Abstract

We propose and investigate intensity-modulation (IM) full-field detection (FD) optical fast orthogonal frequency division multiplexing (F-OFDM). A 16.8Gbit/s binary phase-shift keying (BPSK) FD F-OFDM system over 480 km fiber transmission is experimentally demonstrated to validate the feasibility. BPSK and four amplitude phase-shift keying (4ASK) FD optical F-OFDM with optimized system parameters are numerically investigated and compared with IM direct-detection (DD) F-OFDM and IM FD conventional OFDM at the same spectral efficiency. It is shown that the proposed scheme, while avoiding the use of a coherent receiver, exhibits greatly improved dispersion tolerance over DD optical F-OFDM. It is robust to the phase noise induced in the full-field reconstruction. As a result, significant performance advantages over FD conventional OFDM is obtained.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zhao and A. D. Ellis, “A novel optical fast OFDM with reduced channel spacing equal to half of the symbol rate per carrier,” in Optical Fiber Communication Conf., 2010, paper OMR1.
  2. S. K. Ibrahim, J. Zhao, D. Rafique, J. O’Dowd, and A. D. Ellis, “Demonstration of world-first experimental optical fast OFDM system at 7.174  Gbit/s and 14.348  Gbit/s,” in European Conf. Optical Communication, 2010, paper PDP3.4.
  3. N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.
  4. J. Zhao and A. D. Ellis, “Advantage of optical fast OFDM over OFDM in residual frequency offset compensation,” IEEE Photon. Technol. Lett., vol.  24, pp. 2284–2287, 2012.
    [CrossRef]
  5. J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photon. Technol. Lett., vol.  23, pp. 594–596, 2011.
    [CrossRef]
  6. J. Zhao and A. D. Ellis, “Transmission of 4-ASK optical fast OFDM with chromatic dispersion compensation,” IEEE Photon. Technol. Lett., vol.  24, pp. 34–36, 2012.
    [CrossRef]
  7. J. Zhao and H. Shams, “Fast dispersion estimation in coherent optical 16QAM fast OFDM systems,” Opt. Express, vol.  21, pp. 2500–2505, 2013.
    [CrossRef]
  8. C. Lei, H. Chen, M. Chen, and S. Xie, “A high spectral efficiency optical OFDM scheme based on interleaved multiplexing,” Opt. Express, vol.  18, pp. 26149–26154, 2010.
    [CrossRef]
  9. C. Lei, H. Chen, M. Chen, and S. Xie, “16×10  Gb/s symmetric WDM-FOFDM-PON realization with colorless ONUs,” Opt. Express, vol.  19, pp. 15275–15280, 2011.
    [CrossRef]
  10. E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental demonstration of cost-effective intensity-modulation and direct-detection optical fast-OFDM over 40 km SMF transmission,” in Proc. Optical Fiber Communication Conf. and Expo., 2012, paper JW2A.65.
  11. E. Giacoumidis, I. Tomkos, and J. M. Tang, “Performance of optical fast-OFDM in MMF-based links,” in Optical Fiber Communication Conf., San Diego, CA, 2011, paper OWU3.
  12. E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental and theoretical investigations of intensity-modulation and direct-detection optical fast-OFDM over MMF-links,” IEEE Photon. Technol. Lett., vol.  24, pp. 52–54, 2012.
  13. E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparison of optical fast OFDM and conventional OFDM for local and access networks,” J. Opt. Commun. Netw., vol.  4, pp. 724–733, 2012.
    [CrossRef]
  14. W. Long, J. Zhang, D. Wang, J. Han, S. Chen, A. M. Han, G. Gao, H. Leng, L. Liu, W. Zhu, Y. Zhao, and W. Gu, “Mitigation of the interference between odd and even terms in optical fast OFDM scheme based on interleaved multiplexing,” IEEE Photon. Technol. Lett., vol.  24, pp. 1160–1162, 2012.
    [CrossRef]
  15. M. R. D. Rodrigues and I. Darwazeh, “Fast OFDM: a proposal for doubling the data rate of OFDM schemes,” in Int. Conf. Telecommunications, 2002, pp. 484–487.
  16. F. Xiong, “M-ary amplitude shift keying OFDM system,” IEEE Trans. Commun., vol.  51, pp. 1638–1642, 2003.
    [CrossRef]
  17. G. Mandyam, “On the discrete cosine transform and OFDM systems,” in Int. Conf. Acoustics, Speech, and Signal Processing, 2003, pp. 544–547.
  18. Y. Yeh and S. Chen, “Efficient channel estimation based on discrete cosine transform,” in Int. Conf. Acoustics, Speech, and Signal Processing, 2003, pp. 676–679.
  19. P. Tan and N. C. Beaulieu, “A comparison of DCT-based OFDM and DFT-based OFDM in frequency offset and fading channels,” IEEE Trans. Commun., vol.  54, pp. 2113–2125, 2006.
    [CrossRef]
  20. N. Al-Dhahir, H. Minn, and S. Satish, “Optimum DCT-based multicarrier transceivers for frequency-selective channels,” IEEE Trans. Commun., vol.  54, pp. 911–921, 2006.
    [CrossRef]
  21. F. Gao, T. Cui, A. Nallanathan, and C. Tellambura, “Maximum likelihood based estimation of frequency and phase offset in DCT OFDM systems under non-circular transmissions: algorithms, analysis, and comparisons,” IEEE Trans. Commun., vol.  56, pp. 1425–1429, 2008.
    [CrossRef]
  22. R. G. Clegg, S. Isam, I. Kanaras, and I. Darwazeh, “A practical system for improved efficiency in frequency division multiplexed wireless networks,” IET Commun., vol.  6, pp. 449–457, 2012.
    [CrossRef]
  23. P. N. Whatmough, M. R. Perrett, S. Isam, and I. Darwazeh, “VLSI architecture for a reconfigurable spectrally efficient FDM baseband transmitter,” IEEE Trans. Circuits Syst., vol.  59, pp. 1107–1118, 2012.
    [CrossRef]
  24. J. L. Wei, X. Q. Jin, and J. M. Tang, “Influence of directly modulated DFB lasers on the transmission performance of carrier-suppressed single-sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol., vol.  27, pp. 2412–2419, 2009.
    [CrossRef]
  25. J. Xiao, J. Yu, X. Li, Q. Tang, H. Chen, F. Li, Z. Cao, and L. Chen, “Hadamard transform combined with companding transform techniques for PAPR reduction in an optical direct-detection OFDM system,” J. Opt. Commun. Netw., vol.  4, pp. 709–714, 2012.
    [CrossRef]
  26. L. Chen, Y. Qiao, Y. Zhao, and Y. Ji, “Wide range frequency offset estimation method for a DD-OFDM-PON downstream system,” J. Opt. Commun. Netw., vol.  4, pp. 565–570, 2012.
    [CrossRef]
  27. E. Giacoumidis, A. Kavatzikidis, A. Tsokanos, J. M. Tang, and I. Tomkos, “Adaptive loading algorithms for IMDD optical OFDM PON systems using directly modulated lasers,” J. Opt. Commun. Netw., vol.  4, pp. 769–778, 2012.
    [CrossRef]
  28. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol., vol.  26, pp. 196–203, 2008.
    [CrossRef]
  29. M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett., vol.  20, pp. 670–672, 2008.
    [CrossRef]
  30. A. D. Ellis and M. E. McCarthy, “Receiver-side electronic dispersion compensation using passive optical field detection for low cost 10  Gbit/s 600 km-reach applications,” in Proc. Optical Fiber Communication Conf., 2006, paper OTuE4.
  31. N. Kikuchi and S. Sasaki, “Highly sensitive optical multilevel transmission of arbitrary quadrature-amplitude modulation signals with direct detection,” J. Lightwave Technol., vol.  28, pp. 123–130, 2010.
    [CrossRef]
  32. J. Zhao, M. E. McCarthy, and A. D. Ellis, “Electronic dispersion compensation using full optical field reconstruction in 10  Gbit/s OOK based systems,” Opt. Express, vol.  16, pp. 15353–15365, 2008.
    [CrossRef]
  33. J. Zhao and A. D. Ellis, “Full-field detection based multi-chip MLSE for offset-DQPSK modulation format,” in European Conf. Optical Communication, 2011, paper Tu.5.A.2.
  34. X. Liu, S. Chandrasekhar, and A. Leven, “Digital self-coherent detection,” Opt. Express, vol.  16, pp. 792–803, 2008.
    [CrossRef]
  35. I. Tselniker, M. Nazarathy, S. B. Ezra, J. Li, and J. Leuthold, “Self-coherent complex field reconstruction with in-phase and quadrature delay detection without a direct-detection branch,” Opt. Express, vol.  20, pp. 15452–15473, 2012.
    [CrossRef]
  36. J. Li, R. Schmogrow, D. Hillerkuss, P. C. Schindler, M. Nazerathy, C. S. Langhorst, S. B. Ezra, I. Tselniker, C. Koos, W. Freude, and J. Leuthold, “A self-coherent receiver for detection of PolMUX coherent signals,” Opt. Express, vol.  20, pp. 21413–21433, 2012.
    [CrossRef]
  37. B. Inan, S. Adhikari, O. Karakaya, P. Kainzmaier, M. Mocker, H. V. Kirchbauer, N. Hanik, and S. L. Jansen, “Real-time 93.8  Gb/s polarization-multiplexed OFDM transmitter with 1024-point IFFT,” Opt. Express, vol.  19, pp. B64–B68, 2011.
    [CrossRef]

2013 (1)

2012 (12)

J. Zhao and A. D. Ellis, “Advantage of optical fast OFDM over OFDM in residual frequency offset compensation,” IEEE Photon. Technol. Lett., vol.  24, pp. 2284–2287, 2012.
[CrossRef]

E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental and theoretical investigations of intensity-modulation and direct-detection optical fast-OFDM over MMF-links,” IEEE Photon. Technol. Lett., vol.  24, pp. 52–54, 2012.

E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparison of optical fast OFDM and conventional OFDM for local and access networks,” J. Opt. Commun. Netw., vol.  4, pp. 724–733, 2012.
[CrossRef]

W. Long, J. Zhang, D. Wang, J. Han, S. Chen, A. M. Han, G. Gao, H. Leng, L. Liu, W. Zhu, Y. Zhao, and W. Gu, “Mitigation of the interference between odd and even terms in optical fast OFDM scheme based on interleaved multiplexing,” IEEE Photon. Technol. Lett., vol.  24, pp. 1160–1162, 2012.
[CrossRef]

J. Zhao and A. D. Ellis, “Transmission of 4-ASK optical fast OFDM with chromatic dispersion compensation,” IEEE Photon. Technol. Lett., vol.  24, pp. 34–36, 2012.
[CrossRef]

J. Xiao, J. Yu, X. Li, Q. Tang, H. Chen, F. Li, Z. Cao, and L. Chen, “Hadamard transform combined with companding transform techniques for PAPR reduction in an optical direct-detection OFDM system,” J. Opt. Commun. Netw., vol.  4, pp. 709–714, 2012.
[CrossRef]

L. Chen, Y. Qiao, Y. Zhao, and Y. Ji, “Wide range frequency offset estimation method for a DD-OFDM-PON downstream system,” J. Opt. Commun. Netw., vol.  4, pp. 565–570, 2012.
[CrossRef]

E. Giacoumidis, A. Kavatzikidis, A. Tsokanos, J. M. Tang, and I. Tomkos, “Adaptive loading algorithms for IMDD optical OFDM PON systems using directly modulated lasers,” J. Opt. Commun. Netw., vol.  4, pp. 769–778, 2012.
[CrossRef]

R. G. Clegg, S. Isam, I. Kanaras, and I. Darwazeh, “A practical system for improved efficiency in frequency division multiplexed wireless networks,” IET Commun., vol.  6, pp. 449–457, 2012.
[CrossRef]

P. N. Whatmough, M. R. Perrett, S. Isam, and I. Darwazeh, “VLSI architecture for a reconfigurable spectrally efficient FDM baseband transmitter,” IEEE Trans. Circuits Syst., vol.  59, pp. 1107–1118, 2012.
[CrossRef]

I. Tselniker, M. Nazarathy, S. B. Ezra, J. Li, and J. Leuthold, “Self-coherent complex field reconstruction with in-phase and quadrature delay detection without a direct-detection branch,” Opt. Express, vol.  20, pp. 15452–15473, 2012.
[CrossRef]

J. Li, R. Schmogrow, D. Hillerkuss, P. C. Schindler, M. Nazerathy, C. S. Langhorst, S. B. Ezra, I. Tselniker, C. Koos, W. Freude, and J. Leuthold, “A self-coherent receiver for detection of PolMUX coherent signals,” Opt. Express, vol.  20, pp. 21413–21433, 2012.
[CrossRef]

2011 (3)

2010 (2)

2009 (1)

2008 (5)

J. Zhao, M. E. McCarthy, and A. D. Ellis, “Electronic dispersion compensation using full optical field reconstruction in 10  Gbit/s OOK based systems,” Opt. Express, vol.  16, pp. 15353–15365, 2008.
[CrossRef]

X. Liu, S. Chandrasekhar, and A. Leven, “Digital self-coherent detection,” Opt. Express, vol.  16, pp. 792–803, 2008.
[CrossRef]

F. Gao, T. Cui, A. Nallanathan, and C. Tellambura, “Maximum likelihood based estimation of frequency and phase offset in DCT OFDM systems under non-circular transmissions: algorithms, analysis, and comparisons,” IEEE Trans. Commun., vol.  56, pp. 1425–1429, 2008.
[CrossRef]

B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol., vol.  26, pp. 196–203, 2008.
[CrossRef]

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett., vol.  20, pp. 670–672, 2008.
[CrossRef]

2006 (2)

P. Tan and N. C. Beaulieu, “A comparison of DCT-based OFDM and DFT-based OFDM in frequency offset and fading channels,” IEEE Trans. Commun., vol.  54, pp. 2113–2125, 2006.
[CrossRef]

N. Al-Dhahir, H. Minn, and S. Satish, “Optimum DCT-based multicarrier transceivers for frequency-selective channels,” IEEE Trans. Commun., vol.  54, pp. 911–921, 2006.
[CrossRef]

2003 (1)

F. Xiong, “M-ary amplitude shift keying OFDM system,” IEEE Trans. Commun., vol.  51, pp. 1638–1642, 2003.
[CrossRef]

Adhikari, S.

Alam, S. U.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

Al-Dhahir, N.

N. Al-Dhahir, H. Minn, and S. Satish, “Optimum DCT-based multicarrier transceivers for frequency-selective channels,” IEEE Trans. Commun., vol.  54, pp. 911–921, 2006.
[CrossRef]

Alves, C.

Armstrong, J.

Baeuerle, B.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

Beaulieu, N. C.

P. Tan and N. C. Beaulieu, “A comparison of DCT-based OFDM and DFT-based OFDM in frequency offset and fading channels,” IEEE Trans. Commun., vol.  54, pp. 2113–2125, 2006.
[CrossRef]

Breyer, F.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett., vol.  20, pp. 670–672, 2008.
[CrossRef]

Bunge, C. A.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett., vol.  20, pp. 670–672, 2008.
[CrossRef]

Cao, Z.

Chandrasekhar, S.

Chen, H.

Chen, L.

Chen, M.

Chen, S.

W. Long, J. Zhang, D. Wang, J. Han, S. Chen, A. M. Han, G. Gao, H. Leng, L. Liu, W. Zhu, Y. Zhao, and W. Gu, “Mitigation of the interference between odd and even terms in optical fast OFDM scheme based on interleaved multiplexing,” IEEE Photon. Technol. Lett., vol.  24, pp. 1160–1162, 2012.
[CrossRef]

Y. Yeh and S. Chen, “Efficient channel estimation based on discrete cosine transform,” in Int. Conf. Acoustics, Speech, and Signal Processing, 2003, pp. 676–679.

Clegg, R. G.

R. G. Clegg, S. Isam, I. Kanaras, and I. Darwazeh, “A practical system for improved efficiency in frequency division multiplexed wireless networks,” IET Commun., vol.  6, pp. 449–457, 2012.
[CrossRef]

Cui, T.

F. Gao, T. Cui, A. Nallanathan, and C. Tellambura, “Maximum likelihood based estimation of frequency and phase offset in DCT OFDM systems under non-circular transmissions: algorithms, analysis, and comparisons,” IEEE Trans. Commun., vol.  56, pp. 1425–1429, 2008.
[CrossRef]

Darwazeh, I.

R. G. Clegg, S. Isam, I. Kanaras, and I. Darwazeh, “A practical system for improved efficiency in frequency division multiplexed wireless networks,” IET Commun., vol.  6, pp. 449–457, 2012.
[CrossRef]

P. N. Whatmough, M. R. Perrett, S. Isam, and I. Darwazeh, “VLSI architecture for a reconfigurable spectrally efficient FDM baseband transmitter,” IEEE Trans. Circuits Syst., vol.  59, pp. 1107–1118, 2012.
[CrossRef]

M. R. D. Rodrigues and I. Darwazeh, “Fast OFDM: a proposal for doubling the data rate of OFDM schemes,” in Int. Conf. Telecommunications, 2002, pp. 484–487.

Ellis, A. D.

J. Zhao and A. D. Ellis, “Transmission of 4-ASK optical fast OFDM with chromatic dispersion compensation,” IEEE Photon. Technol. Lett., vol.  24, pp. 34–36, 2012.
[CrossRef]

E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental and theoretical investigations of intensity-modulation and direct-detection optical fast-OFDM over MMF-links,” IEEE Photon. Technol. Lett., vol.  24, pp. 52–54, 2012.

J. Zhao and A. D. Ellis, “Advantage of optical fast OFDM over OFDM in residual frequency offset compensation,” IEEE Photon. Technol. Lett., vol.  24, pp. 2284–2287, 2012.
[CrossRef]

J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photon. Technol. Lett., vol.  23, pp. 594–596, 2011.
[CrossRef]

J. Zhao, M. E. McCarthy, and A. D. Ellis, “Electronic dispersion compensation using full optical field reconstruction in 10  Gbit/s OOK based systems,” Opt. Express, vol.  16, pp. 15353–15365, 2008.
[CrossRef]

J. Zhao and A. D. Ellis, “Full-field detection based multi-chip MLSE for offset-DQPSK modulation format,” in European Conf. Optical Communication, 2011, paper Tu.5.A.2.

E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental demonstration of cost-effective intensity-modulation and direct-detection optical fast-OFDM over 40 km SMF transmission,” in Proc. Optical Fiber Communication Conf. and Expo., 2012, paper JW2A.65.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

J. Zhao and A. D. Ellis, “A novel optical fast OFDM with reduced channel spacing equal to half of the symbol rate per carrier,” in Optical Fiber Communication Conf., 2010, paper OMR1.

S. K. Ibrahim, J. Zhao, D. Rafique, J. O’Dowd, and A. D. Ellis, “Demonstration of world-first experimental optical fast OFDM system at 7.174  Gbit/s and 14.348  Gbit/s,” in European Conf. Optical Communication, 2010, paper PDP3.4.

A. D. Ellis and M. E. McCarthy, “Receiver-side electronic dispersion compensation using passive optical field detection for low cost 10  Gbit/s 600 km-reach applications,” in Proc. Optical Fiber Communication Conf., 2006, paper OTuE4.

Ezra, S. B.

Freude, W.

Gao, F.

F. Gao, T. Cui, A. Nallanathan, and C. Tellambura, “Maximum likelihood based estimation of frequency and phase offset in DCT OFDM systems under non-circular transmissions: algorithms, analysis, and comparisons,” IEEE Trans. Commun., vol.  56, pp. 1425–1429, 2008.
[CrossRef]

Gao, G.

W. Long, J. Zhang, D. Wang, J. Han, S. Chen, A. M. Han, G. Gao, H. Leng, L. Liu, W. Zhu, Y. Zhao, and W. Gu, “Mitigation of the interference between odd and even terms in optical fast OFDM scheme based on interleaved multiplexing,” IEEE Photon. Technol. Lett., vol.  24, pp. 1160–1162, 2012.
[CrossRef]

Giacoumidis, E.

E. Giacoumidis, A. Kavatzikidis, A. Tsokanos, J. M. Tang, and I. Tomkos, “Adaptive loading algorithms for IMDD optical OFDM PON systems using directly modulated lasers,” J. Opt. Commun. Netw., vol.  4, pp. 769–778, 2012.
[CrossRef]

E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental and theoretical investigations of intensity-modulation and direct-detection optical fast-OFDM over MMF-links,” IEEE Photon. Technol. Lett., vol.  24, pp. 52–54, 2012.

E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparison of optical fast OFDM and conventional OFDM for local and access networks,” J. Opt. Commun. Netw., vol.  4, pp. 724–733, 2012.
[CrossRef]

E. Giacoumidis, I. Tomkos, and J. M. Tang, “Performance of optical fast-OFDM in MMF-based links,” in Optical Fiber Communication Conf., San Diego, CA, 2011, paper OWU3.

E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental demonstration of cost-effective intensity-modulation and direct-detection optical fast-OFDM over 40 km SMF transmission,” in Proc. Optical Fiber Communication Conf. and Expo., 2012, paper JW2A.65.

Giles, D. J.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

Giles, I. P.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

Gosset, C.

Gruner-Nielsen, L.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

Gu, W.

W. Long, J. Zhang, D. Wang, J. Han, S. Chen, A. M. Han, G. Gao, H. Leng, L. Liu, W. Zhu, Y. Zhao, and W. Gu, “Mitigation of the interference between odd and even terms in optical fast OFDM scheme based on interleaved multiplexing,” IEEE Photon. Technol. Lett., vol.  24, pp. 1160–1162, 2012.
[CrossRef]

Gunning, F. C. G.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

Gunning, P.

J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photon. Technol. Lett., vol.  23, pp. 594–596, 2011.
[CrossRef]

Han, A. M.

W. Long, J. Zhang, D. Wang, J. Han, S. Chen, A. M. Han, G. Gao, H. Leng, L. Liu, W. Zhu, Y. Zhao, and W. Gu, “Mitigation of the interference between odd and even terms in optical fast OFDM scheme based on interleaved multiplexing,” IEEE Photon. Technol. Lett., vol.  24, pp. 1160–1162, 2012.
[CrossRef]

Han, J.

W. Long, J. Zhang, D. Wang, J. Han, S. Chen, A. M. Han, G. Gao, H. Leng, L. Liu, W. Zhu, Y. Zhao, and W. Gu, “Mitigation of the interference between odd and even terms in optical fast OFDM scheme based on interleaved multiplexing,” IEEE Photon. Technol. Lett., vol.  24, pp. 1160–1162, 2012.
[CrossRef]

Hanik, N.

Heidt, A. M.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

Hillerkuss, D.

Ibrahim, S. K.

E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental and theoretical investigations of intensity-modulation and direct-detection optical fast-OFDM over MMF-links,” IEEE Photon. Technol. Lett., vol.  24, pp. 52–54, 2012.

J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photon. Technol. Lett., vol.  23, pp. 594–596, 2011.
[CrossRef]

S. K. Ibrahim, J. Zhao, D. Rafique, J. O’Dowd, and A. D. Ellis, “Demonstration of world-first experimental optical fast OFDM system at 7.174  Gbit/s and 14.348  Gbit/s,” in European Conf. Optical Communication, 2010, paper PDP3.4.

E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental demonstration of cost-effective intensity-modulation and direct-detection optical fast-OFDM over 40 km SMF transmission,” in Proc. Optical Fiber Communication Conf. and Expo., 2012, paper JW2A.65.

Inan, B.

Isam, S.

P. N. Whatmough, M. R. Perrett, S. Isam, and I. Darwazeh, “VLSI architecture for a reconfigurable spectrally efficient FDM baseband transmitter,” IEEE Trans. Circuits Syst., vol.  59, pp. 1107–1118, 2012.
[CrossRef]

R. G. Clegg, S. Isam, I. Kanaras, and I. Darwazeh, “A practical system for improved efficiency in frequency division multiplexed wireless networks,” IET Commun., vol.  6, pp. 449–457, 2012.
[CrossRef]

Jansen, S. L.

Jaouen, Y.

Ji, Y.

Jin, X. Q.

Kainzmaier, P.

Kanaras, I.

R. G. Clegg, S. Isam, I. Kanaras, and I. Darwazeh, “A practical system for improved efficiency in frequency division multiplexed wireless networks,” IET Commun., vol.  6, pp. 449–457, 2012.
[CrossRef]

Karakaya, O.

Kavatzikidis, A.

Kelly, B.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

Kikuchi, N.

Kirchbauer, H. V.

Koos, C.

Langhorst, C. S.

Lee, S. C. J.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett., vol.  20, pp. 670–672, 2008.
[CrossRef]

Lei, C.

Leng, H.

W. Long, J. Zhang, D. Wang, J. Han, S. Chen, A. M. Han, G. Gao, H. Leng, L. Liu, W. Zhu, Y. Zhao, and W. Gu, “Mitigation of the interference between odd and even terms in optical fast OFDM scheme based on interleaved multiplexing,” IEEE Photon. Technol. Lett., vol.  24, pp. 1160–1162, 2012.
[CrossRef]

Leuthold, J.

Leven, A.

Li, F.

Li, J.

Li, X.

Li, Z.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

Liu, L.

W. Long, J. Zhang, D. Wang, J. Han, S. Chen, A. M. Han, G. Gao, H. Leng, L. Liu, W. Zhu, Y. Zhao, and W. Gu, “Mitigation of the interference between odd and even terms in optical fast OFDM scheme based on interleaved multiplexing,” IEEE Photon. Technol. Lett., vol.  24, pp. 1160–1162, 2012.
[CrossRef]

Liu, X.

Long, W.

W. Long, J. Zhang, D. Wang, J. Han, S. Chen, A. M. Han, G. Gao, H. Leng, L. Liu, W. Zhu, Y. Zhao, and W. Gu, “Mitigation of the interference between odd and even terms in optical fast OFDM scheme based on interleaved multiplexing,” IEEE Photon. Technol. Lett., vol.  24, pp. 1160–1162, 2012.
[CrossRef]

Lowery, A. J.

MacSuibhne, N.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

Mandyam, G.

G. Mandyam, “On the discrete cosine transform and OFDM systems,” in Int. Conf. Acoustics, Speech, and Signal Processing, 2003, pp. 544–547.

McCarthy, M. E.

J. Zhao, M. E. McCarthy, and A. D. Ellis, “Electronic dispersion compensation using full optical field reconstruction in 10  Gbit/s OOK based systems,” Opt. Express, vol.  16, pp. 15353–15365, 2008.
[CrossRef]

A. D. Ellis and M. E. McCarthy, “Receiver-side electronic dispersion compensation using passive optical field detection for low cost 10  Gbit/s 600 km-reach applications,” in Proc. Optical Fiber Communication Conf., 2006, paper OTuE4.

Minn, H.

N. Al-Dhahir, H. Minn, and S. Satish, “Optimum DCT-based multicarrier transceivers for frequency-selective channels,” IEEE Trans. Commun., vol.  54, pp. 911–921, 2006.
[CrossRef]

Mocker, M.

Mouchos, C.

Murphy, D.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

Nallanathan, A.

F. Gao, T. Cui, A. Nallanathan, and C. Tellambura, “Maximum likelihood based estimation of frequency and phase offset in DCT OFDM systems under non-circular transmissions: algorithms, analysis, and comparisons,” IEEE Trans. Commun., vol.  56, pp. 1425–1429, 2008.
[CrossRef]

Nazarathy, M.

Nazerathy, M.

O’Carroll, J.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

O’Dowd, J.

S. K. Ibrahim, J. Zhao, D. Rafique, J. O’Dowd, and A. D. Ellis, “Demonstration of world-first experimental optical fast OFDM system at 7.174  Gbit/s and 14.348  Gbit/s,” in European Conf. Optical Communication, 2010, paper PDP3.4.

Palsdottir, B.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

Perrett, M. R.

P. N. Whatmough, M. R. Perrett, S. Isam, and I. Darwazeh, “VLSI architecture for a reconfigurable spectrally efficient FDM baseband transmitter,” IEEE Trans. Circuits Syst., vol.  59, pp. 1107–1118, 2012.
[CrossRef]

Petermann, K.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett., vol.  20, pp. 670–672, 2008.
[CrossRef]

Petrovich, M. N.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

Phelan, R.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

Poletti, F.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

Qiao, Y.

Rafique, D.

J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photon. Technol. Lett., vol.  23, pp. 594–596, 2011.
[CrossRef]

S. K. Ibrahim, J. Zhao, D. Rafique, J. O’Dowd, and A. D. Ellis, “Demonstration of world-first experimental optical fast OFDM system at 7.174  Gbit/s and 14.348  Gbit/s,” in European Conf. Optical Communication, 2010, paper PDP3.4.

Randel, S.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett., vol.  20, pp. 670–672, 2008.
[CrossRef]

Richardson, D. J.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

Rodrigues, M. R. D.

M. R. D. Rodrigues and I. Darwazeh, “Fast OFDM: a proposal for doubling the data rate of OFDM schemes,” in Int. Conf. Telecommunications, 2002, pp. 484–487.

Sasaki, S.

Satish, S.

N. Al-Dhahir, H. Minn, and S. Satish, “Optimum DCT-based multicarrier transceivers for frequency-selective channels,” IEEE Trans. Commun., vol.  54, pp. 911–921, 2006.
[CrossRef]

Schindler, P. C.

Schmidt, B. J. C.

Schmogrow, R.

Schuster, M.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett., vol.  20, pp. 670–672, 2008.
[CrossRef]

Shams, H.

Spinnler, B.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett., vol.  20, pp. 670–672, 2008.
[CrossRef]

Tan, P.

P. Tan and N. C. Beaulieu, “A comparison of DCT-based OFDM and DFT-based OFDM in frequency offset and fading channels,” IEEE Trans. Commun., vol.  54, pp. 2113–2125, 2006.
[CrossRef]

Tang, J. M.

E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparison of optical fast OFDM and conventional OFDM for local and access networks,” J. Opt. Commun. Netw., vol.  4, pp. 724–733, 2012.
[CrossRef]

E. Giacoumidis, A. Kavatzikidis, A. Tsokanos, J. M. Tang, and I. Tomkos, “Adaptive loading algorithms for IMDD optical OFDM PON systems using directly modulated lasers,” J. Opt. Commun. Netw., vol.  4, pp. 769–778, 2012.
[CrossRef]

E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental and theoretical investigations of intensity-modulation and direct-detection optical fast-OFDM over MMF-links,” IEEE Photon. Technol. Lett., vol.  24, pp. 52–54, 2012.

J. L. Wei, X. Q. Jin, and J. M. Tang, “Influence of directly modulated DFB lasers on the transmission performance of carrier-suppressed single-sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol., vol.  27, pp. 2412–2419, 2009.
[CrossRef]

E. Giacoumidis, I. Tomkos, and J. M. Tang, “Performance of optical fast-OFDM in MMF-based links,” in Optical Fiber Communication Conf., San Diego, CA, 2011, paper OWU3.

E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental demonstration of cost-effective intensity-modulation and direct-detection optical fast-OFDM over 40 km SMF transmission,” in Proc. Optical Fiber Communication Conf. and Expo., 2012, paper JW2A.65.

Tang, Q.

Tellambura, C.

F. Gao, T. Cui, A. Nallanathan, and C. Tellambura, “Maximum likelihood based estimation of frequency and phase offset in DCT OFDM systems under non-circular transmissions: algorithms, analysis, and comparisons,” IEEE Trans. Commun., vol.  56, pp. 1425–1429, 2008.
[CrossRef]

Tomkos, I.

E. Giacoumidis, A. Kavatzikidis, A. Tsokanos, J. M. Tang, and I. Tomkos, “Adaptive loading algorithms for IMDD optical OFDM PON systems using directly modulated lasers,” J. Opt. Commun. Netw., vol.  4, pp. 769–778, 2012.
[CrossRef]

E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental and theoretical investigations of intensity-modulation and direct-detection optical fast-OFDM over MMF-links,” IEEE Photon. Technol. Lett., vol.  24, pp. 52–54, 2012.

E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparison of optical fast OFDM and conventional OFDM for local and access networks,” J. Opt. Commun. Netw., vol.  4, pp. 724–733, 2012.
[CrossRef]

E. Giacoumidis, I. Tomkos, and J. M. Tang, “Performance of optical fast-OFDM in MMF-based links,” in Optical Fiber Communication Conf., San Diego, CA, 2011, paper OWU3.

E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental demonstration of cost-effective intensity-modulation and direct-detection optical fast-OFDM over 40 km SMF transmission,” in Proc. Optical Fiber Communication Conf. and Expo., 2012, paper JW2A.65.

Tselniker, I.

Tsokanos, A.

Wang, D.

W. Long, J. Zhang, D. Wang, J. Han, S. Chen, A. M. Han, G. Gao, H. Leng, L. Liu, W. Zhu, Y. Zhao, and W. Gu, “Mitigation of the interference between odd and even terms in optical fast OFDM scheme based on interleaved multiplexing,” IEEE Photon. Technol. Lett., vol.  24, pp. 1160–1162, 2012.
[CrossRef]

Wei, J. L.

Whatmough, P. N.

P. N. Whatmough, M. R. Perrett, S. Isam, and I. Darwazeh, “VLSI architecture for a reconfigurable spectrally efficient FDM baseband transmitter,” IEEE Trans. Circuits Syst., vol.  59, pp. 1107–1118, 2012.
[CrossRef]

Wooler, J. P.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

Xiao, J.

Xie, S.

Xiong, F.

F. Xiong, “M-ary amplitude shift keying OFDM system,” IEEE Trans. Commun., vol.  51, pp. 1638–1642, 2003.
[CrossRef]

Yeh, Y.

Y. Yeh and S. Chen, “Efficient channel estimation based on discrete cosine transform,” in Int. Conf. Acoustics, Speech, and Signal Processing, 2003, pp. 676–679.

Yu, J.

Zardas, G.

Zhang, J.

W. Long, J. Zhang, D. Wang, J. Han, S. Chen, A. M. Han, G. Gao, H. Leng, L. Liu, W. Zhu, Y. Zhao, and W. Gu, “Mitigation of the interference between odd and even terms in optical fast OFDM scheme based on interleaved multiplexing,” IEEE Photon. Technol. Lett., vol.  24, pp. 1160–1162, 2012.
[CrossRef]

Zhao, J.

J. Zhao and H. Shams, “Fast dispersion estimation in coherent optical 16QAM fast OFDM systems,” Opt. Express, vol.  21, pp. 2500–2505, 2013.
[CrossRef]

J. Zhao and A. D. Ellis, “Transmission of 4-ASK optical fast OFDM with chromatic dispersion compensation,” IEEE Photon. Technol. Lett., vol.  24, pp. 34–36, 2012.
[CrossRef]

E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental and theoretical investigations of intensity-modulation and direct-detection optical fast-OFDM over MMF-links,” IEEE Photon. Technol. Lett., vol.  24, pp. 52–54, 2012.

J. Zhao and A. D. Ellis, “Advantage of optical fast OFDM over OFDM in residual frequency offset compensation,” IEEE Photon. Technol. Lett., vol.  24, pp. 2284–2287, 2012.
[CrossRef]

J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photon. Technol. Lett., vol.  23, pp. 594–596, 2011.
[CrossRef]

J. Zhao, M. E. McCarthy, and A. D. Ellis, “Electronic dispersion compensation using full optical field reconstruction in 10  Gbit/s OOK based systems,” Opt. Express, vol.  16, pp. 15353–15365, 2008.
[CrossRef]

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

J. Zhao and A. D. Ellis, “A novel optical fast OFDM with reduced channel spacing equal to half of the symbol rate per carrier,” in Optical Fiber Communication Conf., 2010, paper OMR1.

S. K. Ibrahim, J. Zhao, D. Rafique, J. O’Dowd, and A. D. Ellis, “Demonstration of world-first experimental optical fast OFDM system at 7.174  Gbit/s and 14.348  Gbit/s,” in European Conf. Optical Communication, 2010, paper PDP3.4.

E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental demonstration of cost-effective intensity-modulation and direct-detection optical fast-OFDM over 40 km SMF transmission,” in Proc. Optical Fiber Communication Conf. and Expo., 2012, paper JW2A.65.

J. Zhao and A. D. Ellis, “Full-field detection based multi-chip MLSE for offset-DQPSK modulation format,” in European Conf. Optical Communication, 2011, paper Tu.5.A.2.

Zhao, Y.

L. Chen, Y. Qiao, Y. Zhao, and Y. Ji, “Wide range frequency offset estimation method for a DD-OFDM-PON downstream system,” J. Opt. Commun. Netw., vol.  4, pp. 565–570, 2012.
[CrossRef]

W. Long, J. Zhang, D. Wang, J. Han, S. Chen, A. M. Han, G. Gao, H. Leng, L. Liu, W. Zhu, Y. Zhao, and W. Gu, “Mitigation of the interference between odd and even terms in optical fast OFDM scheme based on interleaved multiplexing,” IEEE Photon. Technol. Lett., vol.  24, pp. 1160–1162, 2012.
[CrossRef]

Zhu, W.

W. Long, J. Zhang, D. Wang, J. Han, S. Chen, A. M. Han, G. Gao, H. Leng, L. Liu, W. Zhu, Y. Zhao, and W. Gu, “Mitigation of the interference between odd and even terms in optical fast OFDM scheme based on interleaved multiplexing,” IEEE Photon. Technol. Lett., vol.  24, pp. 1160–1162, 2012.
[CrossRef]

IEEE Photon. Technol. Lett. (6)

J. Zhao and A. D. Ellis, “Advantage of optical fast OFDM over OFDM in residual frequency offset compensation,” IEEE Photon. Technol. Lett., vol.  24, pp. 2284–2287, 2012.
[CrossRef]

J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photon. Technol. Lett., vol.  23, pp. 594–596, 2011.
[CrossRef]

J. Zhao and A. D. Ellis, “Transmission of 4-ASK optical fast OFDM with chromatic dispersion compensation,” IEEE Photon. Technol. Lett., vol.  24, pp. 34–36, 2012.
[CrossRef]

E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental and theoretical investigations of intensity-modulation and direct-detection optical fast-OFDM over MMF-links,” IEEE Photon. Technol. Lett., vol.  24, pp. 52–54, 2012.

W. Long, J. Zhang, D. Wang, J. Han, S. Chen, A. M. Han, G. Gao, H. Leng, L. Liu, W. Zhu, Y. Zhao, and W. Gu, “Mitigation of the interference between odd and even terms in optical fast OFDM scheme based on interleaved multiplexing,” IEEE Photon. Technol. Lett., vol.  24, pp. 1160–1162, 2012.
[CrossRef]

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett., vol.  20, pp. 670–672, 2008.
[CrossRef]

IEEE Trans. Circuits Syst. (1)

P. N. Whatmough, M. R. Perrett, S. Isam, and I. Darwazeh, “VLSI architecture for a reconfigurable spectrally efficient FDM baseband transmitter,” IEEE Trans. Circuits Syst., vol.  59, pp. 1107–1118, 2012.
[CrossRef]

IEEE Trans. Commun. (4)

F. Xiong, “M-ary amplitude shift keying OFDM system,” IEEE Trans. Commun., vol.  51, pp. 1638–1642, 2003.
[CrossRef]

P. Tan and N. C. Beaulieu, “A comparison of DCT-based OFDM and DFT-based OFDM in frequency offset and fading channels,” IEEE Trans. Commun., vol.  54, pp. 2113–2125, 2006.
[CrossRef]

N. Al-Dhahir, H. Minn, and S. Satish, “Optimum DCT-based multicarrier transceivers for frequency-selective channels,” IEEE Trans. Commun., vol.  54, pp. 911–921, 2006.
[CrossRef]

F. Gao, T. Cui, A. Nallanathan, and C. Tellambura, “Maximum likelihood based estimation of frequency and phase offset in DCT OFDM systems under non-circular transmissions: algorithms, analysis, and comparisons,” IEEE Trans. Commun., vol.  56, pp. 1425–1429, 2008.
[CrossRef]

IET Commun. (1)

R. G. Clegg, S. Isam, I. Kanaras, and I. Darwazeh, “A practical system for improved efficiency in frequency division multiplexed wireless networks,” IET Commun., vol.  6, pp. 449–457, 2012.
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (4)

Opt. Express (8)

J. Zhao and H. Shams, “Fast dispersion estimation in coherent optical 16QAM fast OFDM systems,” Opt. Express, vol.  21, pp. 2500–2505, 2013.
[CrossRef]

J. Li, R. Schmogrow, D. Hillerkuss, P. C. Schindler, M. Nazerathy, C. S. Langhorst, S. B. Ezra, I. Tselniker, C. Koos, W. Freude, and J. Leuthold, “A self-coherent receiver for detection of PolMUX coherent signals,” Opt. Express, vol.  20, pp. 21413–21433, 2012.
[CrossRef]

I. Tselniker, M. Nazarathy, S. B. Ezra, J. Li, and J. Leuthold, “Self-coherent complex field reconstruction with in-phase and quadrature delay detection without a direct-detection branch,” Opt. Express, vol.  20, pp. 15452–15473, 2012.
[CrossRef]

C. Lei, H. Chen, M. Chen, and S. Xie, “A high spectral efficiency optical OFDM scheme based on interleaved multiplexing,” Opt. Express, vol.  18, pp. 26149–26154, 2010.
[CrossRef]

C. Lei, H. Chen, M. Chen, and S. Xie, “16×10  Gb/s symmetric WDM-FOFDM-PON realization with colorless ONUs,” Opt. Express, vol.  19, pp. 15275–15280, 2011.
[CrossRef]

B. Inan, S. Adhikari, O. Karakaya, P. Kainzmaier, M. Mocker, H. V. Kirchbauer, N. Hanik, and S. L. Jansen, “Real-time 93.8  Gb/s polarization-multiplexed OFDM transmitter with 1024-point IFFT,” Opt. Express, vol.  19, pp. B64–B68, 2011.
[CrossRef]

J. Zhao, M. E. McCarthy, and A. D. Ellis, “Electronic dispersion compensation using full optical field reconstruction in 10  Gbit/s OOK based systems,” Opt. Express, vol.  16, pp. 15353–15365, 2008.
[CrossRef]

X. Liu, S. Chandrasekhar, and A. Leven, “Digital self-coherent detection,” Opt. Express, vol.  16, pp. 792–803, 2008.
[CrossRef]

Other (10)

G. Mandyam, “On the discrete cosine transform and OFDM systems,” in Int. Conf. Acoustics, Speech, and Signal Processing, 2003, pp. 544–547.

Y. Yeh and S. Chen, “Efficient channel estimation based on discrete cosine transform,” in Int. Conf. Acoustics, Speech, and Signal Processing, 2003, pp. 676–679.

A. D. Ellis and M. E. McCarthy, “Receiver-side electronic dispersion compensation using passive optical field detection for low cost 10  Gbit/s 600 km-reach applications,” in Proc. Optical Fiber Communication Conf., 2006, paper OTuE4.

J. Zhao and A. D. Ellis, “Full-field detection based multi-chip MLSE for offset-DQPSK modulation format,” in European Conf. Optical Communication, 2011, paper Tu.5.A.2.

M. R. D. Rodrigues and I. Darwazeh, “Fast OFDM: a proposal for doubling the data rate of OFDM schemes,” in Int. Conf. Telecommunications, 2002, pp. 484–487.

J. Zhao and A. D. Ellis, “A novel optical fast OFDM with reduced channel spacing equal to half of the symbol rate per carrier,” in Optical Fiber Communication Conf., 2010, paper OMR1.

S. K. Ibrahim, J. Zhao, D. Rafique, J. O’Dowd, and A. D. Ellis, “Demonstration of world-first experimental optical fast OFDM system at 7.174  Gbit/s and 14.348  Gbit/s,” in European Conf. Optical Communication, 2010, paper PDP3.4.

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.

E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental demonstration of cost-effective intensity-modulation and direct-detection optical fast-OFDM over 40 km SMF transmission,” in Proc. Optical Fiber Communication Conf. and Expo., 2012, paper JW2A.65.

E. Giacoumidis, I. Tomkos, and J. M. Tang, “Performance of optical fast-OFDM in MMF-based links,” in Optical Fiber Communication Conf., San Diego, CA, 2011, paper OWU3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Decoding principle of the proposed scheme.

Fig. 2.
Fig. 2.

Experimental setup for FD optical F-OFDM.

Fig. 3.
Fig. 3.

Performance versus OSNR for BPSK FD F-OFDM. Insets are the recovered constellation diagrams at 21dB OSNR.

Fig. 4.
Fig. 4.

Performance as a function of transmission distance.

Fig. 5.
Fig. 5.

Performance sensitivity to the MZM bias at 0 and 360 km.

Fig. 6.
Fig. 6.

Spectra of (a) the recovered Vf(t) and (b) its integration, Vp(t), versus the frequency at 480 km.

Fig. 7.
Fig. 7.

Performance versus the bandwidth of the high-pass filter in full-field reconstruction for noise suppression.

Fig. 8.
Fig. 8.

BER versus OSNR for different input power at 360 km.

Fig. 9.
Fig. 9.

BER versus the number of TSs at 360 km (OSNR: 21.1 dB) and 480 km (OSNR: 20.7 dB).

Fig. 10.
Fig. 10.

Required OSNR versus transmission distance for DD F-OFDM with GI length of 12 (circles) and FD F-OFDM with GI lengths of 2 (triangles), 6 (squares), and 12 (diamonds). (a) and (b) represent 16.8Gbit/s BPSK and 33.6Gbit/s 4ASK F-OFDM, respectively. In (a), pluses represent FD F-OFDM with the GI length of 12 using system parameters the same as those in the experiment.

Fig. 11.
Fig. 11.

Required OSNR versus fiber length for FD F-OFDM and FD conventional OFDM at the same spectral efficiency. (a) 16.8Gbit/s BPSK F-OFDM and QPSK conventional OFDM and (b) 33.6Gbit/s 4ASK F-OFDM and 16QAM conventional OFDM.

Fig. 12.
Fig. 12.

Constellation diagrams of FD F-OFDM and conventional OFDM at 0 km. (a) and (b) 20 dB OSNR. (c) and (d) 25 dB OSNR.

Fig. 13.
Fig. 13.

OSNR penalty versus the bandwidth of the high-pass filter for noise suppression. Circles, triangles, and squares represent FD 4ASK F-OFDM at 0 and 360 km, and FD 16QAM conventional OFDM at 360 km, respectively.

Fig. 14.
Fig. 14.

OSNR penalty versus the laser linewidth for FD 4ASK F-OFDM at 0 (circles) and 360 km (triangles), and FD 16QAM conventional OFDM at 360 km (squares).

Fig. 15.
Fig. 15.

OSNR penalty versus the AMZI DTD for 33.6Gbit/s FD 4ASK F-OFDM at 0 (circles) and 360 km (triangles).

Fig. 16.
Fig. 16.

OSNR penalty versus the AMZI phase for 33.6Gbit/s FD 4ASK F-OFDM at 0 (circles) and 360 km (triangles).

Fig. 17.
Fig. 17.

OSNR penalty versus DGD for FD 4ASK F-OFDM.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V±(t)|E(t)|2+|E(tΔt)|2±2|E(t)|·|E(tΔt)|·cos(φ(t)φ(tΔt)+φAMZI),
Vf(t)V+(t)V(t)V+(t)+V(t)sin(φ(t)φ(tΔt)).
Vfull(t)(V+(t)+V(t))1/2·exp(j×asin(Vf(t))/Δt·dt).