Abstract

We propose and experimentally demonstrate upstream transmission in a wavelength division multiplexing/optical code division multiplexing (WDM/OCDM) passive optical network (PON) without using any high-cost devices such as mode-locked lasers or LiNbO3 external modulators. To make optical network units (ONUs) simple, a loop-back transmission of short optical pulses for OCDM in upstream transmission was investigated. The quality of the short optical pulses, remotely supplied via 23 km of single-mode fiber (SMF), was sufficient for 4-chip OCDM encoding at the ONUs. 2WDM/4OCDM signals, generated by multiplexing four OCDM signals using the same wavelength as well as another signal with a different wavelength, showed error-free transmission (bit error rate [BER]<109) over a 23 km SMF at 1.25Gb/s.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Fouli and M. Maier, “OCDMA and optical coding: principles, applications, and challenges,” IEEE Commun. Mag., vol.  45, no. 8, pp. 27–34, 2007.
    [CrossRef]
  2. P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, “Demonstration of a four-channel WDM/OCDMA system using 255-chip 320-Gchip/s quarternary phase coding gratings,” IEEE Photon. Technol. Lett., vol.  14, no. 2, pp. 227–229, 2002.
    [CrossRef]
  3. K. Kitayama, X. Wang, and N. Wada, “OCDMA over WDM PON-solution path to gigabit-symmetric FTTH,” J. Lightwave Technol., vol.  24, no. 4, pp. 1654–1662, 2006.
    [CrossRef]
  4. J.-F. Huang, Y.-T. Chang, and C.-C. Hsu, “Hybrid WDM and optical CDMA implemented over waveguide-grating-based fiber-to-the-home networks,” Opt. Fiber Technol., vol.  13, no. 3, pp. 215–225, 2007.
    [CrossRef]
  5. X. Wang, N. Wada, T. Miyazaki, G. Cincotti, and K. Kitayama, “Hybrid WDM/OCDMA for next generation access network,” Proc. SPIE, vol.  6783, 678328, 2007.
  6. X. Wang, N. Wada, T. Miyazaki, G. Cincotti, and K. Kitayama, “Field trial of 3-WDM×10-OCDMA×10.71  Gbps, asynchronous, WDM/DPSK-OCDMA using hybrid E/D without FEC and optical thresholding,” J. Lightwave Technol., vol.  25, no. 1, pp. 207–215, 2007.
    [CrossRef]
  7. H. Chen, S. Xiao, M. Zhu, J. Shi, and M. Bi, “Hybrid WDMA/OCDM system with the capability of encoding multiple wavelength channels by employing one encoder and one corresponding optical code,” Chin. Opt. Lett., vol.  8, no. 8, pp. 745–748, 2010.
    [CrossRef]
  8. Y.-K. Choi, K. Hosoya, C. G. Lee, M. Hanawa, and C.-S. Park, “A hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks,” Opt. Express, vol.  19, no. 7, pp. 6243–6252, 2011.
    [CrossRef]
  9. J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-switched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett., vol.  22, no. 8, pp. 583–585, 2010.
    [CrossRef]
  10. T. Hamanaka, X. Wang, N. Wada, A. Nishiki, and K. Kitayama, “Ten-user truly asynchronous gigabit OCDMA transmission experiment with a 511-chip SSFBG en/decoder,” J. Lightwave Technol., vol.  24, no. 1, pp. 95–102, 2006.
    [CrossRef]
  11. C.-S. Brés, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating,” IEEE Photon. Technol. Lett., vol.  18, no. 7, pp. 889–891, Apr. 2006.
    [CrossRef]
  12. E. Wong, K. L. Lee, and T. B. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol., vol.  25, no. 1, pp. 67–74, 2007.
    [CrossRef]
  13. S.-W. Jeon, Y. Kim, and C.-S. Park, “Long-reach transmission experiment of a wavelength division multiplexed-passive optical networks transmitter based on reflective semiconductor optical amplifiers,” Opt. Eng., vol.  51, no. 1, 015008, 2012.
    [CrossRef]
  14. M. Hanawa, “Fourier code: a novel orthogonal code for OCDM systems,” in Opto-Electronics and Communications Conf. and Australian Conf. on Optical Fibre Technology, Sydney, 2008.
  15. J.-P. Blondel, F. Misk, and P. M. Gabla, “Theoretical evaluation and record experimental demonstration of budget improvement with remotely pumped erbium-doped fiber amplification,” IEEE Photon. Technol. Lett., vol.  5, no. 12, pp. 1430–1433, 1993.
    [CrossRef]
  16. J. M. Oh, S. G. Koo, D. Lee, and S.-J. Park, “Enhancement of the performance of a reflective SOA-based hybrid WDM/TDM PON system with a remotely pumped erbium-doped fiber amplifier,” J. Lightwave Technol., vol.  26, no. 1, pp. 144–149, 2008.
    [CrossRef]
  17. K. Nonaka, H. Mizuno, H. Song, N. Kitaoka, and A. Otani, “Low-time-jitter short-pulse generator using compact gain-switching laser diode module with optical feedback fiber line,” J. Appl. Phys., vol.  47, no. 8, pp. 6754–6756, 2008.
    [CrossRef]
  18. M. Hanawa, K. Hosoya, N. V. Minh, K. Nakamura, and K. Nonaka, “Experimental demonstration of novel poly-phase OCDM code,” in Opto-Electronics and Communications Conf. and Australian Conf. on Optical Fibre Technology, Sydney, 2008.
  19. N. Wada, “Optical code processing system, device, and its application,” J. Netw., vol.  5, no. 2, pp. 242–250, 2010.
    [CrossRef]
  20. M. Hanawa, “Multiple access interference reduction by limiting receiver bandwidth on Fourier code based-OCDM system,” in Opto-Electronics and Communications Conf., Hong Kong, 2009.

2012 (1)

S.-W. Jeon, Y. Kim, and C.-S. Park, “Long-reach transmission experiment of a wavelength division multiplexed-passive optical networks transmitter based on reflective semiconductor optical amplifiers,” Opt. Eng., vol.  51, no. 1, 015008, 2012.
[CrossRef]

2011 (1)

2010 (3)

H. Chen, S. Xiao, M. Zhu, J. Shi, and M. Bi, “Hybrid WDMA/OCDM system with the capability of encoding multiple wavelength channels by employing one encoder and one corresponding optical code,” Chin. Opt. Lett., vol.  8, no. 8, pp. 745–748, 2010.
[CrossRef]

N. Wada, “Optical code processing system, device, and its application,” J. Netw., vol.  5, no. 2, pp. 242–250, 2010.
[CrossRef]

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-switched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett., vol.  22, no. 8, pp. 583–585, 2010.
[CrossRef]

2008 (2)

K. Nonaka, H. Mizuno, H. Song, N. Kitaoka, and A. Otani, “Low-time-jitter short-pulse generator using compact gain-switching laser diode module with optical feedback fiber line,” J. Appl. Phys., vol.  47, no. 8, pp. 6754–6756, 2008.
[CrossRef]

J. M. Oh, S. G. Koo, D. Lee, and S.-J. Park, “Enhancement of the performance of a reflective SOA-based hybrid WDM/TDM PON system with a remotely pumped erbium-doped fiber amplifier,” J. Lightwave Technol., vol.  26, no. 1, pp. 144–149, 2008.
[CrossRef]

2007 (5)

X. Wang, N. Wada, T. Miyazaki, G. Cincotti, and K. Kitayama, “Field trial of 3-WDM×10-OCDMA×10.71  Gbps, asynchronous, WDM/DPSK-OCDMA using hybrid E/D without FEC and optical thresholding,” J. Lightwave Technol., vol.  25, no. 1, pp. 207–215, 2007.
[CrossRef]

E. Wong, K. L. Lee, and T. B. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol., vol.  25, no. 1, pp. 67–74, 2007.
[CrossRef]

J.-F. Huang, Y.-T. Chang, and C.-C. Hsu, “Hybrid WDM and optical CDMA implemented over waveguide-grating-based fiber-to-the-home networks,” Opt. Fiber Technol., vol.  13, no. 3, pp. 215–225, 2007.
[CrossRef]

X. Wang, N. Wada, T. Miyazaki, G. Cincotti, and K. Kitayama, “Hybrid WDM/OCDMA for next generation access network,” Proc. SPIE, vol.  6783, 678328, 2007.

K. Fouli and M. Maier, “OCDMA and optical coding: principles, applications, and challenges,” IEEE Commun. Mag., vol.  45, no. 8, pp. 27–34, 2007.
[CrossRef]

2006 (3)

2002 (1)

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, “Demonstration of a four-channel WDM/OCDMA system using 255-chip 320-Gchip/s quarternary phase coding gratings,” IEEE Photon. Technol. Lett., vol.  14, no. 2, pp. 227–229, 2002.
[CrossRef]

1993 (1)

J.-P. Blondel, F. Misk, and P. M. Gabla, “Theoretical evaluation and record experimental demonstration of budget improvement with remotely pumped erbium-doped fiber amplification,” IEEE Photon. Technol. Lett., vol.  5, no. 12, pp. 1430–1433, 1993.
[CrossRef]

Anderson, T. B.

Bi, M.

Blondel, J.-P.

J.-P. Blondel, F. Misk, and P. M. Gabla, “Theoretical evaluation and record experimental demonstration of budget improvement with remotely pumped erbium-doped fiber amplification,” IEEE Photon. Technol. Lett., vol.  5, no. 12, pp. 1430–1433, 1993.
[CrossRef]

Brés, C.-S.

C.-S. Brés, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating,” IEEE Photon. Technol. Lett., vol.  18, no. 7, pp. 889–891, Apr. 2006.
[CrossRef]

Chang, Y.-T.

J.-F. Huang, Y.-T. Chang, and C.-C. Hsu, “Hybrid WDM and optical CDMA implemented over waveguide-grating-based fiber-to-the-home networks,” Opt. Fiber Technol., vol.  13, no. 3, pp. 215–225, 2007.
[CrossRef]

Chen, H.

Choi, Y.-K.

Cincotti, G.

Fouli, K.

K. Fouli and M. Maier, “OCDMA and optical coding: principles, applications, and challenges,” IEEE Commun. Mag., vol.  45, no. 8, pp. 27–34, 2007.
[CrossRef]

Gabla, P. M.

J.-P. Blondel, F. Misk, and P. M. Gabla, “Theoretical evaluation and record experimental demonstration of budget improvement with remotely pumped erbium-doped fiber amplification,” IEEE Photon. Technol. Lett., vol.  5, no. 12, pp. 1430–1433, 1993.
[CrossRef]

Glesk, I.

C.-S. Brés, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating,” IEEE Photon. Technol. Lett., vol.  18, no. 7, pp. 889–891, Apr. 2006.
[CrossRef]

Guo, C.

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-switched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett., vol.  22, no. 8, pp. 583–585, 2010.
[CrossRef]

Hamanaka, T.

Hanawa, M.

Y.-K. Choi, K. Hosoya, C. G. Lee, M. Hanawa, and C.-S. Park, “A hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks,” Opt. Express, vol.  19, no. 7, pp. 6243–6252, 2011.
[CrossRef]

M. Hanawa, “Multiple access interference reduction by limiting receiver bandwidth on Fourier code based-OCDM system,” in Opto-Electronics and Communications Conf., Hong Kong, 2009.

M. Hanawa, “Fourier code: a novel orthogonal code for OCDM systems,” in Opto-Electronics and Communications Conf. and Australian Conf. on Optical Fibre Technology, Sydney, 2008.

M. Hanawa, K. Hosoya, N. V. Minh, K. Nakamura, and K. Nonaka, “Experimental demonstration of novel poly-phase OCDM code,” in Opto-Electronics and Communications Conf. and Australian Conf. on Optical Fibre Technology, Sydney, 2008.

He, S.

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-switched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett., vol.  22, no. 8, pp. 583–585, 2010.
[CrossRef]

Hong, X.

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-switched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett., vol.  22, no. 8, pp. 583–585, 2010.
[CrossRef]

Hosoya, K.

Y.-K. Choi, K. Hosoya, C. G. Lee, M. Hanawa, and C.-S. Park, “A hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks,” Opt. Express, vol.  19, no. 7, pp. 6243–6252, 2011.
[CrossRef]

M. Hanawa, K. Hosoya, N. V. Minh, K. Nakamura, and K. Nonaka, “Experimental demonstration of novel poly-phase OCDM code,” in Opto-Electronics and Communications Conf. and Australian Conf. on Optical Fibre Technology, Sydney, 2008.

Hsu, C.-C.

J.-F. Huang, Y.-T. Chang, and C.-C. Hsu, “Hybrid WDM and optical CDMA implemented over waveguide-grating-based fiber-to-the-home networks,” Opt. Fiber Technol., vol.  13, no. 3, pp. 215–225, 2007.
[CrossRef]

Huang, J.-F.

J.-F. Huang, Y.-T. Chang, and C.-C. Hsu, “Hybrid WDM and optical CDMA implemented over waveguide-grating-based fiber-to-the-home networks,” Opt. Fiber Technol., vol.  13, no. 3, pp. 215–225, 2007.
[CrossRef]

Ibsen, M.

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, “Demonstration of a four-channel WDM/OCDMA system using 255-chip 320-Gchip/s quarternary phase coding gratings,” IEEE Photon. Technol. Lett., vol.  14, no. 2, pp. 227–229, 2002.
[CrossRef]

Jeon, S.-W.

S.-W. Jeon, Y. Kim, and C.-S. Park, “Long-reach transmission experiment of a wavelength division multiplexed-passive optical networks transmitter based on reflective semiconductor optical amplifiers,” Opt. Eng., vol.  51, no. 1, 015008, 2012.
[CrossRef]

Kim, Y.

S.-W. Jeon, Y. Kim, and C.-S. Park, “Long-reach transmission experiment of a wavelength division multiplexed-passive optical networks transmitter based on reflective semiconductor optical amplifiers,” Opt. Eng., vol.  51, no. 1, 015008, 2012.
[CrossRef]

Kitaoka, N.

K. Nonaka, H. Mizuno, H. Song, N. Kitaoka, and A. Otani, “Low-time-jitter short-pulse generator using compact gain-switching laser diode module with optical feedback fiber line,” J. Appl. Phys., vol.  47, no. 8, pp. 6754–6756, 2008.
[CrossRef]

Kitayama, K.

Koo, S. G.

Lee, C. G.

Lee, D.

Lee, J. H.

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, “Demonstration of a four-channel WDM/OCDMA system using 255-chip 320-Gchip/s quarternary phase coding gratings,” IEEE Photon. Technol. Lett., vol.  14, no. 2, pp. 227–229, 2002.
[CrossRef]

Lee, K. L.

Liu, J.

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-switched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett., vol.  22, no. 8, pp. 583–585, 2010.
[CrossRef]

Lu, Y.

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-switched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett., vol.  22, no. 8, pp. 583–585, 2010.
[CrossRef]

Maier, M.

K. Fouli and M. Maier, “OCDMA and optical coding: principles, applications, and challenges,” IEEE Commun. Mag., vol.  45, no. 8, pp. 27–34, 2007.
[CrossRef]

Minh, N. V.

M. Hanawa, K. Hosoya, N. V. Minh, K. Nakamura, and K. Nonaka, “Experimental demonstration of novel poly-phase OCDM code,” in Opto-Electronics and Communications Conf. and Australian Conf. on Optical Fibre Technology, Sydney, 2008.

Misk, F.

J.-P. Blondel, F. Misk, and P. M. Gabla, “Theoretical evaluation and record experimental demonstration of budget improvement with remotely pumped erbium-doped fiber amplification,” IEEE Photon. Technol. Lett., vol.  5, no. 12, pp. 1430–1433, 1993.
[CrossRef]

Miyazaki, T.

Mizuno, H.

K. Nonaka, H. Mizuno, H. Song, N. Kitaoka, and A. Otani, “Low-time-jitter short-pulse generator using compact gain-switching laser diode module with optical feedback fiber line,” J. Appl. Phys., vol.  47, no. 8, pp. 6754–6756, 2008.
[CrossRef]

Nakamura, K.

M. Hanawa, K. Hosoya, N. V. Minh, K. Nakamura, and K. Nonaka, “Experimental demonstration of novel poly-phase OCDM code,” in Opto-Electronics and Communications Conf. and Australian Conf. on Optical Fibre Technology, Sydney, 2008.

Nishiki, A.

Nonaka, K.

K. Nonaka, H. Mizuno, H. Song, N. Kitaoka, and A. Otani, “Low-time-jitter short-pulse generator using compact gain-switching laser diode module with optical feedback fiber line,” J. Appl. Phys., vol.  47, no. 8, pp. 6754–6756, 2008.
[CrossRef]

M. Hanawa, K. Hosoya, N. V. Minh, K. Nakamura, and K. Nonaka, “Experimental demonstration of novel poly-phase OCDM code,” in Opto-Electronics and Communications Conf. and Australian Conf. on Optical Fibre Technology, Sydney, 2008.

Oh, J. M.

Otani, A.

K. Nonaka, H. Mizuno, H. Song, N. Kitaoka, and A. Otani, “Low-time-jitter short-pulse generator using compact gain-switching laser diode module with optical feedback fiber line,” J. Appl. Phys., vol.  47, no. 8, pp. 6754–6756, 2008.
[CrossRef]

Park, C.-S.

S.-W. Jeon, Y. Kim, and C.-S. Park, “Long-reach transmission experiment of a wavelength division multiplexed-passive optical networks transmitter based on reflective semiconductor optical amplifiers,” Opt. Eng., vol.  51, no. 1, 015008, 2012.
[CrossRef]

Y.-K. Choi, K. Hosoya, C. G. Lee, M. Hanawa, and C.-S. Park, “A hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks,” Opt. Express, vol.  19, no. 7, pp. 6243–6252, 2011.
[CrossRef]

Park, S.-J.

Petropoulos, P.

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, “Demonstration of a four-channel WDM/OCDMA system using 255-chip 320-Gchip/s quarternary phase coding gratings,” IEEE Photon. Technol. Lett., vol.  14, no. 2, pp. 227–229, 2002.
[CrossRef]

Prucnal, P. R.

C.-S. Brés, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating,” IEEE Photon. Technol. Lett., vol.  18, no. 7, pp. 889–891, Apr. 2006.
[CrossRef]

Richardson, D. J.

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, “Demonstration of a four-channel WDM/OCDMA system using 255-chip 320-Gchip/s quarternary phase coding gratings,” IEEE Photon. Technol. Lett., vol.  14, no. 2, pp. 227–229, 2002.
[CrossRef]

Shi, J.

Song, H.

K. Nonaka, H. Mizuno, H. Song, N. Kitaoka, and A. Otani, “Low-time-jitter short-pulse generator using compact gain-switching laser diode module with optical feedback fiber line,” J. Appl. Phys., vol.  47, no. 8, pp. 6754–6756, 2008.
[CrossRef]

Teh, P. C.

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, “Demonstration of a four-channel WDM/OCDMA system using 255-chip 320-Gchip/s quarternary phase coding gratings,” IEEE Photon. Technol. Lett., vol.  14, no. 2, pp. 227–229, 2002.
[CrossRef]

Wada, N.

Wang, X.

Wong, E.

Xiao, S.

Xu, L.

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-switched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett., vol.  22, no. 8, pp. 583–585, 2010.
[CrossRef]

Zhu, M.

Chin. Opt. Lett. (1)

IEEE Commun. Mag. (1)

K. Fouli and M. Maier, “OCDMA and optical coding: principles, applications, and challenges,” IEEE Commun. Mag., vol.  45, no. 8, pp. 27–34, 2007.
[CrossRef]

IEEE Photon. Technol. Lett. (4)

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, “Demonstration of a four-channel WDM/OCDMA system using 255-chip 320-Gchip/s quarternary phase coding gratings,” IEEE Photon. Technol. Lett., vol.  14, no. 2, pp. 227–229, 2002.
[CrossRef]

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-switched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett., vol.  22, no. 8, pp. 583–585, 2010.
[CrossRef]

J.-P. Blondel, F. Misk, and P. M. Gabla, “Theoretical evaluation and record experimental demonstration of budget improvement with remotely pumped erbium-doped fiber amplification,” IEEE Photon. Technol. Lett., vol.  5, no. 12, pp. 1430–1433, 1993.
[CrossRef]

C.-S. Brés, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating,” IEEE Photon. Technol. Lett., vol.  18, no. 7, pp. 889–891, Apr. 2006.
[CrossRef]

J. Appl. Phys. (1)

K. Nonaka, H. Mizuno, H. Song, N. Kitaoka, and A. Otani, “Low-time-jitter short-pulse generator using compact gain-switching laser diode module with optical feedback fiber line,” J. Appl. Phys., vol.  47, no. 8, pp. 6754–6756, 2008.
[CrossRef]

J. Lightwave Technol. (5)

J. Netw. (1)

N. Wada, “Optical code processing system, device, and its application,” J. Netw., vol.  5, no. 2, pp. 242–250, 2010.
[CrossRef]

Opt. Eng. (1)

S.-W. Jeon, Y. Kim, and C.-S. Park, “Long-reach transmission experiment of a wavelength division multiplexed-passive optical networks transmitter based on reflective semiconductor optical amplifiers,” Opt. Eng., vol.  51, no. 1, 015008, 2012.
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

J.-F. Huang, Y.-T. Chang, and C.-C. Hsu, “Hybrid WDM and optical CDMA implemented over waveguide-grating-based fiber-to-the-home networks,” Opt. Fiber Technol., vol.  13, no. 3, pp. 215–225, 2007.
[CrossRef]

Proc. SPIE (1)

X. Wang, N. Wada, T. Miyazaki, G. Cincotti, and K. Kitayama, “Hybrid WDM/OCDMA for next generation access network,” Proc. SPIE, vol.  6783, 678328, 2007.

Other (3)

M. Hanawa, K. Hosoya, N. V. Minh, K. Nakamura, and K. Nonaka, “Experimental demonstration of novel poly-phase OCDM code,” in Opto-Electronics and Communications Conf. and Australian Conf. on Optical Fibre Technology, Sydney, 2008.

M. Hanawa, “Fourier code: a novel orthogonal code for OCDM systems,” in Opto-Electronics and Communications Conf. and Australian Conf. on Optical Fibre Technology, Sydney, 2008.

M. Hanawa, “Multiple access interference reduction by limiting receiver bandwidth on Fourier code based-OCDM system,” in Opto-Electronics and Communications Conf., Hong Kong, 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Proposed WDM/OCDM-PON architecture. MOD, modulator.

Fig. 2.
Fig. 2.

Experimental setup.

Fig. 3.
Fig. 3.

Short optical pulse train waveforms and their optical spectra: (a) pulse width=34ps and (b) optical spectrum at λ1=1552.0nm, (c) pulse width=34ps and (d) optical spectrum at λ2=1552.8nm.

Fig. 4.
Fig. 4.

Output spectra from RSOA #1 (λ1) and RSOA #2 (λ2) externally injected by the short optical pulses.

Fig. 5.
Fig. 5.

Measured waveforms: eye diagram of (a) the modulated signal for λ1, (b) the encoded signal with (C1,λ1)ONU#1, (c) the modulated signal for λ2, and (d) the encoded signal with (C1,λ2)ONU#2.

Fig. 6.
Fig. 6.

Measured correlation waveforms after code switching to Decoder #1: (a) auto-correlation waveform for (C1,λ1)ONU#1×(C1,λ1)OLT, (b) cross-correlation waveform for (C1,λ1)ONU#1×(C2,λ1)OLT, (c) cross-correlation waveform for (C1,λ1)ONU#1×(C3,λ1)OLT, and (d) cross-correlation waveform for (C1,λ1)ONU#1×(C4,λ1)OLT. All waveforms were measured at (A) in Fig. 2.

Fig. 7.
Fig. 7.

Measured correlation waveforms after code switching to Decoder #2: (a) auto-correlation waveform for (C1,λ2)ONU#2×(C1,λ2)OLT, (b) cross-correlation waveform for (C1,λ2)ONU#2×(C2,λ2)OLT, (c) cross-correlation waveform for (C1,λ2)ONU#2×(C3,λ2)OLT, and (d) cross-correlation waveform for (C1,λ2)ONU#2×(C4,λ2)OLT.

Fig. 8.
Fig. 8.

Measured BER curves: launching powers of 0dBm (squares), 5dBm (circles), 10dBm (triangles), and 15dBm (inverted triangles).

Fig. 9.
Fig. 9.

Measured BER curves:

Tables (2)

Tables Icon

TABLE I Inputs, Outputs, and Gains of Remotely Pumped EDFAs

Tables Icon

TABLE II Power Budget for Upstream Signals