Abstract

We evaluate and compare the power consumption and the number of required slots (footprint) of fixed and flexible transport nodes. The node architecture is assumed to comprise a grooming structure, and a reconfigurable optical add/drop multiplexer (ROADM). Fixed grooming is achieved using cascades of muxponders. Alternatively, flexible grooming is achieved with electrical switches. Fixed frequency and fixed direction ROADM, and colorless and directionless ROADM are considered. For all the architectures, we present an accurate dimensioning model that allows computation of the required modules. Results show that to optimize the total power consumption and footprint of the network, the architecture of each node has to be selected according to the amount and pattern of the add/drop and regenerated traffic and the number of pairs of fibers convergent to the node. An optimization method based on simple rules for node type selection is proposed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, 2010.
    [CrossRef]
  2. J. Homa and K. Bala, “ROADM architectures and their enabling WSS technology,” IEEE Commun. Mag., vol.  46, no. 7, pp. 150–154, 2008.
    [CrossRef]
  3. S. Thiagarajan, L. Blair, and J. Berthold, “Direction-independent add/drop access for multi-degree ROADMs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Feb. 2008.
  4. A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in Int. Conf. on Communication Systems and Networks (COMSNETS), Jan. 2010.
  5. P. Ji and Y. Aono, “Colorless and directionless multi-degree reconfigurable optical add/drop multiplexers,” in Wireless and Optical Communications Conf. (WOCC), Mar. 2010.
  6. A. Deore, O. Turkcu, S. Ahuja, S. Hand, and S. Melle, “Total cost of ownership of WDM and switching architectures for next-generation 100  Gb/s networks,” IEEE Commun. Mag., vol.  50, no. 11, pp. 179–187, 2012.
    [CrossRef]
  7. O. Gerstel, “Simple analytical estimation of router bypass effectiveness,” in European Conf. on Optical Communication (ECOC), Sept. 2010.
  8. A. Jarray, B. Jaumard, and A. Houle, “CapEx/OpEx effective optical wide area network design,” Telecommun. Syst., vol.  49, pp. 329–344, 2012.
    [CrossRef]
  9. M. Mezhoudi and Y. Hu, “Economics of a convergent optical backbone transport with NG-OTN,” in Telecommunications Network Strategy and Planning Symp. (NETWORKS), Sept. 2010.
  10. P. Serna, I. S. Barla, S. Duhovnikov, C. M. Machuca, and D. Schupke, “Evaluation of transponder and regenerator pre-provisioning,” in Conf. of Telecommunication, Media and Internet Techno-Economics (CTTE), 2012.
  11. “Lowering network TCO through integrated digital switching and WDM transport,” White Paper WP-EQ-09-2012, Infinera, Sunnyvale, CA, 2012 [Online]. Available: http://www.infinera.com/pdfs/whitepapers/Infinera-WP-Network_Efficiency_Quotient.pdf .
  12. S. Sengupta, V. Kumar, and D. Saha, “Switched optical backbone for cost-effective scalable core IP networks,” IEEE Commun. Mag., vol.  41, no. 6, pp. 60–70, 2003.
    [CrossRef]
  13. S. De Maesschalck, M. Pickavet, D. Colle, and P. Demeester, “Multi-layer traffic grooming in networks with an IP/MPLS layer on top of a meshed optical layer,” in IEEE Global Telecommunications Conf., (GLOBECOM), 2003, pp. 2750–2754.
  14. F. Musumeci, M. Tornatore, and A. Pattavina, “A power consumption analysis for IP-over-WDM core network architectures,” J. Opt. Commun. Netw., vol.  4, no. 2, pp. 108–117, 2012.
    [CrossRef]
  15. X. Dong, T. El-Gorashi, and J. Elmirghani, “On the energy efficiency of physical topology design for IP over WDM networks,” J. Lightwave Technol., vol.  30, no. 12, pp. 1931–1942, 2012.
    [CrossRef]
  16. E. Palkopoulou, D. Schupke, and T. Bauschert, “Energy efficiency and CapEx minimization for backbone network planning: Is there a tradeoff?” in IEEE Int. Symp. on Advanced Networks and Telecommunication Systems (ANTS), Dec. 2009.
  17. J. Baliga, R. Ayre, K. Hinton, W. V. Sorin, and R. S. Tucker, “Energy consumption in optical IP networks,” J. Lightwave Technol., vol.  27, no. 13, pp. 2391–2403, 2009.
    [CrossRef]
  18. S. Aleksić, “Energy efficiency of electronic and optical network elements,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 2, pp. 296–308, 2011.
    [CrossRef]
  19. S. Aleksić, “Analysis of power consumption in future high-capacity network nodes,” J. Opt. Commun. Netw., vol.  1, no. 3, pp. 245–258, 2009.
    [CrossRef]
  20. C. Dorize, A. Morea, O. Rival, and B. Berde, “An energy-efficient node interface for optical core networks,” in Proc. Int. Conf. on Transparent Optical Networks (ICTON), 2010.
  21. R. Tucker, “Green optical communications—part I: Energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 2, pp. 245–260, 2011.
    [CrossRef]
  22. R. Tucker, “Green optical communications—part II: Energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 2, pp. 261–274, 2011.
    [CrossRef]
  23. L. Wang, R. Lu, Q. Li, X. Zheng, and H. Zhang, “Energy efficient design for multi-shelf IP over WDM networks,” in IEEE Conf. on Computer Communications (INFOCOM), Apr. 2011, pp. 349–354.
  24. G. Shen, L. Peng, Y. Shen, and H. Sardesai, “Optimal node hardware module planning for layer-one optical transport networks,” J. Opt. Commun. Netw., vol.  3, no. 12, pp. 937–946, 2011.
    [CrossRef]
  25. M. Scheffel, R. Prinz, C. Gruber, A. Autenrieth, and D. Schupke, “Optimal routing and grooming for multilayer networks with transponders and muxponders,” in IEEE Global Telecommunications Conf. (GLOBECOM), Nov. 2006.
  26. “Interfaces for the Optical Transport Network (OTN),” ITU-T Rec. G.709/Y.1331, 2009.
  27. P. Pavon-Marino and M. Bueno-Delgado, “Dimensioning the add/drop contention factor of directionless ROADMs,” J. Lightwave Technol., vol.  29, no. 21, pp. 3265–3274, 2011.
    [CrossRef]
  28. A. Coiro, M. Listanti, A. Valenti, and F. Matera, “Power-aware routing and wavelength assignment in multi-fiber optical networks,” J. Opt. Commun. Net., vol.  3, no. 11, pp. 816–829, 2011.
    [CrossRef]
  29. M. De Groote, K. Manousakis, P. Kokkinos, D. Colle, M. Pickavet, K. Christodoulopoulos, E. Varvarigos, and P. Demeester, “Cost comparison of different translucent optical network architectures,” in Conf. on Telecommunications Internet and Media Techno Economics (CTTE), June 2010.
  30. A. Klekamp, U. Gebhard, and F. Ilchmann, “Energy and cost efficiency of adaptive and mixed-line-rate IP over DWDM networks,” J. Lightwave Technol., vol.  30, no. 2, pp. 215–221, 2012.
    [CrossRef]
  31. W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol.  24, no. 2, pp. 86–102, 2012.
    [CrossRef]
  32. J. Pedro, J. Santos, and R. Morais, “Dynamic setup of multi-granular services over next-generation OTN/DWDM networks: Blocking versus add/drop port usage,” in Proc. Int. Conf. on Transparent Optical Networks (ICTON), Apr. 2012.
  33. A. Saleh and J. Simmons, “Evolution toward the next-generation core optical network,” J. Lightwave Technol., vol.  24, no. 9, pp. 3303–3321, 2006.
    [CrossRef]
  34. A. Eira, J. Pedro, and J. Pires, “Optimized design of multistage passive optical networks,” J. Opt. Commun. Netw., vol.  4, no. 5, pp. 402–411, 2012.
    [CrossRef]

2012

A. Deore, O. Turkcu, S. Ahuja, S. Hand, and S. Melle, “Total cost of ownership of WDM and switching architectures for next-generation 100  Gb/s networks,” IEEE Commun. Mag., vol.  50, no. 11, pp. 179–187, 2012.
[CrossRef]

A. Jarray, B. Jaumard, and A. Houle, “CapEx/OpEx effective optical wide area network design,” Telecommun. Syst., vol.  49, pp. 329–344, 2012.
[CrossRef]

F. Musumeci, M. Tornatore, and A. Pattavina, “A power consumption analysis for IP-over-WDM core network architectures,” J. Opt. Commun. Netw., vol.  4, no. 2, pp. 108–117, 2012.
[CrossRef]

X. Dong, T. El-Gorashi, and J. Elmirghani, “On the energy efficiency of physical topology design for IP over WDM networks,” J. Lightwave Technol., vol.  30, no. 12, pp. 1931–1942, 2012.
[CrossRef]

A. Klekamp, U. Gebhard, and F. Ilchmann, “Energy and cost efficiency of adaptive and mixed-line-rate IP over DWDM networks,” J. Lightwave Technol., vol.  30, no. 2, pp. 215–221, 2012.
[CrossRef]

W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol.  24, no. 2, pp. 86–102, 2012.
[CrossRef]

A. Eira, J. Pedro, and J. Pires, “Optimized design of multistage passive optical networks,” J. Opt. Commun. Netw., vol.  4, no. 5, pp. 402–411, 2012.
[CrossRef]

2011

R. Tucker, “Green optical communications—part I: Energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 2, pp. 245–260, 2011.
[CrossRef]

R. Tucker, “Green optical communications—part II: Energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 2, pp. 261–274, 2011.
[CrossRef]

G. Shen, L. Peng, Y. Shen, and H. Sardesai, “Optimal node hardware module planning for layer-one optical transport networks,” J. Opt. Commun. Netw., vol.  3, no. 12, pp. 937–946, 2011.
[CrossRef]

P. Pavon-Marino and M. Bueno-Delgado, “Dimensioning the add/drop contention factor of directionless ROADMs,” J. Lightwave Technol., vol.  29, no. 21, pp. 3265–3274, 2011.
[CrossRef]

A. Coiro, M. Listanti, A. Valenti, and F. Matera, “Power-aware routing and wavelength assignment in multi-fiber optical networks,” J. Opt. Commun. Net., vol.  3, no. 11, pp. 816–829, 2011.
[CrossRef]

S. Aleksić, “Energy efficiency of electronic and optical network elements,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 2, pp. 296–308, 2011.
[CrossRef]

2010

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, 2010.
[CrossRef]

2009

2008

J. Homa and K. Bala, “ROADM architectures and their enabling WSS technology,” IEEE Commun. Mag., vol.  46, no. 7, pp. 150–154, 2008.
[CrossRef]

2006

2003

S. Sengupta, V. Kumar, and D. Saha, “Switched optical backbone for cost-effective scalable core IP networks,” IEEE Commun. Mag., vol.  41, no. 6, pp. 60–70, 2003.
[CrossRef]

Ahuja, S.

A. Deore, O. Turkcu, S. Ahuja, S. Hand, and S. Melle, “Total cost of ownership of WDM and switching architectures for next-generation 100  Gb/s networks,” IEEE Commun. Mag., vol.  50, no. 11, pp. 179–187, 2012.
[CrossRef]

Aleksic, S.

S. Aleksić, “Energy efficiency of electronic and optical network elements,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 2, pp. 296–308, 2011.
[CrossRef]

S. Aleksić, “Analysis of power consumption in future high-capacity network nodes,” J. Opt. Commun. Netw., vol.  1, no. 3, pp. 245–258, 2009.
[CrossRef]

Aono, Y.

P. Ji and Y. Aono, “Colorless and directionless multi-degree reconfigurable optical add/drop multiplexers,” in Wireless and Optical Communications Conf. (WOCC), Mar. 2010.

Autenrieth, A.

M. Scheffel, R. Prinz, C. Gruber, A. Autenrieth, and D. Schupke, “Optimal routing and grooming for multilayer networks with transponders and muxponders,” in IEEE Global Telecommunications Conf. (GLOBECOM), Nov. 2006.

Ayre, R.

Bala, K.

J. Homa and K. Bala, “ROADM architectures and their enabling WSS technology,” IEEE Commun. Mag., vol.  46, no. 7, pp. 150–154, 2008.
[CrossRef]

Baliga, J.

Barla, I. S.

P. Serna, I. S. Barla, S. Duhovnikov, C. M. Machuca, and D. Schupke, “Evaluation of transponder and regenerator pre-provisioning,” in Conf. of Telecommunication, Media and Internet Techno-Economics (CTTE), 2012.

Basch, B.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, 2010.
[CrossRef]

Bauschert, T.

E. Palkopoulou, D. Schupke, and T. Bauschert, “Energy efficiency and CapEx minimization for backbone network planning: Is there a tradeoff?” in IEEE Int. Symp. on Advanced Networks and Telecommunication Systems (ANTS), Dec. 2009.

Berde, B.

C. Dorize, A. Morea, O. Rival, and B. Berde, “An energy-efficient node interface for optical core networks,” in Proc. Int. Conf. on Transparent Optical Networks (ICTON), 2010.

Berthold, J.

S. Thiagarajan, L. Blair, and J. Berthold, “Direction-independent add/drop access for multi-degree ROADMs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Feb. 2008.

Blair, L.

S. Thiagarajan, L. Blair, and J. Berthold, “Direction-independent add/drop access for multi-degree ROADMs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Feb. 2008.

Bueno-Delgado, M.

Christodoulopoulos, K.

M. De Groote, K. Manousakis, P. Kokkinos, D. Colle, M. Pickavet, K. Christodoulopoulos, E. Varvarigos, and P. Demeester, “Cost comparison of different translucent optical network architectures,” in Conf. on Telecommunications Internet and Media Techno Economics (CTTE), June 2010.

Coiro, A.

A. Coiro, M. Listanti, A. Valenti, and F. Matera, “Power-aware routing and wavelength assignment in multi-fiber optical networks,” J. Opt. Commun. Net., vol.  3, no. 11, pp. 816–829, 2011.
[CrossRef]

Colle, D.

W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol.  24, no. 2, pp. 86–102, 2012.
[CrossRef]

M. De Groote, K. Manousakis, P. Kokkinos, D. Colle, M. Pickavet, K. Christodoulopoulos, E. Varvarigos, and P. Demeester, “Cost comparison of different translucent optical network architectures,” in Conf. on Telecommunications Internet and Media Techno Economics (CTTE), June 2010.

S. De Maesschalck, M. Pickavet, D. Colle, and P. Demeester, “Multi-layer traffic grooming in networks with an IP/MPLS layer on top of a meshed optical layer,” in IEEE Global Telecommunications Conf., (GLOBECOM), 2003, pp. 2750–2754.

De Groote, M.

M. De Groote, K. Manousakis, P. Kokkinos, D. Colle, M. Pickavet, K. Christodoulopoulos, E. Varvarigos, and P. Demeester, “Cost comparison of different translucent optical network architectures,” in Conf. on Telecommunications Internet and Media Techno Economics (CTTE), June 2010.

De Maesschalck, S.

S. De Maesschalck, M. Pickavet, D. Colle, and P. Demeester, “Multi-layer traffic grooming in networks with an IP/MPLS layer on top of a meshed optical layer,” in IEEE Global Telecommunications Conf., (GLOBECOM), 2003, pp. 2750–2754.

Demeester, P.

W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol.  24, no. 2, pp. 86–102, 2012.
[CrossRef]

M. De Groote, K. Manousakis, P. Kokkinos, D. Colle, M. Pickavet, K. Christodoulopoulos, E. Varvarigos, and P. Demeester, “Cost comparison of different translucent optical network architectures,” in Conf. on Telecommunications Internet and Media Techno Economics (CTTE), June 2010.

S. De Maesschalck, M. Pickavet, D. Colle, and P. Demeester, “Multi-layer traffic grooming in networks with an IP/MPLS layer on top of a meshed optical layer,” in IEEE Global Telecommunications Conf., (GLOBECOM), 2003, pp. 2750–2754.

Deore, A.

A. Deore, O. Turkcu, S. Ahuja, S. Hand, and S. Melle, “Total cost of ownership of WDM and switching architectures for next-generation 100  Gb/s networks,” IEEE Commun. Mag., vol.  50, no. 11, pp. 179–187, 2012.
[CrossRef]

Devarajan, A.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in Int. Conf. on Communication Systems and Networks (COMSNETS), Jan. 2010.

Dong, X.

Dorize, C.

C. Dorize, A. Morea, O. Rival, and B. Berde, “An energy-efficient node interface for optical core networks,” in Proc. Int. Conf. on Transparent Optical Networks (ICTON), 2010.

Duhovnikov, S.

P. Serna, I. S. Barla, S. Duhovnikov, C. M. Machuca, and D. Schupke, “Evaluation of transponder and regenerator pre-provisioning,” in Conf. of Telecommunication, Media and Internet Techno-Economics (CTTE), 2012.

Egorov, R.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, 2010.
[CrossRef]

Eira, A.

El-Gorashi, T.

Elmirghani, J.

Gebhard, U.

Gerstel, O.

O. Gerstel, “Simple analytical estimation of router bypass effectiveness,” in European Conf. on Optical Communication (ECOC), Sept. 2010.

Gowrishankar, R.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in Int. Conf. on Communication Systems and Networks (COMSNETS), Jan. 2010.

Gringeri, S.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, 2010.
[CrossRef]

Gruber, C.

M. Scheffel, R. Prinz, C. Gruber, A. Autenrieth, and D. Schupke, “Optimal routing and grooming for multilayer networks with transponders and muxponders,” in IEEE Global Telecommunications Conf. (GLOBECOM), Nov. 2006.

Hand, S.

A. Deore, O. Turkcu, S. Ahuja, S. Hand, and S. Melle, “Total cost of ownership of WDM and switching architectures for next-generation 100  Gb/s networks,” IEEE Commun. Mag., vol.  50, no. 11, pp. 179–187, 2012.
[CrossRef]

Hinton, K.

Homa, J.

J. Homa and K. Bala, “ROADM architectures and their enabling WSS technology,” IEEE Commun. Mag., vol.  46, no. 7, pp. 150–154, 2008.
[CrossRef]

Houle, A.

A. Jarray, B. Jaumard, and A. Houle, “CapEx/OpEx effective optical wide area network design,” Telecommun. Syst., vol.  49, pp. 329–344, 2012.
[CrossRef]

Hu, Y.

M. Mezhoudi and Y. Hu, “Economics of a convergent optical backbone transport with NG-OTN,” in Telecommunications Network Strategy and Planning Symp. (NETWORKS), Sept. 2010.

Idzikowski, F.

W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol.  24, no. 2, pp. 86–102, 2012.
[CrossRef]

Ilchmann, F.

Jarray, A.

A. Jarray, B. Jaumard, and A. Houle, “CapEx/OpEx effective optical wide area network design,” Telecommun. Syst., vol.  49, pp. 329–344, 2012.
[CrossRef]

Jaumard, B.

A. Jarray, B. Jaumard, and A. Houle, “CapEx/OpEx effective optical wide area network design,” Telecommun. Syst., vol.  49, pp. 329–344, 2012.
[CrossRef]

Ji, P.

P. Ji and Y. Aono, “Colorless and directionless multi-degree reconfigurable optical add/drop multiplexers,” in Wireless and Optical Communications Conf. (WOCC), Mar. 2010.

Johnson, R.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in Int. Conf. on Communication Systems and Networks (COMSNETS), Jan. 2010.

Kishore, B.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in Int. Conf. on Communication Systems and Networks (COMSNETS), Jan. 2010.

Klekamp, A.

Kokkinos, P.

M. De Groote, K. Manousakis, P. Kokkinos, D. Colle, M. Pickavet, K. Christodoulopoulos, E. Varvarigos, and P. Demeester, “Cost comparison of different translucent optical network architectures,” in Conf. on Telecommunications Internet and Media Techno Economics (CTTE), June 2010.

Kumar, V.

S. Sengupta, V. Kumar, and D. Saha, “Switched optical backbone for cost-effective scalable core IP networks,” IEEE Commun. Mag., vol.  41, no. 6, pp. 60–70, 2003.
[CrossRef]

Li, Q.

L. Wang, R. Lu, Q. Li, X. Zheng, and H. Zhang, “Energy efficient design for multi-shelf IP over WDM networks,” in IEEE Conf. on Computer Communications (INFOCOM), Apr. 2011, pp. 349–354.

Listanti, M.

A. Coiro, M. Listanti, A. Valenti, and F. Matera, “Power-aware routing and wavelength assignment in multi-fiber optical networks,” J. Opt. Commun. Net., vol.  3, no. 11, pp. 816–829, 2011.
[CrossRef]

Lu, R.

L. Wang, R. Lu, Q. Li, X. Zheng, and H. Zhang, “Energy efficient design for multi-shelf IP over WDM networks,” in IEEE Conf. on Computer Communications (INFOCOM), Apr. 2011, pp. 349–354.

Machuca, C. M.

P. Serna, I. S. Barla, S. Duhovnikov, C. M. Machuca, and D. Schupke, “Evaluation of transponder and regenerator pre-provisioning,” in Conf. of Telecommunication, Media and Internet Techno-Economics (CTTE), 2012.

Manousakis, K.

M. De Groote, K. Manousakis, P. Kokkinos, D. Colle, M. Pickavet, K. Christodoulopoulos, E. Varvarigos, and P. Demeester, “Cost comparison of different translucent optical network architectures,” in Conf. on Telecommunications Internet and Media Techno Economics (CTTE), June 2010.

Matera, F.

A. Coiro, M. Listanti, A. Valenti, and F. Matera, “Power-aware routing and wavelength assignment in multi-fiber optical networks,” J. Opt. Commun. Net., vol.  3, no. 11, pp. 816–829, 2011.
[CrossRef]

Melle, S.

A. Deore, O. Turkcu, S. Ahuja, S. Hand, and S. Melle, “Total cost of ownership of WDM and switching architectures for next-generation 100  Gb/s networks,” IEEE Commun. Mag., vol.  50, no. 11, pp. 179–187, 2012.
[CrossRef]

Mezhoudi, M.

M. Mezhoudi and Y. Hu, “Economics of a convergent optical backbone transport with NG-OTN,” in Telecommunications Network Strategy and Planning Symp. (NETWORKS), Sept. 2010.

Morais, R.

J. Pedro, J. Santos, and R. Morais, “Dynamic setup of multi-granular services over next-generation OTN/DWDM networks: Blocking versus add/drop port usage,” in Proc. Int. Conf. on Transparent Optical Networks (ICTON), Apr. 2012.

Morea, A.

C. Dorize, A. Morea, O. Rival, and B. Berde, “An energy-efficient node interface for optical core networks,” in Proc. Int. Conf. on Transparent Optical Networks (ICTON), 2010.

Musumeci, F.

Palkopoulou, E.

E. Palkopoulou, D. Schupke, and T. Bauschert, “Energy efficiency and CapEx minimization for backbone network planning: Is there a tradeoff?” in IEEE Int. Symp. on Advanced Networks and Telecommunication Systems (ANTS), Dec. 2009.

Pattavina, A.

Pavon-Marino, P.

Pedro, J.

A. Eira, J. Pedro, and J. Pires, “Optimized design of multistage passive optical networks,” J. Opt. Commun. Netw., vol.  4, no. 5, pp. 402–411, 2012.
[CrossRef]

J. Pedro, J. Santos, and R. Morais, “Dynamic setup of multi-granular services over next-generation OTN/DWDM networks: Blocking versus add/drop port usage,” in Proc. Int. Conf. on Transparent Optical Networks (ICTON), Apr. 2012.

Peng, L.

Pickavet, M.

W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol.  24, no. 2, pp. 86–102, 2012.
[CrossRef]

M. De Groote, K. Manousakis, P. Kokkinos, D. Colle, M. Pickavet, K. Christodoulopoulos, E. Varvarigos, and P. Demeester, “Cost comparison of different translucent optical network architectures,” in Conf. on Telecommunications Internet and Media Techno Economics (CTTE), June 2010.

S. De Maesschalck, M. Pickavet, D. Colle, and P. Demeester, “Multi-layer traffic grooming in networks with an IP/MPLS layer on top of a meshed optical layer,” in IEEE Global Telecommunications Conf., (GLOBECOM), 2003, pp. 2750–2754.

Pires, J.

Prasanna, G.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in Int. Conf. on Communication Systems and Networks (COMSNETS), Jan. 2010.

Prinz, R.

M. Scheffel, R. Prinz, C. Gruber, A. Autenrieth, and D. Schupke, “Optimal routing and grooming for multilayer networks with transponders and muxponders,” in IEEE Global Telecommunications Conf. (GLOBECOM), Nov. 2006.

Rival, O.

C. Dorize, A. Morea, O. Rival, and B. Berde, “An energy-efficient node interface for optical core networks,” in Proc. Int. Conf. on Transparent Optical Networks (ICTON), 2010.

Saha, D.

S. Sengupta, V. Kumar, and D. Saha, “Switched optical backbone for cost-effective scalable core IP networks,” IEEE Commun. Mag., vol.  41, no. 6, pp. 60–70, 2003.
[CrossRef]

Saleh, A.

Sandesha, K.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in Int. Conf. on Communication Systems and Networks (COMSNETS), Jan. 2010.

Santos, J.

J. Pedro, J. Santos, and R. Morais, “Dynamic setup of multi-granular services over next-generation OTN/DWDM networks: Blocking versus add/drop port usage,” in Proc. Int. Conf. on Transparent Optical Networks (ICTON), Apr. 2012.

Sardesai, H.

Scheffel, M.

M. Scheffel, R. Prinz, C. Gruber, A. Autenrieth, and D. Schupke, “Optimal routing and grooming for multilayer networks with transponders and muxponders,” in IEEE Global Telecommunications Conf. (GLOBECOM), Nov. 2006.

Schupke, D.

M. Scheffel, R. Prinz, C. Gruber, A. Autenrieth, and D. Schupke, “Optimal routing and grooming for multilayer networks with transponders and muxponders,” in IEEE Global Telecommunications Conf. (GLOBECOM), Nov. 2006.

P. Serna, I. S. Barla, S. Duhovnikov, C. M. Machuca, and D. Schupke, “Evaluation of transponder and regenerator pre-provisioning,” in Conf. of Telecommunication, Media and Internet Techno-Economics (CTTE), 2012.

E. Palkopoulou, D. Schupke, and T. Bauschert, “Energy efficiency and CapEx minimization for backbone network planning: Is there a tradeoff?” in IEEE Int. Symp. on Advanced Networks and Telecommunication Systems (ANTS), Dec. 2009.

Sengupta, S.

S. Sengupta, V. Kumar, and D. Saha, “Switched optical backbone for cost-effective scalable core IP networks,” IEEE Commun. Mag., vol.  41, no. 6, pp. 60–70, 2003.
[CrossRef]

Serna, P.

P. Serna, I. S. Barla, S. Duhovnikov, C. M. Machuca, and D. Schupke, “Evaluation of transponder and regenerator pre-provisioning,” in Conf. of Telecommunication, Media and Internet Techno-Economics (CTTE), 2012.

Shen, G.

Shen, Y.

Shukla, V.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, 2010.
[CrossRef]

Simmons, J.

Sorin, W. V.

Thiagarajan, S.

S. Thiagarajan, L. Blair, and J. Berthold, “Direction-independent add/drop access for multi-degree ROADMs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Feb. 2008.

Tornatore, M.

Tucker, R.

R. Tucker, “Green optical communications—part I: Energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 2, pp. 245–260, 2011.
[CrossRef]

R. Tucker, “Green optical communications—part II: Energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 2, pp. 261–274, 2011.
[CrossRef]

Tucker, R. S.

Turkcu, O.

A. Deore, O. Turkcu, S. Ahuja, S. Hand, and S. Melle, “Total cost of ownership of WDM and switching architectures for next-generation 100  Gb/s networks,” IEEE Commun. Mag., vol.  50, no. 11, pp. 179–187, 2012.
[CrossRef]

Valenti, A.

A. Coiro, M. Listanti, A. Valenti, and F. Matera, “Power-aware routing and wavelength assignment in multi-fiber optical networks,” J. Opt. Commun. Net., vol.  3, no. 11, pp. 816–829, 2011.
[CrossRef]

Van Heddeghem, W.

W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol.  24, no. 2, pp. 86–102, 2012.
[CrossRef]

Varvarigos, E.

M. De Groote, K. Manousakis, P. Kokkinos, D. Colle, M. Pickavet, K. Christodoulopoulos, E. Varvarigos, and P. Demeester, “Cost comparison of different translucent optical network architectures,” in Conf. on Telecommunications Internet and Media Techno Economics (CTTE), June 2010.

Vereecken, W.

W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol.  24, no. 2, pp. 86–102, 2012.
[CrossRef]

Voruganti, P.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in Int. Conf. on Communication Systems and Networks (COMSNETS), Jan. 2010.

Wang, L.

L. Wang, R. Lu, Q. Li, X. Zheng, and H. Zhang, “Energy efficient design for multi-shelf IP over WDM networks,” in IEEE Conf. on Computer Communications (INFOCOM), Apr. 2011, pp. 349–354.

Xia, T.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, 2010.
[CrossRef]

Zhang, H.

L. Wang, R. Lu, Q. Li, X. Zheng, and H. Zhang, “Energy efficient design for multi-shelf IP over WDM networks,” in IEEE Conf. on Computer Communications (INFOCOM), Apr. 2011, pp. 349–354.

Zheng, X.

L. Wang, R. Lu, Q. Li, X. Zheng, and H. Zhang, “Energy efficient design for multi-shelf IP over WDM networks,” in IEEE Conf. on Computer Communications (INFOCOM), Apr. 2011, pp. 349–354.

IEEE Commun. Mag.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, 2010.
[CrossRef]

J. Homa and K. Bala, “ROADM architectures and their enabling WSS technology,” IEEE Commun. Mag., vol.  46, no. 7, pp. 150–154, 2008.
[CrossRef]

A. Deore, O. Turkcu, S. Ahuja, S. Hand, and S. Melle, “Total cost of ownership of WDM and switching architectures for next-generation 100  Gb/s networks,” IEEE Commun. Mag., vol.  50, no. 11, pp. 179–187, 2012.
[CrossRef]

S. Sengupta, V. Kumar, and D. Saha, “Switched optical backbone for cost-effective scalable core IP networks,” IEEE Commun. Mag., vol.  41, no. 6, pp. 60–70, 2003.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. Aleksić, “Energy efficiency of electronic and optical network elements,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 2, pp. 296–308, 2011.
[CrossRef]

R. Tucker, “Green optical communications—part I: Energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 2, pp. 245–260, 2011.
[CrossRef]

R. Tucker, “Green optical communications—part II: Energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 2, pp. 261–274, 2011.
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Net.

A. Coiro, M. Listanti, A. Valenti, and F. Matera, “Power-aware routing and wavelength assignment in multi-fiber optical networks,” J. Opt. Commun. Net., vol.  3, no. 11, pp. 816–829, 2011.
[CrossRef]

J. Opt. Commun. Netw.

Photon. Netw. Commun.

W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol.  24, no. 2, pp. 86–102, 2012.
[CrossRef]

Telecommun. Syst.

A. Jarray, B. Jaumard, and A. Houle, “CapEx/OpEx effective optical wide area network design,” Telecommun. Syst., vol.  49, pp. 329–344, 2012.
[CrossRef]

Other

M. Mezhoudi and Y. Hu, “Economics of a convergent optical backbone transport with NG-OTN,” in Telecommunications Network Strategy and Planning Symp. (NETWORKS), Sept. 2010.

P. Serna, I. S. Barla, S. Duhovnikov, C. M. Machuca, and D. Schupke, “Evaluation of transponder and regenerator pre-provisioning,” in Conf. of Telecommunication, Media and Internet Techno-Economics (CTTE), 2012.

“Lowering network TCO through integrated digital switching and WDM transport,” White Paper WP-EQ-09-2012, Infinera, Sunnyvale, CA, 2012 [Online]. Available: http://www.infinera.com/pdfs/whitepapers/Infinera-WP-Network_Efficiency_Quotient.pdf .

S. Thiagarajan, L. Blair, and J. Berthold, “Direction-independent add/drop access for multi-degree ROADMs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Feb. 2008.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in Int. Conf. on Communication Systems and Networks (COMSNETS), Jan. 2010.

P. Ji and Y. Aono, “Colorless and directionless multi-degree reconfigurable optical add/drop multiplexers,” in Wireless and Optical Communications Conf. (WOCC), Mar. 2010.

E. Palkopoulou, D. Schupke, and T. Bauschert, “Energy efficiency and CapEx minimization for backbone network planning: Is there a tradeoff?” in IEEE Int. Symp. on Advanced Networks and Telecommunication Systems (ANTS), Dec. 2009.

S. De Maesschalck, M. Pickavet, D. Colle, and P. Demeester, “Multi-layer traffic grooming in networks with an IP/MPLS layer on top of a meshed optical layer,” in IEEE Global Telecommunications Conf., (GLOBECOM), 2003, pp. 2750–2754.

O. Gerstel, “Simple analytical estimation of router bypass effectiveness,” in European Conf. on Optical Communication (ECOC), Sept. 2010.

J. Pedro, J. Santos, and R. Morais, “Dynamic setup of multi-granular services over next-generation OTN/DWDM networks: Blocking versus add/drop port usage,” in Proc. Int. Conf. on Transparent Optical Networks (ICTON), Apr. 2012.

C. Dorize, A. Morea, O. Rival, and B. Berde, “An energy-efficient node interface for optical core networks,” in Proc. Int. Conf. on Transparent Optical Networks (ICTON), 2010.

L. Wang, R. Lu, Q. Li, X. Zheng, and H. Zhang, “Energy efficient design for multi-shelf IP over WDM networks,” in IEEE Conf. on Computer Communications (INFOCOM), Apr. 2011, pp. 349–354.

M. Scheffel, R. Prinz, C. Gruber, A. Autenrieth, and D. Schupke, “Optimal routing and grooming for multilayer networks with transponders and muxponders,” in IEEE Global Telecommunications Conf. (GLOBECOM), Nov. 2006.

“Interfaces for the Optical Transport Network (OTN),” ITU-T Rec. G.709/Y.1331, 2009.

M. De Groote, K. Manousakis, P. Kokkinos, D. Colle, M. Pickavet, K. Christodoulopoulos, E. Varvarigos, and P. Demeester, “Cost comparison of different translucent optical network architectures,” in Conf. on Telecommunications Internet and Media Techno Economics (CTTE), June 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Node schematic: rack, shelf, slot, module, and port. High-performance nodes are sets of modules, each one with particular functionalities. Each module has a specific number of ports and occupies a predetermined number of slots in a shelf. The shelf is then attached to a rack that provides power and cooling to the system.

Fig. 2.
Fig. 2.

Fixed grooming architecture example. The fixed grooming requires muxponders or cascades of muxponders and transponders. The figure presents three types of muxponders, two of them in a two stage architecture, and one transponder. To implement this type of grooming, muxponder and transponder modules are required.

Fig. 3.
Fig. 3.

Flexible grooming architecture example. The flexible grooming requires one type of client module per client bit rate, line modules, and an electrical switch module (ESM). The figure presents three types of client modules, three line modules, and one ESM. Note that the shelf used in this case needs to allow backplane communication between the different modules.

Fig. 4.
Fig. 4.

ROADM architecture with fixed frequency add/drop structure. One AWG multiplexer/demultiplexer is dedicated per direction. This architecture requires AWG, WSS, and amplifier modules. Note that the number of add/drop channels is accounted for in the grooming part.

Fig. 5.
Fig. 5.

Flexible ROADM architecture with CD functionalities. This architecture along with tunable transponders allows remote reconfigurability. This architecture requires WSS, combiner/splitter, and amplifier modules. The number of add/drop channels is accounted for in the grooming part.

Fig. 6.
Fig. 6.

Power consumption and number of slots required for fixed and flexible grooming architectures using different traffic patterns: (a) 33% of 2.5Gbit/s, 33% of 10Gbit/s, and 33% of 40Gbit/s demands; (b) 80% of 2.5Gbit/s, 10% of 10Gbit/s, and 10% of 40Gbit/s demands; (c) 10% of 2.5Gbit/s, 80% of 10Gbit/s, and 10% of 40Gbit/s demands; and (d) 10% of 2.5Gbit/s, 10% of 10Gbit/s, and 80% of 40Gbit/s demands.

Fig. 7.
Fig. 7.

Boxplots of the power consumption and number of slots required for fixed and flexible grooming architectures using different number of destination nodes. The considered traffic is of 1Tbit/s randomly distributed over 10 destination nodes and over a random number of destination nodes ranging from 10 to 40.

Fig. 8.
Fig. 8.

(a) Power consumption and (b) number of slots required by the fixed and by the flexible ROADM architectures. Fixed frequency and direction add/drop structures only increases the power and the footprint with the addition of fibers. CD ROADMs have a stepwise behavior increasing the power consumption and the required number of slots with the addition of fibers and with the increase of the number of add/drop channels.

Fig. 9.
Fig. 9.

Percentage of OpEx savings provided by using the optimized method in spite of a homogeneous network architecture. Gray lines refer to the grooming and ROADM structures alone; black lines refer to the minimum and maximum total savings. The minimum and the maximum total savings are calculated between the optimized solution and the most and least expensive homogeneous network architecture, respectively. The homogeneous network architecture can have a fixed or a flexible grooming structure together with a fixed or a flexible ROADM implementation. However, the same architecture is used in all network nodes. The optimized method achieve savings under all the considered scenarios.

Fig. 10.
Fig. 10.

Network power consumption variation by type of module power variation. The modules used in the grooming part of the node have the highest impact in the network power consumption. Variations in the power consumption of the modules used in the ROADM part of the node have residual impact.

Tables (4)

Tables Icon

TABLE I List of Model Notations

Tables Icon

TABLE II Example of Possible Grooming Configurations for 40Gbit/s Line Port

Tables Icon

TABLE III Parameters of the Modules Used

Tables Icon

TABLE IV Node Type Selection Rules

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

ImpBin,Bout=BoutBin.
OmpBo,Bc(i,j)=tBo(i,j)ImpBo,Bc,(Bo,Bc)X.
MmpBo,Bc(i)=j=1NOmpBo,Bc(i,j)PmpBo,Bc,(Bo,Bc)X,
OmpBc,Bl(i,j)=OmpBo,Bc(i,j)+tBc(i,j)ImpBc,Bl,(Bo,Bc),(Bc,Bl)X.
MmpBc,Bl(i)=j=1NOmpBc,Bl(i,j)PmpBc,Bl,(Bc,Bl)X,
ItpBl(i,j)=OtpBl(i,j)=tBc(i,j),BcC:Bc=Bl.
MtpBl(i)=j=1NOtpBl(i,j)PtpBl,BcC:Bc=Bl.
lBl(i,j)=OtpBl(i,j)+(Bc,Bl)XOmpBc,Bl(i,j).
Stotfix(i)=(Bo,Bc)XMmpBo,Bc(i)SmpBo,Bc+(Bc,Bl)XMmpBc,Bl(i)SmpBc,Bl+MtpBl(i)StpBl,
Msffix(i)=Mctrfix(i)=Stotfix(i)SsfSctr.
McBc(i)=j=1NtBc(i,j)PcBc,BcC,
mini=1NMlnBl(i),
subject totBc(i,j)cfϵXHBcBl,cfϵOlnBl,cfϵ(i,j),(i,j)U,BcC,
BcCBctBc(i,j)cfϵXBlOlnBl,cfϵ(i,j),(i,j)U,
MlnBl(i)j=1NcfϵXOlnBl,cfϵ(i,j)PlnBl,iV,
MlnBl(i)N0,iV,
OlnBl,cfϵ(i,j)N0,(i,j)U,cfϵX.
lBl(i,j)=cfϵXOlnBl,cfϵ(i,j).
Stotfle(i)=BcCMcBc(i)ScBc+MlnBl(i)SlnBl,
Msffle(i)=Mctrfle(i)=Mesm(i)=Stotfle(i)Ssf(Sctr+Sesm).
W(i,j)=p=1Nr=1NlBl(p,r)Zijpr.
F(i,j)=W(i,j)w,
δF(i)=j=1NF(i,j).
Mwssxc(i)=Mampxc(i)=δF(i).
Mawgads(i)=δF(i).
StotFF(i)=Mwssxc(i)Swssxc+Mampxc(i)Sampxc+Mawgads(i)Sawgads,
Pads(i)=j=1NlBl(i,j)+2R(i),
A(i)=Mcsads(i)=Mampads(i)=Pads(i)KPcs,
Mwssads(i)=A(i)+Pads(i)K.
StotCD(i)=Mwssxc(i)Swssxc+Mwssads(i)Swssads+Mampxc(i)Sampxc+Mampads(i)Sampads+Mcsads(i)Scsads,
DBc=EBcBc,
OpEx=i=1NET(i)8760ce+RT(i)sr12cr,
α=sr12cr8760ce.
OpEx=βi=1NET(i)+αRT(i),