp. C35–C50, Sept. 2009.
[CrossRef]

Z. Jia, J. Yu, A. Chowdhury, G. Ellinas, and G. K. Chang, “Simultaneous generation of independent wired and wireless services using a single modulator in millimeter-wave band radio-over-fiber systems,” IEEE Photon. Technol. Lett., vol.  19, no. 20, pp. 1691–1693, Oct. 2007.
[CrossRef]

Gamage, P. A.

P. A. Gamage, A. Nirmalathas, C. Lim, M. Bakaul, D. Novak, and R. Waterhouse, “Efficient transmission scheme for AWG-based DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett., vol.  19, no. 4, pp. 206–208, Feb. 2007.
[CrossRef]

Gomez, L.

Gutierrez, D.

Han, S.-K.

T.-T. Pham, H.-S. Kim, Y.-Y. Won, and S.-K. Han, “Colorless WDM-PON based on a Fabry–Perot laser diode and reflective semiconductor optical amplifiers for simultaneous transmission of bidirectional gigabit baseband signals and broadcasting signal,” Opt. Express, vol.  17, no. 19, pp. 16571–16580, Sept. 2009.
[CrossRef]

H.-S. Kim, T.-T. Pham, Y.-Y. Won, and S.-K. Han, “Simultaneous wired and wireless 1.25  Gb/s bidirectional WDM-RoF transmission using multiple optical carrier suppression in FP LD,” J. Lightwave Technol., vol.  27, no. 14, pp. 2744–2750, July 2009.
[CrossRef]

T.-T. Pham, H.-S. Kim, Y.-Y. Won, and S.-K. Han, “Bidirectional 1.25 Gbps wired/wireless optical transmission based on single sideband carriers in Fabry–Perot laser diode by multimode injection locking,” J. Lightwave Technol., vol.  27, no. 13, pp. 2457–2464, July 2009.
[CrossRef]

Y.-Y. Won, H.-S. Kim, and S.-K. Han, “1.25  Gbit/s millimetre-wave band wired/wireless radio-over-fibre system based on RSOA using injection-locking effect,” Electron. Lett., vol.  45, no. 7, pp. 365–366, Mar. 2009.
[CrossRef]

M.-K. Hong, Y.-Y. Won, and S.-K. Han, “Gigabit optical access link for simultaneous wired and wireless signal transmission based on dual parallel injection-locked Fabry–Perot laser diodes,” J. Lightwave Technol., vol.  26, no. 15, pp. 2725–2731, Aug. 2008.
[CrossRef]

Y.-Y. Won, H.-C. Kwon, and S.-K. Han, “1.25  Gb/s wavelength division multiplexed single wavelength colorless radio-on-fiber systems using reflective semiconductor optical amplifier,” J. Lightwave Technol., vol.  25, no. 11, pp. 3472–3478, Nov. 2007.
[CrossRef]

Hewitt, D.

M. Attygalle, T. Anderson, D. Hewitt, and A. Nirmalathas, “WDM passive optical network with subcarrier transmission and baseband detection scheme for laser-free optical network units,” IEEE Photon. Technol. Lett., vol.  18, no. 11, pp. 1279–1281, June 2006.
[CrossRef]

Hong, M.-K.

Hong, U. H.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103  Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett., vol.  24, no. 3, pp. 209–211, Feb. 2012.
[CrossRef]

K. Y. Cho, U. H. Hong, A. Agata, T. San, Y. Horiuchi, H. Tanaka, M. Suzuki, and Y. C. Chung, “10  Gb/s, 80 km reach RSOA-based WDM PON employing QPSK signal and self-homodyne receiver,” in Proc. OFC/NFOEC, 2012, pp. 1–3.

Horiuchi, Y.

K. Y. Cho, U. H. Hong, A. Agata, T. San, Y. Horiuchi, H. Tanaka, M. Suzuki, and Y. C. Chung, “10  Gb/s, 80 km reach RSOA-based WDM PON employing QPSK signal and self-homodyne receiver,” in Proc. OFC/NFOEC, 2012, pp. 1–3.

Hosako, I.

A. Kanno, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K.-I. Kitayama, “20 Gbaud QPSK RoF and millimeter-wave radio transmission,” in Proc. OECC, 2012, pp. 735–736.

Huang, M.-F.

Huang, Y.-K.

Iannone, P. P.

Ip, E.

Jeong, G.

W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, no. 11, pp. 2289–2291, Nov. 2005.
[CrossRef]

Jia, Z.

G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks [Invited],” J. Opt. Commun. Netw., vol.  1, no. 4, pp. C35–C50, Sept. 2009.
[CrossRef]

Z. Jia, J. Yu, A. Chowdhury, G. Ellinas, and G. K. Chang, “Simultaneous generation of independent wired and wireless services using a single modulator in millimeter-wave band radio-over-fiber systems,” IEEE Photon. Technol. Lett., vol.  19, no. 20, pp. 1691–1693, Oct. 2007.
[CrossRef]

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett., vol.  18, no. 16, pp. 1726–1728, Aug. 2006.
[CrossRef]

Johnson, J.

Jung, E.-S.

S.-H. Cho, J.-H. Lee, J.-H. Lee, E.-G. Lee, H.-H. Lee, E.-S. Jung, B.-S. Choi, D.-C. Kim, O.-K. Kwon, and S. S. Lee, “Demonstrations of RSOA based loop-back WDM-PON with 100  Gb/s (80×1.25  Gb/s) capacity employing spectrum sliced incoherent light injection,” in Proc. ECOC, Torino, 2010, pp. 1–3.

Kanan, A. M.

Kanno, A.

A. Kanno, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K.-I. Kitayama, “20 Gbaud QPSK RoF and millimeter-wave radio transmission,” in Proc. OECC, 2012, pp. 735–736.

Kawanishi, T.

A. Kanno, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K.-I. Kitayama, “20 Gbaud QPSK RoF and millimeter-wave radio transmission,” in Proc. OECC, 2012, pp. 735–736.

Kazovsky, L. G.

Kim, B. W.

W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, no. 11, pp. 2289–2291, Nov. 2005.
[CrossRef]

Kim, C. Y.

W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, no. 11, pp. 2289–2291, Nov. 2005.
[CrossRef]

Kim, D. H.

C. S. Park, C. K. Oh, C. G. Lee, D. H. Kim, and C. S. Park, “A photonic up-converter for a WDM radio-over-fiber system using cross-absorption modulation in an EAM,” IEEE Photon. Technol. Lett., vol.  17, no. 9, pp. 1950–1952, Sept. 2005.
[CrossRef]

Kim, D.-C.

S.-H. Cho, J.-H. Lee, J.-H. Lee, E.-G. Lee, H.-H. Lee, E.-S. Jung, B.-S. Choi, D.-C. Kim, O.-K. Kwon, and S. S. Lee, “Demonstrations of RSOA based loop-back WDM-PON with 100  Gb/s (80×1.25  Gb/s) capacity employing spectrum sliced incoherent light injection,” in Proc. ECOC, Torino, 2010, pp. 1–3.

Kim, H.

Kim, H.-S.

Kimber, M.

Kitayama, K. I.

V. Olmos, T. Kuri, and K. I. Kitayama, “60 GHz-band 155  Mb/s and 1.5  Gb/s baseband time-slotted full-duplex radio-over-fiber access network,” IEEE Photon. Technol. Lett., vol.  20, no. 8, pp. 617–619, Apr. 2008.
[CrossRef]

T. Kuri, H. Toda, and K. I. Kitayama, “Novel demultiplexer for dense wavelength-division-multiplexed millimeter-wave-band radio-over-fiber systems with optical frequency interleaving technique,” IEEE Photon. Technol. Lett., vol.  19, no. 24, pp. 2018–2020, Dec. 2007.
[CrossRef]

V. Olmos, T. Kuri, and K. I. Kitayama, “Dynamic reconfigurable WDM 60 GHz millimeter-waveband radio-over-fiber access network: architectural considerations and experiment,” J. Lightwave Technol., vol.  25, no. 11, pp. 3374–3380, Nov. 2007.
[CrossRef]

T. Nakasyotani, H. Toda, T. Kuri, and K. I. Kitayama, “Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source,” J. Lightwave Technol., vol.  24, no. 1, pp. 404–410, Jan. 2006.
[CrossRef]

Kitayama, K.-I.

A. Kanno, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K.-I. Kitayama, “20 Gbaud QPSK RoF and millimeter-wave radio transmission,” in Proc. OECC, 2012, pp. 735–736.

Kuri, T.

V. Olmos, T. Kuri, and K. I. Kitayama, “60 GHz-band 155  Mb/s and 1.5  Gb/s baseband time-slotted full-duplex radio-over-fiber access network,” IEEE Photon. Technol. Lett., vol.  20, no. 8, pp. 617–619, Apr. 2008.
[CrossRef]

T. Kuri, H. Toda, and K. I. Kitayama, “Novel demultiplexer for dense wavelength-division-multiplexed millimeter-wave-band radio-over-fiber systems with optical frequency interleaving technique,” IEEE Photon. Technol. Lett., vol.  19, no. 24, pp. 2018–2020, Dec. 2007.
[CrossRef]

V. Olmos, T. Kuri, and K. I. Kitayama, “Dynamic reconfigurable WDM 60 GHz millimeter-waveband radio-over-fiber access network: architectural considerations and experiment,” J. Lightwave Technol., vol.  25, no. 11, pp. 3374–3380, Nov. 2007.
[CrossRef]

T. Nakasyotani, H. Toda, T. Kuri, and K. I. Kitayama, “Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source,” J. Lightwave Technol., vol.  24, no. 1, pp. 404–410, Jan. 2006.
[CrossRef]

A. Kanno, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K.-I. Kitayama, “20 Gbaud QPSK RoF and millimeter-wave radio transmission,” in Proc. OECC, 2012, pp. 735–736.

Kwon, H.-C.

Kwon, O.-K.

S.-H. Cho, J.-H. Lee, J.-H. Lee, E.-G. Lee, H.-H. Lee, E.-S. Jung, B.-S. Choi, D.-C. Kim, O.-K. Kwon, and S. S. Lee, “Demonstrations of RSOA based loop-back WDM-PON with 100  Gb/s (80×1.25  Gb/s) capacity employing spectrum sliced incoherent light injection,” in Proc. ECOC, Torino, 2010, pp. 1–3.

Lee, C. G.

C. S. Park, C. K. Oh, C. G. Lee, D. H. Kim, and C. S. Park, “A photonic up-converter for a WDM radio-over-fiber system using cross-absorption modulation in an EAM,” IEEE Photon. Technol. Lett., vol.  17, no. 9, pp. 1950–1952, Sept. 2005.
[CrossRef]

Lee, E.-G.

S.-H. Cho, J.-H. Lee, J.-H. Lee, E.-G. Lee, H.-H. Lee, E.-S. Jung, B.-S. Choi, D.-C. Kim, O.-K. Kwon, and S. S. Lee, “Demonstrations of RSOA based loop-back WDM-PON with 100  Gb/s (80×1.25  Gb/s) capacity employing spectrum sliced incoherent light injection,” in Proc. ECOC, Torino, 2010, pp. 1–3.

Lee, H.-H.

S.-H. Cho, J.-H. Lee, J.-H. Lee, E.-G. Lee, H.-H. Lee, E.-S. Jung, B.-S. Choi, D.-C. Kim, O.-K. Kwon, and S. S. Lee, “Demonstrations of RSOA based loop-back WDM-PON with 100  Gb/s (80×1.25  Gb/s) capacity employing spectrum sliced incoherent light injection,” in Proc. ECOC, Torino, 2010, pp. 1–3.

Lee, J. H.

W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, no. 11, pp. 2289–2291, Nov. 2005.
[CrossRef]

Lee, J.-H.

S.-H. Cho, J.-H. Lee, J.-H. Lee, E.-G. Lee, H.-H. Lee, E.-S. Jung, B.-S. Choi, D.-C. Kim, O.-K. Kwon, and S. S. Lee, “Demonstrations of RSOA based loop-back WDM-PON with 100  Gb/s (80×1.25  Gb/s) capacity employing spectrum sliced incoherent light injection,” in Proc. ECOC, Torino, 2010, pp. 1–3.

S.-H. Cho, J.-H. Lee, J.-H. Lee, E.-G. Lee, H.-H. Lee, E.-S. Jung, B.-S. Choi, D.-C. Kim, O.-K. Kwon, and S. S. Lee, “Demonstrations of RSOA based loop-back WDM-PON with 100  Gb/s (80×1.25  Gb/s) capacity employing spectrum sliced incoherent light injection,” in Proc. ECOC, Torino, 2010, pp. 1–3.

Lee, S. S.

S.-H. Cho, J.-H. Lee, J.-H. Lee, E.-G. Lee, H.-H. Lee, E.-S. Jung, B.-S. Choi, D.-C. Kim, O.-K. Kwon, and S. S. Lee, “Demonstrations of RSOA based loop-back WDM-PON with 100  Gb/s (80×1.25  Gb/s) capacity employing spectrum sliced incoherent light injection,” in Proc. ECOC, Torino, 2010, pp. 1–3.

Lee, W. R.

W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, no. 11, pp. 2289–2291, Nov. 2005.
[CrossRef]

Lentz, J.

Li, M.

M. Li, H. Chen, F. Yin, M. Chen, and S. Xie, “DWDM-based frequency-interleaved optical distributing system merging wired and wireless services,” IEEE Photon. Technol. Lett., vol.  21, no. 15, pp. 1048–1050, Aug. 2009.
[CrossRef]

Li, X.

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8×9.95  Gb/s ultra-dense WDM-PON on a 12.5 GHz grid with digital pre-equalization,” IEEE Photon. Technol. Lett., vol.  25, no. 2, pp. 194–197, Jan. 2013.
[CrossRef]

Lim, C.

P. A. Gamage, A. Nirmalathas, C. Lim, M. Bakaul, D. Novak, and R. Waterhouse, “Efficient transmission scheme for AWG-based DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett., vol.  19, no. 4, pp. 206–208, Feb. 2007.
[CrossRef]

Lu, C.

Luo, Y.

Ma, Y.

Monroy, I. T.

X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, L. Deng, R. Borkowski, J. S. Pedersen, D. Zibar, X. Yu, and I. T. Monroy, “25  Gbit/s QPSK hybrid fiber-wireless transmission in the W-band (75–110 GHz) with remote antenna unit for in-building wireless networks,” IEEE Photon. J., vol.  4, no. 3, pp. 691–698, June 2012.
[CrossRef]

D. Zibar, A. Caballero, X. Yu, X. Pang, A. K. Dogadaev, and I. T. Monroy, “Hybrid optical fibre-wireless links at the 75–110 GHz band supporting 100 Gbps transmission capacities,” in Proc. MWP, 2011, pp. 445–449.

Nakagawa, J.

Nakasyotani, T.

Nirmalathas, A.

P. A. Gamage, A. Nirmalathas, C. Lim, M. Bakaul, D. Novak, and R. Waterhouse, “Efficient transmission scheme for AWG-based DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett., vol.  19, no. 4, pp. 206–208, Feb. 2007.
[CrossRef]

M. Attygalle, T. Anderson, D. Hewitt, and A. Nirmalathas, “WDM passive optical network with subcarrier transmission and baseband detection scheme for laser-free optical network units,” IEEE Photon. Technol. Lett., vol.  18, no. 11, pp. 1279–1281, June 2006.
[CrossRef]

Novak, D.

P. A. Gamage, A. Nirmalathas, C. Lim, M. Bakaul, D. Novak, and R. Waterhouse, “Efficient transmission scheme for AWG-based DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett., vol.  19, no. 4, pp. 206–208, Feb. 2007.
[CrossRef]

Oh, C. K.

C. S. Park, C. K. Oh, C. G. Lee, D. H. Kim, and C. S. Park, “A photonic up-converter for a WDM radio-over-fiber system using cross-absorption modulation in an EAM,” IEEE Photon. Technol. Lett., vol.  17, no. 9, pp. 1950–1952, Sept. 2005.
[CrossRef]

Olmos, V.

V. Olmos, T. Kuri, and K. I. Kitayama, “60 GHz-band 155  Mb/s and 1.5  Gb/s baseband time-slotted full-duplex radio-over-fiber access network,” IEEE Photon. Technol. Lett., vol.  20, no. 8, pp. 617–619, Apr. 2008.
[CrossRef]

V. Olmos, T. Kuri, and K. I. Kitayama, “Dynamic reconfigurable WDM 60 GHz millimeter-waveband radio-over-fiber access network: architectural considerations and experiment,” J. Lightwave Technol., vol.  25, no. 11, pp. 3374–3380, Nov. 2007.
[CrossRef]

Pálsdóttir, B.

Pang, X.

X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, L. Deng, R. Borkowski, J. S. Pedersen, D. Zibar, X. Yu, and I. T. Monroy, “25  Gbit/s QPSK hybrid fiber-wireless transmission in the W-band (75–110 GHz) with remote antenna unit for in-building wireless networks,” IEEE Photon. J., vol.  4, no. 3, pp. 691–698, June 2012.
[CrossRef]

D. Zibar, A. Caballero, X. Yu, X. Pang, A. K. Dogadaev, and I. T. Monroy, “Hybrid optical fibre-wireless links at the 75–110 GHz band supporting 100 Gbps transmission capacities,” in Proc. MWP, 2011, pp. 445–449.

Park, C. S.

C. S. Park, C. K. Oh, C. G. Lee, D. H. Kim, and C. S. Park, “A photonic up-converter for a WDM radio-over-fiber system using cross-absorption modulation in an EAM,” IEEE Photon. Technol. Lett., vol.  17, no. 9, pp. 1950–1952, Sept. 2005.
[CrossRef]

C. S. Park, C. K. Oh, C. G. Lee, D. H. Kim, and C. S. Park, “A photonic up-converter for a WDM radio-over-fiber system using cross-absorption modulation in an EAM,” IEEE Photon. Technol. Lett., vol.  17, no. 9, pp. 1950–1952, Sept. 2005.
[CrossRef]

Park, M. Y.

W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, no. 11, pp. 2289–2291, Nov. 2005.
[CrossRef]

Pedersen, J. S.

X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, L. Deng, R. Borkowski, J. S. Pedersen, D. Zibar, X. Yu, and I. T. Monroy, “25  Gbit/s QPSK hybrid fiber-wireless transmission in the W-band (75–110 GHz) with remote antenna unit for in-building wireless networks,” IEEE Photon. J., vol.  4, no. 3, pp. 691–698, June 2012.
[CrossRef]

Peng, G.

Pham, T.-T.

Qian, Y.

Reichmann, K. C.

San, T.

K. Y. Cho, U. H. Hong, A. Agata, T. San, Y. Horiuchi, H. Tanaka, M. Suzuki, and Y. C. Chung, “10  Gb/s, 80 km reach RSOA-based WDM PON employing QPSK signal and self-homodyne receiver,” in Proc. OFC/NFOEC, 2012, pp. 1–3.

Sano, T.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103  Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett., vol.  24, no. 3, pp. 209–211, Feb. 2012.
[CrossRef]

Shanker, J.

Shaw, W.-T.

Spiekman, L.

Suzuki, M.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103  Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett., vol.  24, no. 3, pp. 209–211, Feb. 2012.
[CrossRef]

K. Y. Cho, U. H. Hong, A. Agata, T. San, Y. Horiuchi, H. Tanaka, M. Suzuki, and Y. C. Chung, “10  Gb/s, 80 km reach RSOA-based WDM PON employing QPSK signal and self-homodyne receiver,” in Proc. OFC/NFOEC, 2012, pp. 1–3.

Takushima, Y.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103  Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett., vol.  24, no. 3, pp. 209–211, Feb. 2012.
[CrossRef]

Tanaka, H.

K. Y. Cho, U. H. Hong, A. Agata, T. San, Y. Horiuchi, H. Tanaka, M. Suzuki, and Y. C. Chung, “10  Gb/s, 80 km reach RSOA-based WDM PON employing QPSK signal and self-homodyne receiver,” in Proc. OFC/NFOEC, 2012, pp. 1–3.

Toda, H.

T. Kuri, H. Toda, and K. I. Kitayama, “Novel demultiplexer for dense wavelength-division-multiplexed millimeter-wave-band radio-over-fiber systems with optical frequency interleaving technique,” IEEE Photon. Technol. Lett., vol.  19, no. 24, pp. 2018–2020, Dec. 2007.
[CrossRef]

T. Nakasyotani, H. Toda, T. Kuri, and K. I. Kitayama, “Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source,” J. Lightwave Technol., vol.  24, no. 1, pp. 404–410, Jan. 2006.
[CrossRef]

Tokle, T.

Wang, T.

Wang, Y.

Waterhouse, R.

P. A. Gamage, A. Nirmalathas, C. Lim, M. Bakaul, D. Novak, and R. Waterhouse, “Efficient transmission scheme for AWG-based DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett., vol.  19, no. 4, pp. 206–208, Feb. 2007.
[CrossRef]

Wen, Y. J.

Won, Y.-Y.

Y.-Y. Won, H.-S. Kim, and S.-K. Han, “1.25  Gbit/s millimetre-wave band wired/wireless radio-over-fibre system based on RSOA using injection-locking effect,” Electron. Lett., vol.  45, no. 7, pp. 365–366, Mar. 2009.
[CrossRef]

H.-S. Kim, T.-T. Pham, Y.-Y. Won, and S.-K. Han, “Simultaneous wired and wireless 1.25  Gb/s bidirectional WDM-RoF transmission using multiple optical carrier suppression in FP LD,” J. Lightwave Technol., vol.  27, no. 14, pp. 2744–2750, July 2009.
[CrossRef]

T.-T. Pham, H.-S. Kim, Y.-Y. Won, and S.-K. Han, “Bidirectional 1.25 Gbps wired/wireless optical transmission based on single sideband carriers in Fabry–Perot laser diode by multimode injection locking,” J. Lightwave Technol., vol.  27, no. 13, pp. 2457–2464, July 2009.
[CrossRef]

T.-T. Pham, H.-S. Kim, Y.-Y. Won, and S.-K. Han, “Colorless WDM-PON based on a Fabry–Perot laser diode and reflective semiconductor optical amplifiers for simultaneous transmission of bidirectional gigabit baseband signals and broadcasting signal,” Opt. Express, vol.  17, no. 19, pp. 16571–16580, Sept. 2009.
[CrossRef]

M.-K. Hong, Y.-Y. Won, and S.-K. Han, “Gigabit optical access link for simultaneous wired and wireless signal transmission based on dual parallel injection-locked Fabry–Perot laser diodes,” J. Lightwave Technol., vol.  26, no. 15, pp. 2725–2731, Aug. 2008.
[CrossRef]

Y.-Y. Won, H.-C. Kwon, and S.-K. Han, “1.25  Gb/s wavelength division multiplexed single wavelength colorless radio-on-fiber systems using reflective semiconductor optical amplifier,” J. Lightwave Technol., vol.  25, no. 11, pp. 3472–3478, Nov. 2007.
[CrossRef]

Wong, S.-W.

Xie, S.

M. Li, H. Chen, F. Yin, M. Chen, and S. Xie, “DWDM-based frequency-interleaved optical distributing system merging wired and wireless services,” IEEE Photon. Technol. Lett., vol.  21, no. 15, pp. 1048–1050, Aug. 2009.
[CrossRef]

Xu, Z.

Yan, X.

Yasumura, Y.

A. Kanno, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K.-I. Kitayama, “20 Gbaud QPSK RoF and millimeter-wave radio transmission,” in Proc. OECC, 2012, pp. 735–736.

Yin, F.

M. Li, H. Chen, F. Yin, M. Chen, and S. Xie, “DWDM-based frequency-interleaved optical distributing system merging wired and wireless services,” IEEE Photon. Technol. Lett., vol.  21, no. 15, pp. 1048–1050, Aug. 2009.
[CrossRef]

Yoshida, Y.

A. Kanno, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K.-I. Kitayama, “20 Gbaud QPSK RoF and millimeter-wave radio transmission,” in Proc. OECC, 2012, pp. 735–736.

Yu, J.

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8×9.95  Gb/s ultra-dense WDM-PON on a 12.5 GHz grid with digital pre-equalization,” IEEE Photon. Technol. Lett., vol.  25, no. 2, pp. 194–197, Jan. 2013.
[CrossRef]

G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks [Invited],” J. Opt. Commun. Netw., vol.  1, no. 4, pp. C35–C50, Sept. 2009.
[CrossRef]

Z. Jia, J. Yu, A. Chowdhury, G. Ellinas, and G. K. Chang, “Simultaneous generation of independent wired and wireless services using a single modulator in millimeter-wave band radio-over-fiber systems,” IEEE Photon. Technol. Lett., vol.  19, no. 20, pp. 1691–1693, Oct. 2007.
[CrossRef]

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett., vol.  18, no. 16, pp. 1726–1728, Aug. 2006.
[CrossRef]

Yu, X.

X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, L. Deng, R. Borkowski, J. S. Pedersen, D. Zibar, X. Yu, and I. T. Monroy, “25  Gbit/s QPSK hybrid fiber-wireless transmission in the W-band (75–110 GHz) with remote antenna unit for in-building wireless networks,” IEEE Photon. J., vol.  4, no. 3, pp. 691–698, June 2012.
[CrossRef]

D. Zibar, A. Caballero, X. Yu, X. Pang, A. K. Dogadaev, and I. T. Monroy, “Hybrid optical fibre-wireless links at the 75–110 GHz band supporting 100 Gbps transmission capacities,” in Proc. MWP, 2011, pp. 445–449.

Zhong, W. D.

Zhou, X.

Zibar, D.

X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, L. Deng, R. Borkowski, J. S. Pedersen, D. Zibar, X. Yu, and I. T. Monroy, “25  Gbit/s QPSK hybrid fiber-wireless transmission in the W-band (75–110 GHz) with remote antenna unit for in-building wireless networks,” IEEE Photon. J., vol.  4, no. 3, pp. 691–698, June 2012.
[CrossRef]

D. Zibar, A. Caballero, X. Yu, X. Pang, A. K. Dogadaev, and I. T. Monroy, “Hybrid optical fibre-wireless links at the 75–110 GHz band supporting 100 Gbps transmission capacities,” in Proc. MWP, 2011, pp. 445–449.

Electron. Lett.

Y.-Y. Won, H.-S. Kim, and S.-K. Han, “1.25  Gbit/s millimetre-wave band wired/wireless radio-over-fibre system based on RSOA using injection-locking effect,” Electron. Lett., vol.  45, no. 7, pp. 365–366, Mar. 2009.
[CrossRef]

IEEE Photon. J.

X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, L. Deng, R. Borkowski, J. S. Pedersen, D. Zibar, X. Yu, and I. T. Monroy, “25  Gbit/s QPSK hybrid fiber-wireless transmission in the W-band (75–110 GHz) with remote antenna unit for in-building wireless networks,” IEEE Photon. J., vol.  4, no. 3, pp. 691–698, June 2012.
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Jia, J. Yu, A. Chowdhury, G. Ellinas, and G. K. Chang, “Simultaneous generation of independent wired and wireless services using a single modulator in millimeter-wave band radio-over-fiber systems,” IEEE Photon. Technol. Lett., vol.  19, no. 20, pp. 1691–1693, Oct. 2007.
[CrossRef]

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett., vol.  18, no. 16, pp. 1726–1728, Aug. 2006.
[CrossRef]

V. Olmos, T. Kuri, and K. I. Kitayama, “60 GHz-band 155  Mb/s and 1.5  Gb/s baseband time-slotted full-duplex radio-over-fiber access network,” IEEE Photon. Technol. Lett., vol.  20, no. 8, pp. 617–619, Apr. 2008.
[CrossRef]

C. S. Park, C. K. Oh, C. G. Lee, D. H. Kim, and C. S. Park, “A photonic up-converter for a WDM radio-over-fiber system using cross-absorption modulation in an EAM,” IEEE Photon. Technol. Lett., vol.  17, no. 9, pp. 1950–1952, Sept. 2005.
[CrossRef]

T. Kuri, H. Toda, and K. I. Kitayama, “Novel demultiplexer for dense wavelength-division-multiplexed millimeter-wave-band radio-over-fiber systems with optical frequency interleaving technique,” IEEE Photon. Technol. Lett., vol.  19, no. 24, pp. 2018–2020, Dec. 2007.
[CrossRef]

P. A. Gamage, A. Nirmalathas, C. Lim, M. Bakaul, D. Novak, and R. Waterhouse, “Efficient transmission scheme for AWG-based DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett., vol.  19, no. 4, pp. 206–208, Feb. 2007.
[CrossRef]

M. Li, H. Chen, F. Yin, M. Chen, and S. Xie, “DWDM-based frequency-interleaved optical distributing system merging wired and wireless services,” IEEE Photon. Technol. Lett., vol.  21, no. 15, pp. 1048–1050, Aug. 2009.
[CrossRef]

M. Attygalle, T. Anderson, D. Hewitt, and A. Nirmalathas, “WDM passive optical network with subcarrier transmission and baseband detection scheme for laser-free optical network units,” IEEE Photon. Technol. Lett., vol.  18, no. 11, pp. 1279–1281, June 2006.
[CrossRef]

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103  Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett., vol.  24, no. 3, pp. 209–211, Feb. 2012.
[CrossRef]

W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, no. 11, pp. 2289–2291, Nov. 2005.
[CrossRef]

Z. Dong, X. Li, J. Yu, Z. Cao, and N. Chi, “8×9.95  Gb/s ultra-dense WDM-PON on a 12.5 GHz grid with digital pre-equalization,” IEEE Photon. Technol. Lett., vol.  25, no. 2, pp. 194–197, Jan. 2013.
[CrossRef]

J. Lightwave Technol.

V. Olmos, T. Kuri, and K. I. Kitayama, “Dynamic reconfigurable WDM 60 GHz millimeter-waveband radio-over-fiber access network: architectural considerations and experiment,” J. Lightwave Technol., vol.  25, no. 11, pp. 3374–3380, Nov. 2007.
[CrossRef]

L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-generation optical access networks,” J. Lightwave Technol., vol.  25, no. 11, pp. 3428–3442, Nov. 2007.
[CrossRef]

Y.-Y. Won, H.-C. Kwon, and S.-K. Han, “1.25  Gb/s wavelength division multiplexed single wavelength colorless radio-on-fiber systems using reflective semiconductor optical amplifier,” J. Lightwave Technol., vol.  25, no. 11, pp. 3472–3478, Nov. 2007.
[CrossRef]

M.-K. Hong, Y.-Y. Won, and S.-K. Han, “Gigabit optical access link for simultaneous wired and wireless signal transmission based on dual parallel injection-locked Fabry–Perot laser diodes,” J. Lightwave Technol., vol.  26, no. 15, pp. 2725–2731, Aug. 2008.
[CrossRef]

T.-T. Pham, H.-S. Kim, Y.-Y. Won, and S.-K. Han, “Bidirectional 1.25 Gbps wired/wireless optical transmission based on single sideband carriers in Fabry–Perot laser diode by multimode injection locking,” J. Lightwave Technol., vol.  27, no. 13, pp. 2457–2464, July 2009.
[CrossRef]

H.-S. Kim, T.-T. Pham, Y.-Y. Won, and S.-K. Han, “Simultaneous wired and wireless 1.25  Gb/s bidirectional WDM-RoF transmission using multiple optical carrier suppression in FP LD,” J. Lightwave Technol., vol.  27, no. 14, pp. 2744–2750, July 2009.
[CrossRef]

K. C. Reichmann, P. P. Iannone, C. Brinton, J. Nakagawa, T. Cusick, M. Kimber, C. Doerr, L. L. Buhl, M. Cappuzzo, E. Y. Chen, L. Gomez, J. Johnson, A. M. Kanan, J. Lentz, Y. F. Chang, B. Pálsdóttir, T. Tokle, and L. Spiekman, “A symmetric-rate, extended-reach 40  Gb/s CWDM-TDMA PON with downstream and upstream SOA-Raman amplification,” J. Lightwave Technol., vol.  30, no. 4, pp. 479–485, Feb. 2012.
[CrossRef]

N. Cvijetic, M. Cvijetic, M.-F. Huang, E. Ip, Y.-K. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol., vol.  30, no. 4, pp. 493–503, Feb. 2012.
[CrossRef]

Z. Al-Qazwini and H. Kim, “Symmetric 10  Gb/s WDM-PON using directly modulated lasers for downlink and RSOAs for uplink,” J. Lightwave Technol., vol.  30, no. 12, pp. 1891–1899, June 2012.
[CrossRef]

Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, and Y. Ma, “Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2),” J. Lightwave Technol., vol.  31, no. 4, pp. 587–593, Feb. 2013.
[CrossRef]

T. Nakasyotani, H. Toda, T. Kuri, and K. I. Kitayama, “Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source,” J. Lightwave Technol., vol.  24, no. 1, pp. 404–410, Jan. 2006.
[CrossRef]

J. Opt. Commun. Netw.

Opt. Express

Other

D. Zibar, A. Caballero, X. Yu, X. Pang, A. K. Dogadaev, and I. T. Monroy, “Hybrid optical fibre-wireless links at the 75–110 GHz band supporting 100 Gbps transmission capacities,” in Proc. MWP, 2011, pp. 445–449.

A. Kanno, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K.-I. Kitayama, “20 Gbaud QPSK RoF and millimeter-wave radio transmission,” in Proc. OECC, 2012, pp. 735–736.

K. Y. Cho, U. H. Hong, A. Agata, T. San, Y. Horiuchi, H. Tanaka, M. Suzuki, and Y. C. Chung, “10  Gb/s, 80 km reach RSOA-based WDM PON employing QPSK signal and self-homodyne receiver,” in Proc. OFC/NFOEC, 2012, pp. 1–3.

S.-H. Cho, J.-H. Lee, J.-H. Lee, E.-G. Lee, H.-H. Lee, E.-S. Jung, B.-S. Choi, D.-C. Kim, O.-K. Kwon, and S. S. Lee, “Demonstrations of RSOA based loop-back WDM-PON with 100  Gb/s (80×1.25  Gb/s) capacity employing spectrum sliced incoherent light injection,” in Proc. ECOC, Torino, 2010, pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Full colorless WDM-RoF PON supporting the simultaneous transmission of two data types: wired and wireless.

Fig. 2.
Fig. 2.

Experimental setup for the proposed scheme. TLS, tunable light source; MZM, Mach–Zehnder modulator; EDFA, erbium-doped fiber amplifier; AWG, arrayed waveguide grating; ATT, optical attenuator; OC, optical circulator; PC, polarization controller; 3 dB, 3 dB optical coupler; RSOA, reflective semiconductor optical amplifier; OBPF, optical bandpass filter; SMF, single-mode fiber; LNA, low noise amplifier; LPF, low pass filter. Insets: measured optical spectra at points A1, A2, B, C, D, E1, E2, F, G, H, I, J, K, and L.

Fig. 3.
Fig. 3.

Phase noises of 63 GHz RF subcarrier from the proposed scheme (filled squares) and RF signal generator (filled stars).

Fig. 4.
Fig. 4.

Performance variations of wired and wireless data depending on the CSR.

Fig. 5.
Fig. 5.

Measured BER curves of wired and wireless data as compared to the CSR.

Fig. 6.
Fig. 6.

Receiver sensitivity of wired and wireless data as compared to the modulation depth of 1.25Gb/s wireless data.

Fig. 7.
Fig. 7.

Measured BER curves after simultaneous transmission of both 1.25Gb/s wireless data and 2.5Gb/s wired data. Left upper inset: RF spectrum of 63 GHz RF subcarrier. Right upper inset: RF spectrum of 2.5Gb/s wired data.

Fig. 8.
Fig. 8.

Variation of the receiver sensitivity of 1.25Gb/s uplink data as the CSR changes from 13 to 22 dB.

Fig. 9.
Fig. 9.

Measured BER curves of a 1.25Gb/s data uplink under bidirectional transmission. Insets: electrical eye patterns, in order from top to bottom (back to back, 23 m transmission with only the wired data, 23 km transmission with only the wireless data, and 23 km transmission with both wired and wireless data).

Fig. 10.
Fig. 10.

Change of receiver sensitivity of the main channel (ith channel) against the intensity of leaked adjacent signals (i1th channel and i+1th channel) in the case of downlink transmission: (a) shows how the receiver sensitivities of the main channels can be degraded by two leaked adjacent channels and (b) shows their experimental results.

Fig. 11.
Fig. 11.

Variation of receiver sensitivity of the main uplink channel against the leaked adjacent uplink channel: (a) shows the deterioration of the SNR of the uplink data due to the crosstalk of two leaked adjacent channels and (b) shows its experimental result.