Abstract

Quality-of-service (QoS) support in Ethernet passive optical networks is a crucial concern. We propose a new dynamic bandwidth allocation (DBA) algorithm for service differentiation that meets the service-level agreements (SLAs) of the users. The proposed delay-aware (DA) online DBA algorithm provides constant and predictable average packet delay and reduced delay variation for the high- and medium-priority traffic while keeping the packet loss rate under check. We prove the effectiveness of the proposed algorithm by exhaustive simulations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. GPON, ITU-T Recommendation G.984.
  2. Ethernet in the First Mile (EFM), IEEE Standard 802.3ah.
  3. M. P. McGarry, M. Maier, and M. Reisslein, “Ethernet PON architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol.  10, no. 3, pp. 46–60, 3rd Quarter 2008.
    [CrossRef]
  4. A. Dixit, G. Das, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Jitter performance for QoS in Ethernet passive optical networks,” in Proc. European Conf. on Optical Communication (ECOC), Geneva, Switzerland, Sept. Sept. 2011.
  5. 249025-ICT OASE Project, Requirements for European Next-Generation Optical Access Networks, Deliverable 2.1, 2011.
  6. S. Choi and J. Park, “SLA-aware dynamic bandwidth allocation for QoS in EPONs,” J. Opt. Commun. Netw., vol.  2, no. 9, pp. 773–781, Sept. 2010.
    [CrossRef]
  7. http://www.mocalliance.org/industry/white_papers/PQoS_White_Paper.pdf .
  8. Virtual Bridged Local Area Networks, IEEE Standard 802.IQ, 1998.
  9. G. Kramer, B. Mukherjee, S. Dixit, Y. Ye, and R. Hirth, “Supporting differentiated classes of service in Ethernet passive optical networks,” J. Opt. Netw., vol.  1, no. 8&9, pp. 280–298, Aug. 2002
  10. G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, Feb. 2002.
    [CrossRef]
  11. B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, M. Gagnaire, and P. Demeester, “Analytical model for the IPACT dynamic bandwidth allocation algorithm in EPONs,” J. Opt. Netw., vol.  6, no. 6, pp. 677–688, May 2007.
    [CrossRef]
  12. A. Shami, X. Bai, C. Assi, and N. Ghani, “Jitter performance in Ethernet passive optical networks,” J. Lightwave Technol., vol.  23, no. 4, pp. 1745–1753, Apr. 2005.
    [CrossRef]
  13. M. R. Jason, R. Ferguson, and M. P. McGarry, “Online excess bandwidth distribution for Ethernet passive optical networks,” J. Opt. Netw., vol.  8, no. 4, pp. 358–369, Apr. 2009.
    [CrossRef]
  14. C. M. Assi, Y. Ye, S. Dixit, and M. A. Ali, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol.  21, no. 9, pp. 1467–1477, Nov. 2003.
    [CrossRef]
  15. I.-S. Hwang, J.-Y. Lee, K. R. Lai, and A. T. Liem, “Generic QoS-aware interleaved dynamic bandwidth allocation in scalable EPONs,” J. Opt. Commun. Netw., vol.  4, no. 2, pp. 99–107, Feb. 2012.
    [CrossRef]
  16. F. An, Y. Hsueh, K. Kim, I. White, and L. Kazovsky, “A new dynamic bandwidth allocation protocol with quality of service in Ethernet-based passive optical networks,” in Proc. Int. Conf. Wireless Optical Communication (WOC), Banff, July 2003.
  17. G. Kramer, “On configuring logical links in EPON” [Online]. Available: http://www.ieeecommunities.org/epon .
  18. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” IETF RFC 2475, 1998.
  19. J. Babiarz, K. Chan, and F. Baker, “Guidelines for DiffServ service classes,” IETF RFC 4594, 2006.
  20. M. R. Radivojevic and P. S. Matavulj, “Implementation of intra-ONU scheduling for quality of service support in Ethernet passive optical networks,” J. Lightwave Technol., vol.  27, no. 18, pp. 4055–4062, Sept. 2009.
    [CrossRef]
  21. G. Kramer, B. Mukherjee, and G. Pesavento, “Ethernet PON (ePON): Design and analysis of an optical access network,” Photon. Netw. Commun., vol.  3, no. 3, pp. 307–319, July 2001.
    [CrossRef]
  22. T. Orphanoudakis, H. C. Leligou, E. Kosmatos, and J. D. Angelopoulos, “Performance evaluation of GPON vs EPON for multi-service access,” Int. J. Commun. Syst., vol.  22, pp. 187–202, 2009.
    [CrossRef]
  23. K. Tanaka, A. Agata, and Y. Horiuchi, “IEEE 802.3av 10G-EPON standardization and its research and development status,” J. Lightwave Technol., vol.  28, no. 4, pp. 651–661, Feb. 2010.
  24. D. P. Shea, and J. E. Mitchell, “Long-reach optical access technologies,” IEEE Network, vol.  21, no. 5, pp. 5–11, Sept. 2007.

2012 (1)

2010 (2)

2009 (3)

2008 (1)

M. P. McGarry, M. Maier, and M. Reisslein, “Ethernet PON architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol.  10, no. 3, pp. 46–60, 3rd Quarter 2008.
[CrossRef]

2007 (2)

2005 (1)

2003 (1)

C. M. Assi, Y. Ye, S. Dixit, and M. A. Ali, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol.  21, no. 9, pp. 1467–1477, Nov. 2003.
[CrossRef]

2002 (2)

G. Kramer, B. Mukherjee, S. Dixit, Y. Ye, and R. Hirth, “Supporting differentiated classes of service in Ethernet passive optical networks,” J. Opt. Netw., vol.  1, no. 8&9, pp. 280–298, Aug. 2002

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, Feb. 2002.
[CrossRef]

2001 (1)

G. Kramer, B. Mukherjee, and G. Pesavento, “Ethernet PON (ePON): Design and analysis of an optical access network,” Photon. Netw. Commun., vol.  3, no. 3, pp. 307–319, July 2001.
[CrossRef]

Agata, A.

Ali, M. A.

C. M. Assi, Y. Ye, S. Dixit, and M. A. Ali, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol.  21, no. 9, pp. 1467–1477, Nov. 2003.
[CrossRef]

An, F.

F. An, Y. Hsueh, K. Kim, I. White, and L. Kazovsky, “A new dynamic bandwidth allocation protocol with quality of service in Ethernet-based passive optical networks,” in Proc. Int. Conf. Wireless Optical Communication (WOC), Banff, July 2003.

Angelopoulos, J. D.

T. Orphanoudakis, H. C. Leligou, E. Kosmatos, and J. D. Angelopoulos, “Performance evaluation of GPON vs EPON for multi-service access,” Int. J. Commun. Syst., vol.  22, pp. 187–202, 2009.
[CrossRef]

Assi, C.

Assi, C. M.

C. M. Assi, Y. Ye, S. Dixit, and M. A. Ali, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol.  21, no. 9, pp. 1467–1477, Nov. 2003.
[CrossRef]

Babiarz, J.

J. Babiarz, K. Chan, and F. Baker, “Guidelines for DiffServ service classes,” IETF RFC 4594, 2006.

Bai, X.

Baker, F.

J. Babiarz, K. Chan, and F. Baker, “Guidelines for DiffServ service classes,” IETF RFC 4594, 2006.

Black, D.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” IETF RFC 2475, 1998.

Blake, S.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” IETF RFC 2475, 1998.

Carlson, M.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” IETF RFC 2475, 1998.

Chan, K.

J. Babiarz, K. Chan, and F. Baker, “Guidelines for DiffServ service classes,” IETF RFC 4594, 2006.

Choi, S.

Colle, D.

B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, M. Gagnaire, and P. Demeester, “Analytical model for the IPACT dynamic bandwidth allocation algorithm in EPONs,” J. Opt. Netw., vol.  6, no. 6, pp. 677–688, May 2007.
[CrossRef]

A. Dixit, G. Das, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Jitter performance for QoS in Ethernet passive optical networks,” in Proc. European Conf. on Optical Communication (ECOC), Geneva, Switzerland, Sept. Sept. 2011.

Das, G.

A. Dixit, G. Das, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Jitter performance for QoS in Ethernet passive optical networks,” in Proc. European Conf. on Optical Communication (ECOC), Geneva, Switzerland, Sept. Sept. 2011.

Davies, E.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” IETF RFC 2475, 1998.

Demeester, P.

B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, M. Gagnaire, and P. Demeester, “Analytical model for the IPACT dynamic bandwidth allocation algorithm in EPONs,” J. Opt. Netw., vol.  6, no. 6, pp. 677–688, May 2007.
[CrossRef]

A. Dixit, G. Das, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Jitter performance for QoS in Ethernet passive optical networks,” in Proc. European Conf. on Optical Communication (ECOC), Geneva, Switzerland, Sept. Sept. 2011.

Dixit, A.

A. Dixit, G. Das, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Jitter performance for QoS in Ethernet passive optical networks,” in Proc. European Conf. on Optical Communication (ECOC), Geneva, Switzerland, Sept. Sept. 2011.

Dixit, S.

C. M. Assi, Y. Ye, S. Dixit, and M. A. Ali, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol.  21, no. 9, pp. 1467–1477, Nov. 2003.
[CrossRef]

G. Kramer, B. Mukherjee, S. Dixit, Y. Ye, and R. Hirth, “Supporting differentiated classes of service in Ethernet passive optical networks,” J. Opt. Netw., vol.  1, no. 8&9, pp. 280–298, Aug. 2002

Ferguson, R.

Gagnaire, M.

Ghani, N.

Hirth, R.

Horiuchi, Y.

Hsueh, Y.

F. An, Y. Hsueh, K. Kim, I. White, and L. Kazovsky, “A new dynamic bandwidth allocation protocol with quality of service in Ethernet-based passive optical networks,” in Proc. Int. Conf. Wireless Optical Communication (WOC), Banff, July 2003.

Hwang, I.-S.

Jason, M. R.

Kazovsky, L.

F. An, Y. Hsueh, K. Kim, I. White, and L. Kazovsky, “A new dynamic bandwidth allocation protocol with quality of service in Ethernet-based passive optical networks,” in Proc. Int. Conf. Wireless Optical Communication (WOC), Banff, July 2003.

Kim, K.

F. An, Y. Hsueh, K. Kim, I. White, and L. Kazovsky, “A new dynamic bandwidth allocation protocol with quality of service in Ethernet-based passive optical networks,” in Proc. Int. Conf. Wireless Optical Communication (WOC), Banff, July 2003.

Kosmatos, E.

T. Orphanoudakis, H. C. Leligou, E. Kosmatos, and J. D. Angelopoulos, “Performance evaluation of GPON vs EPON for multi-service access,” Int. J. Commun. Syst., vol.  22, pp. 187–202, 2009.
[CrossRef]

Kramer, G.

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, Feb. 2002.
[CrossRef]

G. Kramer, B. Mukherjee, S. Dixit, Y. Ye, and R. Hirth, “Supporting differentiated classes of service in Ethernet passive optical networks,” J. Opt. Netw., vol.  1, no. 8&9, pp. 280–298, Aug. 2002

G. Kramer, B. Mukherjee, and G. Pesavento, “Ethernet PON (ePON): Design and analysis of an optical access network,” Photon. Netw. Commun., vol.  3, no. 3, pp. 307–319, July 2001.
[CrossRef]

Lai, K. R.

Lannoo, B.

B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, M. Gagnaire, and P. Demeester, “Analytical model for the IPACT dynamic bandwidth allocation algorithm in EPONs,” J. Opt. Netw., vol.  6, no. 6, pp. 677–688, May 2007.
[CrossRef]

A. Dixit, G. Das, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Jitter performance for QoS in Ethernet passive optical networks,” in Proc. European Conf. on Optical Communication (ECOC), Geneva, Switzerland, Sept. Sept. 2011.

Lee, J.-Y.

Leligou, H. C.

T. Orphanoudakis, H. C. Leligou, E. Kosmatos, and J. D. Angelopoulos, “Performance evaluation of GPON vs EPON for multi-service access,” Int. J. Commun. Syst., vol.  22, pp. 187–202, 2009.
[CrossRef]

Liem, A. T.

Maier, M.

M. P. McGarry, M. Maier, and M. Reisslein, “Ethernet PON architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol.  10, no. 3, pp. 46–60, 3rd Quarter 2008.
[CrossRef]

Matavulj, P. S.

McGarry, M. P.

M. R. Jason, R. Ferguson, and M. P. McGarry, “Online excess bandwidth distribution for Ethernet passive optical networks,” J. Opt. Netw., vol.  8, no. 4, pp. 358–369, Apr. 2009.
[CrossRef]

M. P. McGarry, M. Maier, and M. Reisslein, “Ethernet PON architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol.  10, no. 3, pp. 46–60, 3rd Quarter 2008.
[CrossRef]

Mitchell, J. E.

D. P. Shea, and J. E. Mitchell, “Long-reach optical access technologies,” IEEE Network, vol.  21, no. 5, pp. 5–11, Sept. 2007.

Mukherjee, B.

G. Kramer, B. Mukherjee, S. Dixit, Y. Ye, and R. Hirth, “Supporting differentiated classes of service in Ethernet passive optical networks,” J. Opt. Netw., vol.  1, no. 8&9, pp. 280–298, Aug. 2002

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, Feb. 2002.
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “Ethernet PON (ePON): Design and analysis of an optical access network,” Photon. Netw. Commun., vol.  3, no. 3, pp. 307–319, July 2001.
[CrossRef]

Orphanoudakis, T.

T. Orphanoudakis, H. C. Leligou, E. Kosmatos, and J. D. Angelopoulos, “Performance evaluation of GPON vs EPON for multi-service access,” Int. J. Commun. Syst., vol.  22, pp. 187–202, 2009.
[CrossRef]

Park, J.

Pesavento, G.

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, Feb. 2002.
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “Ethernet PON (ePON): Design and analysis of an optical access network,” Photon. Netw. Commun., vol.  3, no. 3, pp. 307–319, July 2001.
[CrossRef]

Pickavet, M.

B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, M. Gagnaire, and P. Demeester, “Analytical model for the IPACT dynamic bandwidth allocation algorithm in EPONs,” J. Opt. Netw., vol.  6, no. 6, pp. 677–688, May 2007.
[CrossRef]

A. Dixit, G. Das, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Jitter performance for QoS in Ethernet passive optical networks,” in Proc. European Conf. on Optical Communication (ECOC), Geneva, Switzerland, Sept. Sept. 2011.

Radivojevic, M. R.

Reisslein, M.

M. P. McGarry, M. Maier, and M. Reisslein, “Ethernet PON architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol.  10, no. 3, pp. 46–60, 3rd Quarter 2008.
[CrossRef]

Shami, A.

Shea, D. P.

D. P. Shea, and J. E. Mitchell, “Long-reach optical access technologies,” IEEE Network, vol.  21, no. 5, pp. 5–11, Sept. 2007.

Tanaka, K.

Verslegers, L.

Wang, Z.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” IETF RFC 2475, 1998.

Weiss, W.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” IETF RFC 2475, 1998.

White, I.

F. An, Y. Hsueh, K. Kim, I. White, and L. Kazovsky, “A new dynamic bandwidth allocation protocol with quality of service in Ethernet-based passive optical networks,” in Proc. Int. Conf. Wireless Optical Communication (WOC), Banff, July 2003.

Ye, Y.

C. M. Assi, Y. Ye, S. Dixit, and M. A. Ali, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol.  21, no. 9, pp. 1467–1477, Nov. 2003.
[CrossRef]

G. Kramer, B. Mukherjee, S. Dixit, Y. Ye, and R. Hirth, “Supporting differentiated classes of service in Ethernet passive optical networks,” J. Opt. Netw., vol.  1, no. 8&9, pp. 280–298, Aug. 2002

IEEE Commun. Mag. (1)

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, Feb. 2002.
[CrossRef]

IEEE Commun. Surv. Tutorials (1)

M. P. McGarry, M. Maier, and M. Reisslein, “Ethernet PON architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol.  10, no. 3, pp. 46–60, 3rd Quarter 2008.
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

C. M. Assi, Y. Ye, S. Dixit, and M. A. Ali, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol.  21, no. 9, pp. 1467–1477, Nov. 2003.
[CrossRef]

IEEE Network (1)

D. P. Shea, and J. E. Mitchell, “Long-reach optical access technologies,” IEEE Network, vol.  21, no. 5, pp. 5–11, Sept. 2007.

Int. J. Commun. Syst. (1)

T. Orphanoudakis, H. C. Leligou, E. Kosmatos, and J. D. Angelopoulos, “Performance evaluation of GPON vs EPON for multi-service access,” Int. J. Commun. Syst., vol.  22, pp. 187–202, 2009.
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (2)

J. Opt. Netw. (3)

Photon. Netw. Commun. (1)

G. Kramer, B. Mukherjee, and G. Pesavento, “Ethernet PON (ePON): Design and analysis of an optical access network,” Photon. Netw. Commun., vol.  3, no. 3, pp. 307–319, July 2001.
[CrossRef]

Other (10)

F. An, Y. Hsueh, K. Kim, I. White, and L. Kazovsky, “A new dynamic bandwidth allocation protocol with quality of service in Ethernet-based passive optical networks,” in Proc. Int. Conf. Wireless Optical Communication (WOC), Banff, July 2003.

G. Kramer, “On configuring logical links in EPON” [Online]. Available: http://www.ieeecommunities.org/epon .

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” IETF RFC 2475, 1998.

J. Babiarz, K. Chan, and F. Baker, “Guidelines for DiffServ service classes,” IETF RFC 4594, 2006.

http://www.mocalliance.org/industry/white_papers/PQoS_White_Paper.pdf .

Virtual Bridged Local Area Networks, IEEE Standard 802.IQ, 1998.

A. Dixit, G. Das, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Jitter performance for QoS in Ethernet passive optical networks,” in Proc. European Conf. on Optical Communication (ECOC), Geneva, Switzerland, Sept. Sept. 2011.

249025-ICT OASE Project, Requirements for European Next-Generation Optical Access Networks, Deliverable 2.1, 2011.

GPON, ITU-T Recommendation G.984.

Ethernet in the First Mile (EFM), IEEE Standard 802.3ah.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1.

Typical EPON network.

Fig. 2.
Fig. 2.

QoS elements and requirements.

Fig. 3.
Fig. 3.

Timing diagram with three subsequent transmission cycles between the j th ONU and the OLT with an indication of the different symbols used.

Fig. 4.
Fig. 4.

(a) Illustration of the variation of the first departed EF packet delay of the j th ONU because of the variable cycle time in IPACT. (b) Illustration of the constant first departed EF packet delay because of the MDAWS approach.

Fig. 5.
Fig. 5.

Simple EPON with an OLT and two ONUs showing REPORT ( R 1 and R 2 for ONU1 and 2) and GATE ( G 1 and G 2 for ONU1 and 2) message transmission.

Fig. 6.
Fig. 6.

Business ONUs (denoted in blue) are polled more frequently than home ONUs (denoted by orange).

Fig. 7.
Fig. 7.

(a) Format of GATE MPCPDU. (b) Format of REPORT MPCPDU.

Fig. 8.
Fig. 8.

Average packet delay for EF traffic when conventional DBA, DAWS, and MDAWS schemes are applied.

Fig. 9.
Fig. 9.

Average packet delay for AF and BE traffic when conventional DBA and DAGS/MDAWS (DA) schemes are applied.

Fig. 10.
Fig. 10.

Probability of the delay of the first-departed EF packet for half- and full-load scenarios for IPACT and MDAWS.

Fig. 11.
Fig. 11.

Probability of the delay of EF traffic for half- and full-load scenarios for DAWS, MDAWS, and CPBA.

Fig. 12.
Fig. 12.

Probability of the delay of AF traffic for half- and full-load scenarios for IPACT and DAGS.

Fig. 13.
Fig. 13.

EF packet delay scenario at the ONU.

Fig. 14.
Fig. 14.

Comparison of the channel utilization of the proposed DA algorithm with the HGP and CPBA-SLA protocol.

Fig. 15.
Fig. 15.

Packet loss rate (%) versus network load of the proposed DA algorithm and the HGP, CPBA-SLA, and IPACT protocol.

Fig. 16.
Fig. 16.

Average delay of EF and AF traffic of different ONU groups (A, B, C, D) when the MDAWS and DAGS algorithms are applied.

Fig. 17.
Fig. 17.

Channel utilization when traditional and differential polling schemes are combined with DA algorithms.

Fig. 18.
Fig. 18.

Throughput of various ONU groups (A, B, C, D) when the differential polling algorithm is combined with DA algorithms.

Fig. 19.
Fig. 19.

Average delay of EF and AF traffic of different ONU groups (A, B, C, D) when the MDAWS and DAGS algorithms are applied in an LR-PON scenario.

Tables (2)

Tables Icon

TABLE I Simulation Parameters

Tables Icon

TABLE II Differential Parameter Requirements of ONUs

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

J i [ j ] = D i [ j ] D i + 1 [ j ] ,
C i + 1 [ j ] = g t i + 2 [ j ] g t i + 1 [ j ] .
D max = C i [ j ] + C i + 1 [ j ] + U [ j ] ,
w i [ j ] = ( C i [ j ] + U [ j ] ) · u [ D max D EF ] ,
U [ j ] = U [ j ] + C i [ j ] w i [ j ] .
g t i + 1 [ j ] = g t ( i + u [ j k ] ) [ k ] + rtt [ k ] rtt [ j ] + ( j k + N * ( 1 u [ j k ] ) ) * ( g t ( i + u [ j k ] ) [ k ] g t ( i 1 + u [ j k ] ) [ k ] ) N o ,
R N = R P R L + G B ± ( U / O ) T B .
D N = D N + T L ,
n = N a + N b 2 + N c 3 + .
W max = [ D EF n · B ] · R u · d · W N o · D EF ,
Control Message Overhead = S CM · N o T max · R u × 100 % .
Formation of USRs = USR · N o T max · R u × 100 % .
Guard Band Overhead = N o · B T max × 100 % .
n · T c + Δ = D EF .
DV ( IPACT ) = f ( T c , 0 ) .
x = ( n + 1 ) · T c D EF .
DV = f ( n · T c , n T c x ) .
DV ( DAWS ) = f ( D EF Δ , D EF T c ) .
DV ( MDAWS ) = f ( D EF Δ , 0 ) .
Δ T p ,
Δ T c + Δ p ,
Δ D EF Δ n + Δ p ,
Δ D EF + n · Δ p n + 1 ,
D EF Δ n n + 1 · [ D EF Δ p ] .
Δ p = P N o · [ T L ( p ) T L ( l ) ] ,