Abstract

We present a flexible multichannel resource allocation mechanism for 60 GHz radio-over-fiber local access networks. The proposed mechanism is based on the structure of medium-transparent MAC, which is capable of allocating capacity dynamically over both optical and wireless media. A frequency band dedicated to the control channel is assigned to reduce the negative effects of the fiber delay in the high-speed 60 GHz radio-over-fiber system. Moreover, multiple channels are used to transmit data for end users according to their requirements.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Masella and X. Zhang, “A novel single wavelength balanced system for radio over fiber links,” IEEE Photon. Technol. Lett., vol.  18, no. 1, pp. 301–303, Jan. 2006.
    [CrossRef]
  2. T. Kuri, T. Nakasyotani, H. Toda, and K. Kitayama, “Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems,” IEEE Photon. Technol. Lett., vol.  17, no. 6, pp. 1274–1276, June 2005.
    [CrossRef]
  3. M. Mjeku and N. J. Gomes, “Use of different acknowledgement policies for burst transmission in fiber-fed wireless LANs,” IEEE Commun. Lett., vol.  11, no. 7, pp. 601–603, July 2007.
    [CrossRef]
  4. A. Das, M. Mjeku, A. Nkansah, and N. J. Gomes, “Effects on IEEE 802.11 MAC throughput in wireless LAN over fiber systems,” J. Lightwave Technol., vol.  25, no. 11, pp. 3321–3328, Nov. 2007.
    [CrossRef]
  5. M. Mjeku and N. J. Gomes, “Analysis of the request to send/clear to send exchange in WLAN over fiber networks,” J. Lightwave Technol., vol.  26, no. 15, pp. 2531–2539, Aug. 2008.
    [CrossRef]
  6. B. Kalantari-Sabet, M. Mjeku, N. J. Gomes, and J. E. Mitchell, “Performance impairments in single-mode radio-over-fiber systems due to MAC constraints,” J. Lightwave Technol., vol.  26, no. 15, pp. 2540–2548, Aug. 2008.
    [CrossRef]
  7. P. H. Gomes, N. L. S. da Fonseca, and O. C. Branquinho, “Analysis of performance degradation in radio-over-fiber systems based on IEEE 802.16 protocol,” IEEE Latin Am. Trans., vol.  8, no. 4, pp. 377–384, Aug. 2010.
    [CrossRef]
  8. S. Deronne, V. Moeyaert, and S. Bette, “Analysis of the MAC performances in 802.11 g radio-over-fiber systems,” in Communications. and Vehicular Technology in the Benelux (SCVT), 2011.
  9. S. Deronne, V. Moeyaert, and S. Bette, “Impact of the slottime parameter value on the MAC performances in IEEE 802.11 wireless systems using radio-over-fiber technology,” in Communications and Vehicular Technology in the Benelux (SCVT), 2010.
  10. G. Kalfas and N. Pleros, “An agile and medium-transparent MAC protocol for 60 GHz radio-over-fiber local access networks,” J. Lightwave Technol., vol.  28, no. 16, pp. 2315–2326, Aug. 2010.
    [CrossRef]
  11. G. Kalfas, N. Pleros, K. Tsagkaris, L. Alonso, and C. Verikoukis, “Saturation throughput performance analysis of a medium transparent MAC protocol for 60 GHz radio-over-fiber networks,” J. Lightwave Technol., vol.  29, no. 24, pp. 3777–3785, Dec. 2011.
    [CrossRef]
  12. H.-J. Kim, “Simultaneous WDM RoF signal generation utilizing an all-optical frequency upconverter based on FWM in an SOA,” IEEE Photon. Technol. Lett., vol.  23, no. 12, pp. 828–830, June 2011.
    [CrossRef]
  13. Z.-P. Li, L. Ma, Y.-M. Zhang, W.-L. Bai, and M. Huang, “Self-adaptive multi-channel MAC for wireless mesh networks,” Wireless Mesh Networks, N. Funabiki, Ed. Fijeka: InTech (open access publisher), 2011, pp. 90–108.
  14. M. Veyseh, A. Anpalagan, and B. Ma, “Adaptive channel and superframe allocation (ACSA) for 60 GHz wireless networks,” Math. Comput. Modell., vol.  53, no. 3–4, pp. 405–420, Feb. 2011.
    [CrossRef]
  15. K. Vyrsokinos, A. Maziotis, C. Kouloumentas, C. Stamatiadis, and N. Pleros, “An optical MEMS-based dynamic capacity allocation scheme for handover using moving extended cells in radio-over-fiber networks,” Opt. Commun., vol.  284, no. 19, pp. 4390–4393, Sept. 2011.
    [CrossRef]

2011 (4)

G. Kalfas, N. Pleros, K. Tsagkaris, L. Alonso, and C. Verikoukis, “Saturation throughput performance analysis of a medium transparent MAC protocol for 60 GHz radio-over-fiber networks,” J. Lightwave Technol., vol.  29, no. 24, pp. 3777–3785, Dec. 2011.
[CrossRef]

H.-J. Kim, “Simultaneous WDM RoF signal generation utilizing an all-optical frequency upconverter based on FWM in an SOA,” IEEE Photon. Technol. Lett., vol.  23, no. 12, pp. 828–830, June 2011.
[CrossRef]

M. Veyseh, A. Anpalagan, and B. Ma, “Adaptive channel and superframe allocation (ACSA) for 60 GHz wireless networks,” Math. Comput. Modell., vol.  53, no. 3–4, pp. 405–420, Feb. 2011.
[CrossRef]

K. Vyrsokinos, A. Maziotis, C. Kouloumentas, C. Stamatiadis, and N. Pleros, “An optical MEMS-based dynamic capacity allocation scheme for handover using moving extended cells in radio-over-fiber networks,” Opt. Commun., vol.  284, no. 19, pp. 4390–4393, Sept. 2011.
[CrossRef]

2010 (2)

P. H. Gomes, N. L. S. da Fonseca, and O. C. Branquinho, “Analysis of performance degradation in radio-over-fiber systems based on IEEE 802.16 protocol,” IEEE Latin Am. Trans., vol.  8, no. 4, pp. 377–384, Aug. 2010.
[CrossRef]

G. Kalfas and N. Pleros, “An agile and medium-transparent MAC protocol for 60 GHz radio-over-fiber local access networks,” J. Lightwave Technol., vol.  28, no. 16, pp. 2315–2326, Aug. 2010.
[CrossRef]

2008 (2)

2007 (2)

M. Mjeku and N. J. Gomes, “Use of different acknowledgement policies for burst transmission in fiber-fed wireless LANs,” IEEE Commun. Lett., vol.  11, no. 7, pp. 601–603, July 2007.
[CrossRef]

A. Das, M. Mjeku, A. Nkansah, and N. J. Gomes, “Effects on IEEE 802.11 MAC throughput in wireless LAN over fiber systems,” J. Lightwave Technol., vol.  25, no. 11, pp. 3321–3328, Nov. 2007.
[CrossRef]

2006 (1)

B. Masella and X. Zhang, “A novel single wavelength balanced system for radio over fiber links,” IEEE Photon. Technol. Lett., vol.  18, no. 1, pp. 301–303, Jan. 2006.
[CrossRef]

2005 (1)

T. Kuri, T. Nakasyotani, H. Toda, and K. Kitayama, “Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems,” IEEE Photon. Technol. Lett., vol.  17, no. 6, pp. 1274–1276, June 2005.
[CrossRef]

Alonso, L.

Anpalagan, A.

M. Veyseh, A. Anpalagan, and B. Ma, “Adaptive channel and superframe allocation (ACSA) for 60 GHz wireless networks,” Math. Comput. Modell., vol.  53, no. 3–4, pp. 405–420, Feb. 2011.
[CrossRef]

Bai, W.-L.

Z.-P. Li, L. Ma, Y.-M. Zhang, W.-L. Bai, and M. Huang, “Self-adaptive multi-channel MAC for wireless mesh networks,” Wireless Mesh Networks, N. Funabiki, Ed. Fijeka: InTech (open access publisher), 2011, pp. 90–108.

Bette, S.

S. Deronne, V. Moeyaert, and S. Bette, “Impact of the slottime parameter value on the MAC performances in IEEE 802.11 wireless systems using radio-over-fiber technology,” in Communications and Vehicular Technology in the Benelux (SCVT), 2010.

S. Deronne, V. Moeyaert, and S. Bette, “Analysis of the MAC performances in 802.11 g radio-over-fiber systems,” in Communications. and Vehicular Technology in the Benelux (SCVT), 2011.

Branquinho, O. C.

P. H. Gomes, N. L. S. da Fonseca, and O. C. Branquinho, “Analysis of performance degradation in radio-over-fiber systems based on IEEE 802.16 protocol,” IEEE Latin Am. Trans., vol.  8, no. 4, pp. 377–384, Aug. 2010.
[CrossRef]

da Fonseca, N. L. S.

P. H. Gomes, N. L. S. da Fonseca, and O. C. Branquinho, “Analysis of performance degradation in radio-over-fiber systems based on IEEE 802.16 protocol,” IEEE Latin Am. Trans., vol.  8, no. 4, pp. 377–384, Aug. 2010.
[CrossRef]

Das, A.

Deronne, S.

S. Deronne, V. Moeyaert, and S. Bette, “Analysis of the MAC performances in 802.11 g radio-over-fiber systems,” in Communications. and Vehicular Technology in the Benelux (SCVT), 2011.

S. Deronne, V. Moeyaert, and S. Bette, “Impact of the slottime parameter value on the MAC performances in IEEE 802.11 wireless systems using radio-over-fiber technology,” in Communications and Vehicular Technology in the Benelux (SCVT), 2010.

Gomes, N. J.

Gomes, P. H.

P. H. Gomes, N. L. S. da Fonseca, and O. C. Branquinho, “Analysis of performance degradation in radio-over-fiber systems based on IEEE 802.16 protocol,” IEEE Latin Am. Trans., vol.  8, no. 4, pp. 377–384, Aug. 2010.
[CrossRef]

Huang, M.

Z.-P. Li, L. Ma, Y.-M. Zhang, W.-L. Bai, and M. Huang, “Self-adaptive multi-channel MAC for wireless mesh networks,” Wireless Mesh Networks, N. Funabiki, Ed. Fijeka: InTech (open access publisher), 2011, pp. 90–108.

Kalantari-Sabet, B.

Kalfas, G.

Kim, H.-J.

H.-J. Kim, “Simultaneous WDM RoF signal generation utilizing an all-optical frequency upconverter based on FWM in an SOA,” IEEE Photon. Technol. Lett., vol.  23, no. 12, pp. 828–830, June 2011.
[CrossRef]

Kitayama, K.

T. Kuri, T. Nakasyotani, H. Toda, and K. Kitayama, “Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems,” IEEE Photon. Technol. Lett., vol.  17, no. 6, pp. 1274–1276, June 2005.
[CrossRef]

Kouloumentas, C.

K. Vyrsokinos, A. Maziotis, C. Kouloumentas, C. Stamatiadis, and N. Pleros, “An optical MEMS-based dynamic capacity allocation scheme for handover using moving extended cells in radio-over-fiber networks,” Opt. Commun., vol.  284, no. 19, pp. 4390–4393, Sept. 2011.
[CrossRef]

Kuri, T.

T. Kuri, T. Nakasyotani, H. Toda, and K. Kitayama, “Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems,” IEEE Photon. Technol. Lett., vol.  17, no. 6, pp. 1274–1276, June 2005.
[CrossRef]

Li, Z.-P.

Z.-P. Li, L. Ma, Y.-M. Zhang, W.-L. Bai, and M. Huang, “Self-adaptive multi-channel MAC for wireless mesh networks,” Wireless Mesh Networks, N. Funabiki, Ed. Fijeka: InTech (open access publisher), 2011, pp. 90–108.

Ma, B.

M. Veyseh, A. Anpalagan, and B. Ma, “Adaptive channel and superframe allocation (ACSA) for 60 GHz wireless networks,” Math. Comput. Modell., vol.  53, no. 3–4, pp. 405–420, Feb. 2011.
[CrossRef]

Ma, L.

Z.-P. Li, L. Ma, Y.-M. Zhang, W.-L. Bai, and M. Huang, “Self-adaptive multi-channel MAC for wireless mesh networks,” Wireless Mesh Networks, N. Funabiki, Ed. Fijeka: InTech (open access publisher), 2011, pp. 90–108.

Masella, B.

B. Masella and X. Zhang, “A novel single wavelength balanced system for radio over fiber links,” IEEE Photon. Technol. Lett., vol.  18, no. 1, pp. 301–303, Jan. 2006.
[CrossRef]

Maziotis, A.

K. Vyrsokinos, A. Maziotis, C. Kouloumentas, C. Stamatiadis, and N. Pleros, “An optical MEMS-based dynamic capacity allocation scheme for handover using moving extended cells in radio-over-fiber networks,” Opt. Commun., vol.  284, no. 19, pp. 4390–4393, Sept. 2011.
[CrossRef]

Mitchell, J. E.

Mjeku, M.

Moeyaert, V.

S. Deronne, V. Moeyaert, and S. Bette, “Analysis of the MAC performances in 802.11 g radio-over-fiber systems,” in Communications. and Vehicular Technology in the Benelux (SCVT), 2011.

S. Deronne, V. Moeyaert, and S. Bette, “Impact of the slottime parameter value on the MAC performances in IEEE 802.11 wireless systems using radio-over-fiber technology,” in Communications and Vehicular Technology in the Benelux (SCVT), 2010.

Nakasyotani, T.

T. Kuri, T. Nakasyotani, H. Toda, and K. Kitayama, “Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems,” IEEE Photon. Technol. Lett., vol.  17, no. 6, pp. 1274–1276, June 2005.
[CrossRef]

Nkansah, A.

Pleros, N.

Stamatiadis, C.

K. Vyrsokinos, A. Maziotis, C. Kouloumentas, C. Stamatiadis, and N. Pleros, “An optical MEMS-based dynamic capacity allocation scheme for handover using moving extended cells in radio-over-fiber networks,” Opt. Commun., vol.  284, no. 19, pp. 4390–4393, Sept. 2011.
[CrossRef]

Toda, H.

T. Kuri, T. Nakasyotani, H. Toda, and K. Kitayama, “Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems,” IEEE Photon. Technol. Lett., vol.  17, no. 6, pp. 1274–1276, June 2005.
[CrossRef]

Tsagkaris, K.

Verikoukis, C.

Veyseh, M.

M. Veyseh, A. Anpalagan, and B. Ma, “Adaptive channel and superframe allocation (ACSA) for 60 GHz wireless networks,” Math. Comput. Modell., vol.  53, no. 3–4, pp. 405–420, Feb. 2011.
[CrossRef]

Vyrsokinos, K.

K. Vyrsokinos, A. Maziotis, C. Kouloumentas, C. Stamatiadis, and N. Pleros, “An optical MEMS-based dynamic capacity allocation scheme for handover using moving extended cells in radio-over-fiber networks,” Opt. Commun., vol.  284, no. 19, pp. 4390–4393, Sept. 2011.
[CrossRef]

Zhang, X.

B. Masella and X. Zhang, “A novel single wavelength balanced system for radio over fiber links,” IEEE Photon. Technol. Lett., vol.  18, no. 1, pp. 301–303, Jan. 2006.
[CrossRef]

Zhang, Y.-M.

Z.-P. Li, L. Ma, Y.-M. Zhang, W.-L. Bai, and M. Huang, “Self-adaptive multi-channel MAC for wireless mesh networks,” Wireless Mesh Networks, N. Funabiki, Ed. Fijeka: InTech (open access publisher), 2011, pp. 90–108.

IEEE Commun. Lett. (1)

M. Mjeku and N. J. Gomes, “Use of different acknowledgement policies for burst transmission in fiber-fed wireless LANs,” IEEE Commun. Lett., vol.  11, no. 7, pp. 601–603, July 2007.
[CrossRef]

IEEE Latin Am. Trans. (1)

P. H. Gomes, N. L. S. da Fonseca, and O. C. Branquinho, “Analysis of performance degradation in radio-over-fiber systems based on IEEE 802.16 protocol,” IEEE Latin Am. Trans., vol.  8, no. 4, pp. 377–384, Aug. 2010.
[CrossRef]

IEEE Photon. Technol. Lett. (3)

B. Masella and X. Zhang, “A novel single wavelength balanced system for radio over fiber links,” IEEE Photon. Technol. Lett., vol.  18, no. 1, pp. 301–303, Jan. 2006.
[CrossRef]

T. Kuri, T. Nakasyotani, H. Toda, and K. Kitayama, “Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems,” IEEE Photon. Technol. Lett., vol.  17, no. 6, pp. 1274–1276, June 2005.
[CrossRef]

H.-J. Kim, “Simultaneous WDM RoF signal generation utilizing an all-optical frequency upconverter based on FWM in an SOA,” IEEE Photon. Technol. Lett., vol.  23, no. 12, pp. 828–830, June 2011.
[CrossRef]

J. Lightwave Technol. (5)

Math. Comput. Modell. (1)

M. Veyseh, A. Anpalagan, and B. Ma, “Adaptive channel and superframe allocation (ACSA) for 60 GHz wireless networks,” Math. Comput. Modell., vol.  53, no. 3–4, pp. 405–420, Feb. 2011.
[CrossRef]

Opt. Commun. (1)

K. Vyrsokinos, A. Maziotis, C. Kouloumentas, C. Stamatiadis, and N. Pleros, “An optical MEMS-based dynamic capacity allocation scheme for handover using moving extended cells in radio-over-fiber networks,” Opt. Commun., vol.  284, no. 19, pp. 4390–4393, Sept. 2011.
[CrossRef]

Other (3)

Z.-P. Li, L. Ma, Y.-M. Zhang, W.-L. Bai, and M. Huang, “Self-adaptive multi-channel MAC for wireless mesh networks,” Wireless Mesh Networks, N. Funabiki, Ed. Fijeka: InTech (open access publisher), 2011, pp. 90–108.

S. Deronne, V. Moeyaert, and S. Bette, “Analysis of the MAC performances in 802.11 g radio-over-fiber systems,” in Communications. and Vehicular Technology in the Benelux (SCVT), 2011.

S. Deronne, V. Moeyaert, and S. Bette, “Impact of the slottime parameter value on the MAC performances in IEEE 802.11 wireless systems using radio-over-fiber technology,” in Communications and Vehicular Technology in the Benelux (SCVT), 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Generic layout of 60 GHz RoF networks.

Fig. 2.
Fig. 2.

Spectral arrangement for (a) control signal and (b) data signal.

Fig. 3.
Fig. 3.

Proposed RAU design. PD, photodiode; MOD, modulation; IC, integrated circuit; uPC IC, IC microcontroller circuit.

Fig. 4.
Fig. 4.

Proposed channel structure.

Fig. 5.
Fig. 5.

Proposed frame structure.

Fig. 6.
Fig. 6.

Timing diagram of packet rescheduling in an RRF channel.

Fig. 7.
Fig. 7.

Performance evaluation configuration.

Fig. 8.
Fig. 8.

Minimum handover latency as a function of fiber length.

Fig. 9.
Fig. 9.

Average handover latency as a function of fiber length.

Fig. 10.
Fig. 10.

Throughput as a function of fiber length.

Tables (1)

Tables Icon

TABLE I Simulation Parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L ( i ) = C * h .
ρ ( i ) = l ( i ) / L ( i ) .
T RRF = 3 δ Fiber + 3 δ Air + D T _ POLL + D T _ ID + D T _ ACK ,
T Handover = T Wait + T RRF ,
T Handover = T Wait + 2 δ Fiber + 2 δ Air + D T _ POLL + D T _ ID ,