Abstract

We theoretically analyze the performance of free-space optical (FSO) systems using rectangular quadrature-amplitude modulation (QAM) and an avalanche photodiode (APD) receiver over atmospheric turbulence channels. Both log-normal and gamma–gamma channel models are used in the analysis for the cases of weak/moderate and strong atmospheric turbulence. The system bit error rate, when Gray code mapping is employed, is theoretically derived taking into account various link conditions and system parameters, including the APD shot noise, thermal noise, channel attenuation and geometrical loss, atmospheric turbulence strengths, and link distances. The numerical results show that using APD with a proper selection of the average gain could greatly benefit the performance of the system; as a matter of fact, in the case of optimal gain, the system using an APD receiver could provide 7 dB gain in comparison with the one with a positive-instrinsic-negative receiver. We also quantitatively discuss the impact of link conditions and system parameters on the selection of optimal APD gain.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (52)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription