Abstract

In this paper an injection-locked optical orthogonal frequency-division multiplexing (ILO-OFDM) method is presented using an optically injection-locked laser. In an ILO-OFDM system, an optically injected semiconductor laser operating in stable locking is utilized to directly modulate the OFDM signal on the optical carrier intensity. To design this system, we first compute the optimal operating condition for the directly modulated injection-locked laser by numerically solving the rate equations. The goal is to achieve the maximum enhanced modulation bandwidth with desirable flatness and simultaneously reduce signal distortions due to the effects of laser nonlinearity. These properties of the injection-locked laser suggest an appealing solution for high-data-rate transmission using OFDM. Next, we design the ILO-OFDM system by directly modulating the RF OFDM signal on the injection-locked laser with the enhanced features. The performance of the proposed method is assessed by numerical simulations, and the advantages of this method over existing optical OFDM systems are explained.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1416–1423, Aug. 1997.
    [CrossRef]
  2. I. B. Djordjevic and B. Vasic, “Orthogonal frequency division multiplexing for high-speed optical transmission,” Opt. Express, vol.  14, pp. 3767–3775, May 2006.
    [CrossRef]
  3. M. Mayrock and H. Haunstein, “PMD tolerant direct-detection optical OFDM system,” in 33rd European Optical Communication Conf. and Exhibition, Berlin, Germany, 2007, pp. 1–2.
  4. W. Shieh and I. Djordjevic, OFDM for Optical Communications.Elsevier, 2010.
  5. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express, vol.  16, no. 2, pp. 841–859, Jan. 2008.
    [CrossRef]
  6. J. M. Tang and K. A. Shore, “30  Gb/s signal transmission over 40 km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation,” J. Lightwave Technol., vol.  24, no. 6, pp. 2318–2327, June 2006.
    [CrossRef]
  7. R. C. Williamson and R. Esman, “RF photonics,” J. Lightwave Technol., vol.  26, no. 9, pp. 1145–1153, May 2008.
    [CrossRef]
  8. T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol.  9, no. 10, pp. 1322–1324, Oct. 1997.
    [CrossRef]
  9. J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett., vol.  9, no. 10, pp. 1325–1327, Oct. 1997.
    [CrossRef]
  10. H. F. Chen, J. M. Liu, and T. B. Simpson, “Response characteristics of direct current modulation on a bandwidth-enhanced semiconductor laser under strong injection locking,” Opt. Commun., vol.  173, no. 1–6, pp. 349–355, Jan. 2000.
    [CrossRef]
  11. S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express, vol.  15, no. 22, pp. 14921–14935, Oct. 2007.
    [CrossRef]
  12. J. M. Liu and T. B. Simpson, “Four-wave-mixing and optical modulation in a semiconductor-laser,” IEEE J. Quantum Electron., vol.  30, no. 4, pp. 957–965, Apr. 1994.
    [CrossRef]
  13. T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron., vol.  32, no. 8, pp. 1456–1468, Aug. 1996.
    [CrossRef]
  14. X. Q. Qi and J. M. Liu, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron., vol.  46, no. 3, pp. 421–428, Mar. 2010.
  15. E. Säckinger, “Receiver fundamentals,” in Broadband Circuits for Optical Fiber Communication. Hoboken, NJ: Wiley, 2005, p. 67.
  16. Y. Okajima, S. K. Hwang, and J. M. Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Opt. Commun., vol.  219, no. 1–6, pp. 357–364, 2003.
    [CrossRef]
  17. H. Karkhaneh, A. Ghorbani, and H. R. Amindavar, “Quantifying and cancelation memory effects in high power amplifier for OFDM systems,” Analog Integr. Circuits Signal Process., vol.  72, no. 2, pp. 303–312, Aug. 2012.
    [CrossRef]
  18. C. Zhao and R. J. Baxley, “Error vector magnitude analysis for OFDM systems,” in Fortieth Asilomar Conf. on Signals, Systems and Computers, Monterey, CA, 2006, pp. 1830–1834.
  19. W. Shieh, Q. Yang, and Y. Ma, “107  Gb/s coherent optical OFDM transmission over 1000 km SSMF fiber using orthogonal band multiplexing,” Opt. Express, vol.  16, no. 9, pp. 6378–6386, Apr. 2008.
    [CrossRef]
  20. W. Shieh, “Coherent optical MIMO-OFDM for optical fiber communication systems,” presented at European Conf. on Optical Communication, Berlin, Germany, 2007.

2012

H. Karkhaneh, A. Ghorbani, and H. R. Amindavar, “Quantifying and cancelation memory effects in high power amplifier for OFDM systems,” Analog Integr. Circuits Signal Process., vol.  72, no. 2, pp. 303–312, Aug. 2012.
[CrossRef]

2010

X. Q. Qi and J. M. Liu, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron., vol.  46, no. 3, pp. 421–428, Mar. 2010.

2008

2007

2006

2003

Y. Okajima, S. K. Hwang, and J. M. Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Opt. Commun., vol.  219, no. 1–6, pp. 357–364, 2003.
[CrossRef]

2000

H. F. Chen, J. M. Liu, and T. B. Simpson, “Response characteristics of direct current modulation on a bandwidth-enhanced semiconductor laser under strong injection locking,” Opt. Commun., vol.  173, no. 1–6, pp. 349–355, Jan. 2000.
[CrossRef]

1997

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1416–1423, Aug. 1997.
[CrossRef]

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol.  9, no. 10, pp. 1322–1324, Oct. 1997.
[CrossRef]

J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett., vol.  9, no. 10, pp. 1325–1327, Oct. 1997.
[CrossRef]

1996

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron., vol.  32, no. 8, pp. 1456–1468, Aug. 1996.
[CrossRef]

1994

J. M. Liu and T. B. Simpson, “Four-wave-mixing and optical modulation in a semiconductor-laser,” IEEE J. Quantum Electron., vol.  30, no. 4, pp. 957–965, Apr. 1994.
[CrossRef]

Amindavar, H. R.

H. Karkhaneh, A. Ghorbani, and H. R. Amindavar, “Quantifying and cancelation memory effects in high power amplifier for OFDM systems,” Analog Integr. Circuits Signal Process., vol.  72, no. 2, pp. 303–312, Aug. 2012.
[CrossRef]

Bao, H.

Baxley, R. J.

C. Zhao and R. J. Baxley, “Error vector magnitude analysis for OFDM systems,” in Fortieth Asilomar Conf. on Signals, Systems and Computers, Monterey, CA, 2006, pp. 1830–1834.

Chan, S. C.

Chen, H. F.

H. F. Chen, J. M. Liu, and T. B. Simpson, “Response characteristics of direct current modulation on a bandwidth-enhanced semiconductor laser under strong injection locking,” Opt. Commun., vol.  173, no. 1–6, pp. 349–355, Jan. 2000.
[CrossRef]

J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett., vol.  9, no. 10, pp. 1325–1327, Oct. 1997.
[CrossRef]

Djordjevic, I.

W. Shieh and I. Djordjevic, OFDM for Optical Communications.Elsevier, 2010.

Djordjevic, I. B.

Esman, R.

Gavrielides, A.

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron., vol.  32, no. 8, pp. 1456–1468, Aug. 1996.
[CrossRef]

Ghorbani, A.

H. Karkhaneh, A. Ghorbani, and H. R. Amindavar, “Quantifying and cancelation memory effects in high power amplifier for OFDM systems,” Analog Integr. Circuits Signal Process., vol.  72, no. 2, pp. 303–312, Aug. 2012.
[CrossRef]

Haunstein, H.

M. Mayrock and H. Haunstein, “PMD tolerant direct-detection optical OFDM system,” in 33rd European Optical Communication Conf. and Exhibition, Berlin, Germany, 2007, pp. 1–2.

Hwang, S. K.

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express, vol.  15, no. 22, pp. 14921–14935, Oct. 2007.
[CrossRef]

Y. Okajima, S. K. Hwang, and J. M. Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Opt. Commun., vol.  219, no. 1–6, pp. 357–364, 2003.
[CrossRef]

Karkhaneh, H.

H. Karkhaneh, A. Ghorbani, and H. R. Amindavar, “Quantifying and cancelation memory effects in high power amplifier for OFDM systems,” Analog Integr. Circuits Signal Process., vol.  72, no. 2, pp. 303–312, Aug. 2012.
[CrossRef]

Liu, J. M.

X. Q. Qi and J. M. Liu, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron., vol.  46, no. 3, pp. 421–428, Mar. 2010.

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express, vol.  15, no. 22, pp. 14921–14935, Oct. 2007.
[CrossRef]

Y. Okajima, S. K. Hwang, and J. M. Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Opt. Commun., vol.  219, no. 1–6, pp. 357–364, 2003.
[CrossRef]

H. F. Chen, J. M. Liu, and T. B. Simpson, “Response characteristics of direct current modulation on a bandwidth-enhanced semiconductor laser under strong injection locking,” Opt. Commun., vol.  173, no. 1–6, pp. 349–355, Jan. 2000.
[CrossRef]

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol.  9, no. 10, pp. 1322–1324, Oct. 1997.
[CrossRef]

J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett., vol.  9, no. 10, pp. 1325–1327, Oct. 1997.
[CrossRef]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron., vol.  32, no. 8, pp. 1456–1468, Aug. 1996.
[CrossRef]

J. M. Liu and T. B. Simpson, “Four-wave-mixing and optical modulation in a semiconductor-laser,” IEEE J. Quantum Electron., vol.  30, no. 4, pp. 957–965, Apr. 1994.
[CrossRef]

Ma, Y.

Marcenac, D. D.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1416–1423, Aug. 1997.
[CrossRef]

Mayrock, M.

M. Mayrock and H. Haunstein, “PMD tolerant direct-detection optical OFDM system,” in 33rd European Optical Communication Conf. and Exhibition, Berlin, Germany, 2007, pp. 1–2.

Meng, X. J.

J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett., vol.  9, no. 10, pp. 1325–1327, Oct. 1997.
[CrossRef]

Moodie, D. G.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1416–1423, Aug. 1997.
[CrossRef]

Nesset, D.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1416–1423, Aug. 1997.
[CrossRef]

Noel, L.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1416–1423, Aug. 1997.
[CrossRef]

Okajima, Y.

Y. Okajima, S. K. Hwang, and J. M. Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Opt. Commun., vol.  219, no. 1–6, pp. 357–364, 2003.
[CrossRef]

Qi, X. Q.

X. Q. Qi and J. M. Liu, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron., vol.  46, no. 3, pp. 421–428, Mar. 2010.

Säckinger, E.

E. Säckinger, “Receiver fundamentals,” in Broadband Circuits for Optical Fiber Communication. Hoboken, NJ: Wiley, 2005, p. 67.

Shieh, W.

Shore, K. A.

Simpson, T. B.

H. F. Chen, J. M. Liu, and T. B. Simpson, “Response characteristics of direct current modulation on a bandwidth-enhanced semiconductor laser under strong injection locking,” Opt. Commun., vol.  173, no. 1–6, pp. 349–355, Jan. 2000.
[CrossRef]

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol.  9, no. 10, pp. 1322–1324, Oct. 1997.
[CrossRef]

J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett., vol.  9, no. 10, pp. 1325–1327, Oct. 1997.
[CrossRef]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron., vol.  32, no. 8, pp. 1456–1468, Aug. 1996.
[CrossRef]

J. M. Liu and T. B. Simpson, “Four-wave-mixing and optical modulation in a semiconductor-laser,” IEEE J. Quantum Electron., vol.  30, no. 4, pp. 957–965, Apr. 1994.
[CrossRef]

Tang, J. M.

Tang, Y.

Vasic, B.

Wake, D.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1416–1423, Aug. 1997.
[CrossRef]

Westbrook, L. D.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1416–1423, Aug. 1997.
[CrossRef]

Williamson, R. C.

Yang, Q.

Zhao, C.

C. Zhao and R. J. Baxley, “Error vector magnitude analysis for OFDM systems,” in Fortieth Asilomar Conf. on Signals, Systems and Computers, Monterey, CA, 2006, pp. 1830–1834.

Analog Integr. Circuits Signal Process.

H. Karkhaneh, A. Ghorbani, and H. R. Amindavar, “Quantifying and cancelation memory effects in high power amplifier for OFDM systems,” Analog Integr. Circuits Signal Process., vol.  72, no. 2, pp. 303–312, Aug. 2012.
[CrossRef]

IEEE J. Quantum Electron.

J. M. Liu and T. B. Simpson, “Four-wave-mixing and optical modulation in a semiconductor-laser,” IEEE J. Quantum Electron., vol.  30, no. 4, pp. 957–965, Apr. 1994.
[CrossRef]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron., vol.  32, no. 8, pp. 1456–1468, Aug. 1996.
[CrossRef]

X. Q. Qi and J. M. Liu, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron., vol.  46, no. 3, pp. 421–428, Mar. 2010.

IEEE Photon. Technol. Lett.

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol.  9, no. 10, pp. 1322–1324, Oct. 1997.
[CrossRef]

J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett., vol.  9, no. 10, pp. 1325–1327, Oct. 1997.
[CrossRef]

IEEE Trans. Microwave Theory Tech.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1416–1423, Aug. 1997.
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

Y. Okajima, S. K. Hwang, and J. M. Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Opt. Commun., vol.  219, no. 1–6, pp. 357–364, 2003.
[CrossRef]

H. F. Chen, J. M. Liu, and T. B. Simpson, “Response characteristics of direct current modulation on a bandwidth-enhanced semiconductor laser under strong injection locking,” Opt. Commun., vol.  173, no. 1–6, pp. 349–355, Jan. 2000.
[CrossRef]

Opt. Express

Other

W. Shieh, “Coherent optical MIMO-OFDM for optical fiber communication systems,” presented at European Conf. on Optical Communication, Berlin, Germany, 2007.

C. Zhao and R. J. Baxley, “Error vector magnitude analysis for OFDM systems,” in Fortieth Asilomar Conf. on Signals, Systems and Computers, Monterey, CA, 2006, pp. 1830–1834.

E. Säckinger, “Receiver fundamentals,” in Broadband Circuits for Optical Fiber Communication. Hoboken, NJ: Wiley, 2005, p. 67.

M. Mayrock and H. Haunstein, “PMD tolerant direct-detection optical OFDM system,” in 33rd European Optical Communication Conf. and Exhibition, Berlin, Germany, 2007, pp. 1–2.

W. Shieh and I. Djordjevic, OFDM for Optical Communications.Elsevier, 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Normalized modulation response as a function of the modulation frequency, fm, for different values of injection strength, ξ, with fixed f=10GHz and m=0.35.

Fig. 2.
Fig. 2.

Normalized modulation response as a function of the modulation frequency, fm, for different values of detuning frequency, f, with fixed ξ=0.38 and m=0.35.

Fig. 3.
Fig. 3.

Normalized modulation response as a function of the modulation frequency, fm, for different values of modulation index, m, with fixed ξ=0.38 and f=10GHz.

Fig. 4.
Fig. 4.

Maximum modulation index for which the THD does not exceed 27dB (0.2%) as a function of the modulation frequency, fm, with fixed ξ=0.38 for two different detuning frequencies at f=10 and 20GHz, compared with the free-running condition.

Fig. 5.
Fig. 5.

Second-order harmonic, third-order harmonic, and IMD3 of the modulation response for the modulation index of 0.2 with the laser in free running and in stable locking under the condition ξ=0.38 and f=10GHz. Solid curves: stable locking (S.L). Dashed curves: free running (F.R).

Fig. 6.
Fig. 6.

Schematic diagram of optical OFDM with an injected-locked laser (ILO-OFDM). S/P, serial-to-parallel; P/S, parallel-to-serial; PC, polarization controller; VA, variable attenuator; OC, optical circulator; FC, fiber coupler.

Fig. 7.
Fig. 7.

Normalized power spectra of the PD outputs at the receiver for the laser in the stable-locking condition and in the free-running condition, compared with the normalized power spectrum of the electrical RF OFDM signal at the input of the laser at the transmitter.

Fig. 8.
Fig. 8.

EVM versus the modulation index for the ILO-OFDM system in different operation conditions, compared with the free-running system. The OFDM signal of the ILO-OFDM system has 16 GHz bandwidth, centered at 24 GHz, while that of the free-running system has 5 GHz bandwidth, centered across 7.5 GHz. For the free-running system, signal recovery for a signal bandwidth of 16 GHz is not possible. Solid curve: ILO-OFDM with (ξ,f)=(0.38,10GHz); dashed curve: ILO-OFDM with (ξ,f)=(0.38,0GHz); dashed–dotted curve: ILO-OFDM with (ξ,f)=(0.25,20GHz); red dotted curve: the free-running system.

Fig. 9.
Fig. 9.

Received constellations for (a) direct modulation of the free-running laser before phase correction, (b) direct modulation of the free-running laser after phase correction, (c) optimized ILO-OFDM system at (ξ,f)=(0.38,10GHz) before phase correction, and (d) optimized ILO-OFDM system (ξ,f)=(0.38,10GHz) after phase correction. Note that the signal bandwidth for the free-running system is only 5 GHz centered at 7.5 GHz while that for the ILO-OFDM system is 16 GHz centered at 24 GHz. For the free-running system, signal recovery for a signal bandwidth of 16 GHz is not possible.

Tables (1)

Tables Icon

TABLE I Overview of Optical OFDM Schemes

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

THD=P2+P3++PP1,
x(t)=k=N/2N/21ckei2πfkt,
p(t)=p0(1+αR{x(t)ei2πfmt}+nonlinear terms)=p0(1+αk=N/2N/21|ck|cos(2π(fm+fk)t+ck)+n.t.),
e(t)=e(t)eiωt,withω=ω0+Ω=2π(ν0+f).
p(t)=|e(t)|2=|a(t)|2,
I(t)=|e(t)|2=p(t)=p0(1+αk=N/2N/21|ck|cos(2π(fm+fk)t+ck)+n.t.).