Abstract

In this paper, it is proposed to take advantage of the deployed passive optical network (PON) infrastructure by overlaying a decomposed radio access network (RAN) using a very dense WDM. Coherent optical orthogonal frequency-division multiplexing technology is investigated for achieving the desired narrow channel spacings while minimizing the impact on the performance of legacy equipment. A practical implementation is evaluated using simulations. Within the analyzed configurations, a trade-off is found between time-division multiplexed (TDM)-PON and RAN performance. The optimum balance is found for additional losses in the TDM-PON path of less than 1 dB, ensuring simultaneous service to a maximum of 145 metro cells together with the PON customers and within a reach of 24 km.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Girard, FTTx PON Technology and Testing. EXFO Electrical Engineering, 2005.
  2. Gigabit-Capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) Layer Specification, ITU-T Rec. G.984.2, 2003.
  3. Media Access Control Parameters, Physical Layers, and Management Parameters for Subscriber Access Networks, IEEE 802.3ah Standard, 2004.
  4. “Global mobile data traffic forecast update, 2011–2016,” Cisco Visual Networking Index, 2011.
  5. Feasibility Study for Evolved Universal Terrestrial Radio Access (UTRA) and Universal Terrestrial Radio Access Network (UTRAN), 3GPP TR 25.912 V8.0, 2008.
  6. S. Liu, J. Wu, C. Koh, and V. Lau, “A 25  Gb/s(/km2) urban wireless network beyond IMT-advanced,” IEEE Commun. Mag., vol.  49, no. 2, pp. 122–129, 2011.
    [CrossRef]
  7. J. Segel and M. Weldon, “Alcatel-Lucent LightRadio Portfolio: White Paper 1. Technical Overview,” p. 16, 2011.
  8. J. Segel, “Alcatel-Lucent LightRadio Portfolio: White Paper 3. Customer Solutions,” p. 17, 2011.
  9. Common Public Radio Interface (CPRI), Interface Specification V5.0, 2011.
  10. A. M. J. Koonen, “Perspectives of radio over fiber technologies,” in Proc. Optical Fiber Communication Conf., 2008, paper OThP3.
  11. M. Othman, L. Deng, X. Pang, J. Caminos, W. Kozuch, K. Prince, X. Yu, J. Jensen, and I. Monroy, “MIMO-OFDM WDM PON with DM-VCSEL for femtocells application,” Opt. Express, vol.  19, no. 26, pp. B537–B542, 2011.
    [CrossRef]
  12. N. Madamopoulos, S. Peiris, N. Antoniades, D. Richards, B. Pathak, G. Ellinas, R. Dorsinville, and M. A. Ali, “A fully distributed 10G-EPON-based converged fixed mobile networking transport infrastructure for next generation broadband access,” J. Opt. Commun. Netw., vol.  4, no. 5, pp. 366–377, 2012.
    [CrossRef]
  13. A. Cartaxo, J. A. P. Morgado, and D. Fonseca, “A perspective on optical-wireless converged NG-FTTH networks using directly modulated lasers,” in Proc. Int. Conf. Transparent Optical Networks, 2011, paper Mo.B4.3.
  14. M. Milosavljevic and P. Kourtessis, “Next generation PONs with wireless backhauling,” in Proc. Int. Conf. Transparent Optical Networks, 2011, paper Mo.B4.1.
  15. J. M. Fàbrega, M. Svaluto Moreolo, and G. Junyent, “Constant envelope coherent optical OFDM based on fast Hartley transform,” in Proc. Int. Conf. Transparent Optical Networks, 2011, paper We.A1.6.
  16. Physical Layer Specifications and Management Parameters for 10 Gb/s Passive Optical Networks, IEEE 802.3av Standard, 2009.
  17. 10G-capable PONs: Physical Media Dependent (PMD) Layer Specification, ITU-T Rec. G.987.2, 2010.
  18. R. Murano, W. Sharfin, and M. J. Cahill, “Tunable 2.5  Gb/s receiver for wavelength-agile DWDM-PON,” in Proc. Optical Fiber Communication Conf., 2008, paper PDP32.
  19. F. Raharimanitra, P. Chanclou, and R. Murano, “40  Gb/sNG-PON system using low electrical bandwidth tunable receiver and emitter at 10  Gb/s,” in Proc. European Conf. Optical Communications (ECOC), 2011, paper Mo.1.C.2.
  20. L. Domash, E. Ma, N. Nemchuck, A. Payne, and M. Wu, “Tunable thin-film filters based on thermo-optic semiconductor films,” Proc. SPIE, vol.  4833, pp. 685–695, 2002.
  21. R. N. Bracewell, The Fourier Transform and Its Applications. McGraw-Hill, 2000.
  22. M. Omella, J. A. Lázaro, V. Polo, and J. Prat, “Driving requirements for wavelength shifting in colorless ONU with dual-arm modulator,” J. Lightwave Technol., vol.  27, pp. 3912–3918, 2009.
    [CrossRef]
  23. T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using an optical single-side-band modulator,” IEEE Photon. Technol. Lett., vol.  14, no. 10, pp. 1454–1456, Oct. 2002.
    [CrossRef]
  24. A. A. Savchenkov, W. Liang, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical single-sideband modulator with complete sideband suppression,” Opt. Lett., vol.  34, no. 9, pp. 1300–1302, May 2009.
    [CrossRef]
  25. J. Buus and E. Murphy, “Tunable lasers in optical networks,” J. Lightwave Technol., vol.  24, no. 1, pp. 5–11, Jan. 2006.
    [CrossRef]
  26. J. M. Fàbrega, B. Schrenk, F. Bonada Bo, J. A. Lázaro, M. Forzati, P.-J. Rigole, and J. Prat, “Modulated grating Y-structure tunable laser for λ-routed networks and optical access,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 6, pp. 1542–1551, Nov. 2011.
    [CrossRef]
  27. W. Shieh and I. Djordjevic, OFDM for Optical Communications. Elsevier, 2010.
  28. DSCR401HG PIN Diode Datasheet, Discovery Semiconductor, 2011.
  29. Forward Error Correction for High Bit-Rate DWDM Submarine Systems, ITU-T Rec. G.975.1, 2004.
  30. S7500 Tunable Laser Datasheet, Finisar, 2011.
  31. G. Agrawal, Nonlinear Fiber Optics. Springer, 2007.

2012

2011

S. Liu, J. Wu, C. Koh, and V. Lau, “A 25  Gb/s(/km2) urban wireless network beyond IMT-advanced,” IEEE Commun. Mag., vol.  49, no. 2, pp. 122–129, 2011.
[CrossRef]

M. Othman, L. Deng, X. Pang, J. Caminos, W. Kozuch, K. Prince, X. Yu, J. Jensen, and I. Monroy, “MIMO-OFDM WDM PON with DM-VCSEL for femtocells application,” Opt. Express, vol.  19, no. 26, pp. B537–B542, 2011.
[CrossRef]

J. M. Fàbrega, B. Schrenk, F. Bonada Bo, J. A. Lázaro, M. Forzati, P.-J. Rigole, and J. Prat, “Modulated grating Y-structure tunable laser for λ-routed networks and optical access,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 6, pp. 1542–1551, Nov. 2011.
[CrossRef]

2009

2006

2002

T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using an optical single-side-band modulator,” IEEE Photon. Technol. Lett., vol.  14, no. 10, pp. 1454–1456, Oct. 2002.
[CrossRef]

L. Domash, E. Ma, N. Nemchuck, A. Payne, and M. Wu, “Tunable thin-film filters based on thermo-optic semiconductor films,” Proc. SPIE, vol.  4833, pp. 685–695, 2002.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics. Springer, 2007.

Ali, M. A.

Antoniades, N.

Bonada Bo, F.

J. M. Fàbrega, B. Schrenk, F. Bonada Bo, J. A. Lázaro, M. Forzati, P.-J. Rigole, and J. Prat, “Modulated grating Y-structure tunable laser for λ-routed networks and optical access,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 6, pp. 1542–1551, Nov. 2011.
[CrossRef]

Bracewell, R. N.

R. N. Bracewell, The Fourier Transform and Its Applications. McGraw-Hill, 2000.

Buus, J.

Cahill, M. J.

R. Murano, W. Sharfin, and M. J. Cahill, “Tunable 2.5  Gb/s receiver for wavelength-agile DWDM-PON,” in Proc. Optical Fiber Communication Conf., 2008, paper PDP32.

Caminos, J.

Cartaxo, A.

A. Cartaxo, J. A. P. Morgado, and D. Fonseca, “A perspective on optical-wireless converged NG-FTTH networks using directly modulated lasers,” in Proc. Int. Conf. Transparent Optical Networks, 2011, paper Mo.B4.3.

Chanclou, P.

F. Raharimanitra, P. Chanclou, and R. Murano, “40  Gb/sNG-PON system using low electrical bandwidth tunable receiver and emitter at 10  Gb/s,” in Proc. European Conf. Optical Communications (ECOC), 2011, paper Mo.1.C.2.

Deng, L.

Djordjevic, I.

W. Shieh and I. Djordjevic, OFDM for Optical Communications. Elsevier, 2010.

Domash, L.

L. Domash, E. Ma, N. Nemchuck, A. Payne, and M. Wu, “Tunable thin-film filters based on thermo-optic semiconductor films,” Proc. SPIE, vol.  4833, pp. 685–695, 2002.

Dorsinville, R.

Ellinas, G.

Fàbrega, J. M.

J. M. Fàbrega, B. Schrenk, F. Bonada Bo, J. A. Lázaro, M. Forzati, P.-J. Rigole, and J. Prat, “Modulated grating Y-structure tunable laser for λ-routed networks and optical access,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 6, pp. 1542–1551, Nov. 2011.
[CrossRef]

J. M. Fàbrega, M. Svaluto Moreolo, and G. Junyent, “Constant envelope coherent optical OFDM based on fast Hartley transform,” in Proc. Int. Conf. Transparent Optical Networks, 2011, paper We.A1.6.

Fonseca, D.

A. Cartaxo, J. A. P. Morgado, and D. Fonseca, “A perspective on optical-wireless converged NG-FTTH networks using directly modulated lasers,” in Proc. Int. Conf. Transparent Optical Networks, 2011, paper Mo.B4.3.

Forzati, M.

J. M. Fàbrega, B. Schrenk, F. Bonada Bo, J. A. Lázaro, M. Forzati, P.-J. Rigole, and J. Prat, “Modulated grating Y-structure tunable laser for λ-routed networks and optical access,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 6, pp. 1542–1551, Nov. 2011.
[CrossRef]

Girard, A.

A. Girard, FTTx PON Technology and Testing. EXFO Electrical Engineering, 2005.

Higuma, K.

T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using an optical single-side-band modulator,” IEEE Photon. Technol. Lett., vol.  14, no. 10, pp. 1454–1456, Oct. 2002.
[CrossRef]

Ilchenko, V. S.

Izutsu, M.

T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using an optical single-side-band modulator,” IEEE Photon. Technol. Lett., vol.  14, no. 10, pp. 1454–1456, Oct. 2002.
[CrossRef]

Jensen, J.

Junyent, G.

J. M. Fàbrega, M. Svaluto Moreolo, and G. Junyent, “Constant envelope coherent optical OFDM based on fast Hartley transform,” in Proc. Int. Conf. Transparent Optical Networks, 2011, paper We.A1.6.

Kawanishi, T.

T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using an optical single-side-band modulator,” IEEE Photon. Technol. Lett., vol.  14, no. 10, pp. 1454–1456, Oct. 2002.
[CrossRef]

Koh, C.

S. Liu, J. Wu, C. Koh, and V. Lau, “A 25  Gb/s(/km2) urban wireless network beyond IMT-advanced,” IEEE Commun. Mag., vol.  49, no. 2, pp. 122–129, 2011.
[CrossRef]

Koonen, A. M. J.

A. M. J. Koonen, “Perspectives of radio over fiber technologies,” in Proc. Optical Fiber Communication Conf., 2008, paper OThP3.

Kourtessis, P.

M. Milosavljevic and P. Kourtessis, “Next generation PONs with wireless backhauling,” in Proc. Int. Conf. Transparent Optical Networks, 2011, paper Mo.B4.1.

Kozuch, W.

Lau, V.

S. Liu, J. Wu, C. Koh, and V. Lau, “A 25  Gb/s(/km2) urban wireless network beyond IMT-advanced,” IEEE Commun. Mag., vol.  49, no. 2, pp. 122–129, 2011.
[CrossRef]

Lázaro, J. A.

J. M. Fàbrega, B. Schrenk, F. Bonada Bo, J. A. Lázaro, M. Forzati, P.-J. Rigole, and J. Prat, “Modulated grating Y-structure tunable laser for λ-routed networks and optical access,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 6, pp. 1542–1551, Nov. 2011.
[CrossRef]

M. Omella, J. A. Lázaro, V. Polo, and J. Prat, “Driving requirements for wavelength shifting in colorless ONU with dual-arm modulator,” J. Lightwave Technol., vol.  27, pp. 3912–3918, 2009.
[CrossRef]

Liang, W.

Liu, S.

S. Liu, J. Wu, C. Koh, and V. Lau, “A 25  Gb/s(/km2) urban wireless network beyond IMT-advanced,” IEEE Commun. Mag., vol.  49, no. 2, pp. 122–129, 2011.
[CrossRef]

Ma, E.

L. Domash, E. Ma, N. Nemchuck, A. Payne, and M. Wu, “Tunable thin-film filters based on thermo-optic semiconductor films,” Proc. SPIE, vol.  4833, pp. 685–695, 2002.

Madamopoulos, N.

Maleki, L.

Matsko, A. B.

Milosavljevic, M.

M. Milosavljevic and P. Kourtessis, “Next generation PONs with wireless backhauling,” in Proc. Int. Conf. Transparent Optical Networks, 2011, paper Mo.B4.1.

Monroy, I.

Morgado, J. A. P.

A. Cartaxo, J. A. P. Morgado, and D. Fonseca, “A perspective on optical-wireless converged NG-FTTH networks using directly modulated lasers,” in Proc. Int. Conf. Transparent Optical Networks, 2011, paper Mo.B4.3.

Murano, R.

R. Murano, W. Sharfin, and M. J. Cahill, “Tunable 2.5  Gb/s receiver for wavelength-agile DWDM-PON,” in Proc. Optical Fiber Communication Conf., 2008, paper PDP32.

F. Raharimanitra, P. Chanclou, and R. Murano, “40  Gb/sNG-PON system using low electrical bandwidth tunable receiver and emitter at 10  Gb/s,” in Proc. European Conf. Optical Communications (ECOC), 2011, paper Mo.1.C.2.

Murphy, E.

Nemchuck, N.

L. Domash, E. Ma, N. Nemchuck, A. Payne, and M. Wu, “Tunable thin-film filters based on thermo-optic semiconductor films,” Proc. SPIE, vol.  4833, pp. 685–695, 2002.

Oikawa, S.

T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using an optical single-side-band modulator,” IEEE Photon. Technol. Lett., vol.  14, no. 10, pp. 1454–1456, Oct. 2002.
[CrossRef]

Omella, M.

Othman, M.

Pang, X.

Pathak, B.

Payne, A.

L. Domash, E. Ma, N. Nemchuck, A. Payne, and M. Wu, “Tunable thin-film filters based on thermo-optic semiconductor films,” Proc. SPIE, vol.  4833, pp. 685–695, 2002.

Peiris, S.

Polo, V.

Prat, J.

J. M. Fàbrega, B. Schrenk, F. Bonada Bo, J. A. Lázaro, M. Forzati, P.-J. Rigole, and J. Prat, “Modulated grating Y-structure tunable laser for λ-routed networks and optical access,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 6, pp. 1542–1551, Nov. 2011.
[CrossRef]

M. Omella, J. A. Lázaro, V. Polo, and J. Prat, “Driving requirements for wavelength shifting in colorless ONU with dual-arm modulator,” J. Lightwave Technol., vol.  27, pp. 3912–3918, 2009.
[CrossRef]

Prince, K.

Raharimanitra, F.

F. Raharimanitra, P. Chanclou, and R. Murano, “40  Gb/sNG-PON system using low electrical bandwidth tunable receiver and emitter at 10  Gb/s,” in Proc. European Conf. Optical Communications (ECOC), 2011, paper Mo.1.C.2.

Richards, D.

Rigole, P.-J.

J. M. Fàbrega, B. Schrenk, F. Bonada Bo, J. A. Lázaro, M. Forzati, P.-J. Rigole, and J. Prat, “Modulated grating Y-structure tunable laser for λ-routed networks and optical access,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 6, pp. 1542–1551, Nov. 2011.
[CrossRef]

Savchenkov, A. A.

Schrenk, B.

J. M. Fàbrega, B. Schrenk, F. Bonada Bo, J. A. Lázaro, M. Forzati, P.-J. Rigole, and J. Prat, “Modulated grating Y-structure tunable laser for λ-routed networks and optical access,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 6, pp. 1542–1551, Nov. 2011.
[CrossRef]

Segel, J.

J. Segel, “Alcatel-Lucent LightRadio Portfolio: White Paper 3. Customer Solutions,” p. 17, 2011.

J. Segel and M. Weldon, “Alcatel-Lucent LightRadio Portfolio: White Paper 1. Technical Overview,” p. 16, 2011.

Seidel, D.

Sharfin, W.

R. Murano, W. Sharfin, and M. J. Cahill, “Tunable 2.5  Gb/s receiver for wavelength-agile DWDM-PON,” in Proc. Optical Fiber Communication Conf., 2008, paper PDP32.

Shieh, W.

W. Shieh and I. Djordjevic, OFDM for Optical Communications. Elsevier, 2010.

Svaluto Moreolo, M.

J. M. Fàbrega, M. Svaluto Moreolo, and G. Junyent, “Constant envelope coherent optical OFDM based on fast Hartley transform,” in Proc. Int. Conf. Transparent Optical Networks, 2011, paper We.A1.6.

Weldon, M.

J. Segel and M. Weldon, “Alcatel-Lucent LightRadio Portfolio: White Paper 1. Technical Overview,” p. 16, 2011.

Wu, J.

S. Liu, J. Wu, C. Koh, and V. Lau, “A 25  Gb/s(/km2) urban wireless network beyond IMT-advanced,” IEEE Commun. Mag., vol.  49, no. 2, pp. 122–129, 2011.
[CrossRef]

Wu, M.

L. Domash, E. Ma, N. Nemchuck, A. Payne, and M. Wu, “Tunable thin-film filters based on thermo-optic semiconductor films,” Proc. SPIE, vol.  4833, pp. 685–695, 2002.

Yu, X.

IEEE Commun. Mag.

S. Liu, J. Wu, C. Koh, and V. Lau, “A 25  Gb/s(/km2) urban wireless network beyond IMT-advanced,” IEEE Commun. Mag., vol.  49, no. 2, pp. 122–129, 2011.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. M. Fàbrega, B. Schrenk, F. Bonada Bo, J. A. Lázaro, M. Forzati, P.-J. Rigole, and J. Prat, “Modulated grating Y-structure tunable laser for λ-routed networks and optical access,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 6, pp. 1542–1551, Nov. 2011.
[CrossRef]

IEEE Photon. Technol. Lett.

T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using an optical single-side-band modulator,” IEEE Photon. Technol. Lett., vol.  14, no. 10, pp. 1454–1456, Oct. 2002.
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Netw.

Opt. Express

Opt. Lett.

Proc. SPIE

L. Domash, E. Ma, N. Nemchuck, A. Payne, and M. Wu, “Tunable thin-film filters based on thermo-optic semiconductor films,” Proc. SPIE, vol.  4833, pp. 685–695, 2002.

Other

R. N. Bracewell, The Fourier Transform and Its Applications. McGraw-Hill, 2000.

W. Shieh and I. Djordjevic, OFDM for Optical Communications. Elsevier, 2010.

DSCR401HG PIN Diode Datasheet, Discovery Semiconductor, 2011.

Forward Error Correction for High Bit-Rate DWDM Submarine Systems, ITU-T Rec. G.975.1, 2004.

S7500 Tunable Laser Datasheet, Finisar, 2011.

G. Agrawal, Nonlinear Fiber Optics. Springer, 2007.

A. Cartaxo, J. A. P. Morgado, and D. Fonseca, “A perspective on optical-wireless converged NG-FTTH networks using directly modulated lasers,” in Proc. Int. Conf. Transparent Optical Networks, 2011, paper Mo.B4.3.

M. Milosavljevic and P. Kourtessis, “Next generation PONs with wireless backhauling,” in Proc. Int. Conf. Transparent Optical Networks, 2011, paper Mo.B4.1.

J. M. Fàbrega, M. Svaluto Moreolo, and G. Junyent, “Constant envelope coherent optical OFDM based on fast Hartley transform,” in Proc. Int. Conf. Transparent Optical Networks, 2011, paper We.A1.6.

Physical Layer Specifications and Management Parameters for 10 Gb/s Passive Optical Networks, IEEE 802.3av Standard, 2009.

10G-capable PONs: Physical Media Dependent (PMD) Layer Specification, ITU-T Rec. G.987.2, 2010.

R. Murano, W. Sharfin, and M. J. Cahill, “Tunable 2.5  Gb/s receiver for wavelength-agile DWDM-PON,” in Proc. Optical Fiber Communication Conf., 2008, paper PDP32.

F. Raharimanitra, P. Chanclou, and R. Murano, “40  Gb/sNG-PON system using low electrical bandwidth tunable receiver and emitter at 10  Gb/s,” in Proc. European Conf. Optical Communications (ECOC), 2011, paper Mo.1.C.2.

J. Segel and M. Weldon, “Alcatel-Lucent LightRadio Portfolio: White Paper 1. Technical Overview,” p. 16, 2011.

J. Segel, “Alcatel-Lucent LightRadio Portfolio: White Paper 3. Customer Solutions,” p. 17, 2011.

Common Public Radio Interface (CPRI), Interface Specification V5.0, 2011.

A. M. J. Koonen, “Perspectives of radio over fiber technologies,” in Proc. Optical Fiber Communication Conf., 2008, paper OThP3.

A. Girard, FTTx PON Technology and Testing. EXFO Electrical Engineering, 2005.

Gigabit-Capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) Layer Specification, ITU-T Rec. G.984.2, 2003.

Media Access Control Parameters, Physical Layers, and Management Parameters for Subscriber Access Networks, IEEE 802.3ah Standard, 2004.

“Global mobile data traffic forecast update, 2011–2016,” Cisco Visual Networking Index, 2011.

Feasibility Study for Evolved Universal Terrestrial Radio Access (UTRA) and Universal Terrestrial Radio Access Network (UTRAN), 3GPP TR 25.912 V8.0, 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Generic network architecture. The customer premises equipment (CPE) can also contain a remote radio unit (RRU), while the radio resource management units (RRMs) are kept at the central office (CO).

Fig. 2.
Fig. 2.

Wavelength plan. Inset shows a sample portion of the optical spectrum occupied by the proposed RAN deployment, each channel running at 12.1Gb/s with channel spacing of 15 GHz.

Fig. 3.
Fig. 3.

Transceiver architecture. Details of digital signal processing (DSP) of the transmitter and the receiver are shown in Figs. 4 and 5, respectively.

Fig. 4.
Fig. 4.

Scheme of the digital signal processing block on the transmitter’s side. Insets show samples of time and spectrum representations of the signal at the output of the DAC Vi.

Fig. 5.
Fig. 5.

Scheme of the digital signal processing block on the receiver’s side. Inset shows a sample of the received constellation before data demapping.

Fig. 6.
Fig. 6.

Linewidth tolerance for several overheads.

Fig. 7.
Fig. 7.

Sample sensitivity curves for back-to-back and transmission after 50 km cases with a total laser linewidth of 10 MHz. The no-phase-noise curve corresponds to a back-to-back configuration with total linewidth set to zero.

Fig. 8.
Fig. 8.

Sensitivity penalty at 103 BER versus the channel spacing.

Fig. 9.
Fig. 9.

Radio access network and TDM-PON power budgets for 103 BER as a function of the reach.

Fig. 10.
Fig. 10.

Sensitivity at 103 BER after 50 km SSMF versus the launch power.

Fig. 11.
Fig. 11.

Sensitivity at 103 BER after 50 km SSMF versus the power of each of the adjacent channels.

Fig. 12.
Fig. 12.

Optical distribution splitting ratio N achievable with the proposed RAN delivery and a standard TDM-PON for achieving a power margin higher than 3 dB and at different xy coupling ratios: (a) 991, (b) 9010, (c) 8020 and (d) 5050.

Tables (5)

Tables Icon

TABLE I Simulation Parameters for the Proposed Coherent Optical OFDM System

Tables Icon

TABLE II Network Simulation Parameters

Tables Icon

TABLE III Simulation Parameters for the Standard IM/DD System Corresponding to the TDM-PON Path

Tables Icon

TABLE IV OLT–ONU Path Performance

Tables Icon

TABLE V RRM–RRU Path Performance

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

B(dB)=Pt(dBm)Pr(dBm),
M(dB)=B(dB)Lf(dB)3log2(N)10log10(z),