Abstract

Electrical packet switching is well known as a flexible solution for small data transfers, whereas optical flow switching (OFS) might be an effective solution for large Internet file transfers. The UltraFlow project, a joint effort of three universities, Stanford, Massachusetts Institute of Technology, and University of Texas–Dallas, aims at providing an efficient dual-mode solution (i.e., IP and OFS) to the current network. In this paper, we propose and experimentally demonstrate UltraFlow Access, a novel optical access network that enables dual-mode service to the end users: IP and OFS. The new architecture cooperates with legacy passive optical networks (PONs) to provide both IP and novel OFS services. The latter is facilitated by a novel optical flow network unit (OFNU) that we have proposed, designed, and experimentally demonstrated. Different colored and colorless OFNU designs are presented, and their impact on the network performance is explored. Our testbed experiments demonstrate concurrent bidirectional 1.25 Gbps IP and 10 Gbps per-wavelength Flow error-free communication delivered over the same infrastructure. The support of intra-PON OFS communication, that is, between two OFNUs in the same PON, is also explored and experimentally demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. W. S. Chan, “Optical flow switching networks,” Proc. IEEE, vol.  100, no. 5, pp. 1079–1091, 2012.
    [CrossRef]
  2. V. W. S. Chan, G. Weichenberg, and M. Medard, “Optical flow switching,” in 3rd Int. Conf. on Broadband Communication, Networks and Systems, 2008, pp. 1–8.
  3. B. Ganguly and V. W. S. Chan, “A scheduled approach to optical flow switching in the ONRAMP optical access network testbed,” in Optical Fiber Communication Conf., Anaheim, CA, 2002, paper WG2.
  4. L. G. Kazovsky, A. R. Dhaini, M. D. Leenheer, T. S. Shen, S. Yin, and B. A. Detwiler, “UltraFlow access networks: A dual-mode solution for the access bottleneck,” in Int. Conf. on Transparent Optical Networks (ICTON), Cartagena, Spain, 2003, paper Tu.C3.1.
  5. L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-generation optical access networks,” J. Lightwave Technol., vol.  25, no. 11, pp. 3428–3442, 2007.
    [CrossRef]
  6. J. Kim, M. Maier, T. Hamada, and L. G. Kazovsky, “OBT: Optical burst transport in metro area networks,” IEEE Commun. Mag., vol.  45, no. 11, pp. 44–51, 2007.
    [CrossRef]
  7. “Spectral grids for WDM applications: DWDM frequency grid,” , Feb. 2012.
  8. K.-M. Choi, J.-H. Moon, J. H. Lee, and C.-H. Lee, “An evolution method from a TDM-PON with a video overlay to a WDM-PON,” IEEE Photon. Technol. Lett., vol.  20, no. 4, pp. 312–314, 2008.
    [CrossRef]
  9. “Gigabit-capable passive optical networks (GPON): General characteristics,” , Mar. 2008.
  10. J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett., vol.  15, no. 7, pp. 984–986, 2003.
    [CrossRef]
  11. X. Liu, X. Wei, Y. Su, J. Leuthold, Y.-H. Kao, I. Kang, and R. C. Giles, “Transmission of an ASK-labeled RZ-DPSK signal and label erasure using a saturated SOA,” IEEE Photon. Technol. Lett., vol.  16, no. 6, pp. 1594–1596, 2004.
    [CrossRef]
  12. C. W. Chow, C. S. Wong, and H. K. Tsang, “Optical packet labeling based on simultaneous polarization shift keying and amplitude shift keying,” Opt. Lett., vol.  29, no. 16, pp. 1861–1863, 2004.
    [CrossRef]
  13. Z. Zhu, Z. Pan, and S. J. B. Yoo, “A compact all-optical subcarrier label-swapping system using an integrated EML for 10-Gb/s optical label-switching networks,” IEEE Photon. Technol. Lett., vol.  17, no. 2, pp. 426–428, 2005.
    [CrossRef]
  14. Y.-M. Lin, M. C. Yuang, S.-L. Lee, and W. I. Way, “Using superimposed ASK label in a 10-Gb/s multihop all-optical label swapping system,” J. Lightwave Technol., vol.  22, no. 2, pp. 351–361, 2004.
    [CrossRef]
  15. L. G. Kazovsky and P. T. Poggiolini, “STARNET: A multi-gigabit-per-second optical LAN utilizing a passive WDM star,” J. Lightwave Technol., vol.  11, no. 5, pp. 1009–1027, 1993.
    [CrossRef]
  16. “Gigabit-capable passive optical networks: General characteristics,” , Mar. 2008.
  17. H. C. Tijms, A First Course in Stochastic Models. Wiley, 2003, ch. 9.
  18. M. S. Kiaei, L. Meng, C. Assi, and M. Maier, “Efficient scheduling and grant sizing methods for WDM PONs,” J. Lightwave Technol., vol.  28, no. 13, pp. 1922–1931, 2010.
    [CrossRef]
  19. G. Weichenberg, V. W. S. Chan, and M. Médard, “Design and analysis of optical flow-switched networks,” IEEE J. Opt. Commun. Netw., vol.  1, no. 3, pp. B81–B97, Aug. 2009.
  20. L. Zhang and V. W. S. Chan, “Fast scheduling for optical flow switching,” presented at the IEEE Global Telecommunications Conf. (GLOBECOM), Miami, FL, Dec. 6–10, 2010.
  21. Z. Rosberg, J. Li, F. Li, and M. Zukerman, “Flow scheduling in optical flow switched (OFS) networks under transient conditions,” J. Lightwave Technol., vol.  29, no. 21, pp. 3250–3264, Nov. 2011.
    [CrossRef]
  22. J. Prat, Next-Generation FTTH Passive Optical Networks.Springer, 2008, ch. 4.
  23. M. Fujiwara, J.-I. Kani, H. Suzuki, and K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” J. Lightwave Technol., vol.  24, no. 2, pp. 740–746, 2006.
    [CrossRef]
  24. H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N × N optical interconnection,” J. Lightwave Technol., vol.  14, no. 6, pp. 1097–1105, 1996.
    [CrossRef]
  25. C. Arellano, K.-D. Langer, and J. Prat, “Reflections and multiple Rayleigh backscatterng in WDM single-fiber loopback access networks,” J. Lightwave Technol., vol.  27, no. 1, pp. 12–18, 2009.
    [CrossRef]
  26. E. L. Goldstein, L. Eskildsen, and A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett., vol.  6, no. 5, pp. 657–660, 1994.
    [CrossRef]
  27. G. P. Agrawal, Fiber-Optic Communication Systems. Wiley, 2010, chs. 4 and 7.
  28. F. P. Kapron, B. P. Adams, E. A. Thomas, and J. W. Peters, “Fiber-optic reflection measurements using OCWR and OTDR techniques,” J. Lightwave Technol., vol.  7, no. 8, pp. 1234–1241, 1989.
    [CrossRef]

2012 (1)

V. W. S. Chan, “Optical flow switching networks,” Proc. IEEE, vol.  100, no. 5, pp. 1079–1091, 2012.
[CrossRef]

2011 (1)

2010 (1)

2009 (2)

G. Weichenberg, V. W. S. Chan, and M. Médard, “Design and analysis of optical flow-switched networks,” IEEE J. Opt. Commun. Netw., vol.  1, no. 3, pp. B81–B97, Aug. 2009.

C. Arellano, K.-D. Langer, and J. Prat, “Reflections and multiple Rayleigh backscatterng in WDM single-fiber loopback access networks,” J. Lightwave Technol., vol.  27, no. 1, pp. 12–18, 2009.
[CrossRef]

2008 (1)

K.-M. Choi, J.-H. Moon, J. H. Lee, and C.-H. Lee, “An evolution method from a TDM-PON with a video overlay to a WDM-PON,” IEEE Photon. Technol. Lett., vol.  20, no. 4, pp. 312–314, 2008.
[CrossRef]

2007 (2)

L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-generation optical access networks,” J. Lightwave Technol., vol.  25, no. 11, pp. 3428–3442, 2007.
[CrossRef]

J. Kim, M. Maier, T. Hamada, and L. G. Kazovsky, “OBT: Optical burst transport in metro area networks,” IEEE Commun. Mag., vol.  45, no. 11, pp. 44–51, 2007.
[CrossRef]

2006 (1)

2005 (1)

Z. Zhu, Z. Pan, and S. J. B. Yoo, “A compact all-optical subcarrier label-swapping system using an integrated EML for 10-Gb/s optical label-switching networks,” IEEE Photon. Technol. Lett., vol.  17, no. 2, pp. 426–428, 2005.
[CrossRef]

2004 (3)

2003 (1)

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett., vol.  15, no. 7, pp. 984–986, 2003.
[CrossRef]

1996 (1)

H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N × N optical interconnection,” J. Lightwave Technol., vol.  14, no. 6, pp. 1097–1105, 1996.
[CrossRef]

1994 (1)

E. L. Goldstein, L. Eskildsen, and A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett., vol.  6, no. 5, pp. 657–660, 1994.
[CrossRef]

1993 (1)

L. G. Kazovsky and P. T. Poggiolini, “STARNET: A multi-gigabit-per-second optical LAN utilizing a passive WDM star,” J. Lightwave Technol., vol.  11, no. 5, pp. 1009–1027, 1993.
[CrossRef]

1989 (1)

F. P. Kapron, B. P. Adams, E. A. Thomas, and J. W. Peters, “Fiber-optic reflection measurements using OCWR and OTDR techniques,” J. Lightwave Technol., vol.  7, no. 8, pp. 1234–1241, 1989.
[CrossRef]

Adams, B. P.

F. P. Kapron, B. P. Adams, E. A. Thomas, and J. W. Peters, “Fiber-optic reflection measurements using OCWR and OTDR techniques,” J. Lightwave Technol., vol.  7, no. 8, pp. 1234–1241, 1989.
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems. Wiley, 2010, chs. 4 and 7.

Arellano, C.

Assi, C.

Chan, V. W. S.

V. W. S. Chan, “Optical flow switching networks,” Proc. IEEE, vol.  100, no. 5, pp. 1079–1091, 2012.
[CrossRef]

G. Weichenberg, V. W. S. Chan, and M. Médard, “Design and analysis of optical flow-switched networks,” IEEE J. Opt. Commun. Netw., vol.  1, no. 3, pp. B81–B97, Aug. 2009.

L. Zhang and V. W. S. Chan, “Fast scheduling for optical flow switching,” presented at the IEEE Global Telecommunications Conf. (GLOBECOM), Miami, FL, Dec. 6–10, 2010.

V. W. S. Chan, G. Weichenberg, and M. Medard, “Optical flow switching,” in 3rd Int. Conf. on Broadband Communication, Networks and Systems, 2008, pp. 1–8.

B. Ganguly and V. W. S. Chan, “A scheduled approach to optical flow switching in the ONRAMP optical access network testbed,” in Optical Fiber Communication Conf., Anaheim, CA, 2002, paper WG2.

Cheng, N.

Chi, N.

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett., vol.  15, no. 7, pp. 984–986, 2003.
[CrossRef]

Choi, K.-M.

K.-M. Choi, J.-H. Moon, J. H. Lee, and C.-H. Lee, “An evolution method from a TDM-PON with a video overlay to a WDM-PON,” IEEE Photon. Technol. Lett., vol.  20, no. 4, pp. 312–314, 2008.
[CrossRef]

Chow, C. W.

Detwiler, B. A.

L. G. Kazovsky, A. R. Dhaini, M. D. Leenheer, T. S. Shen, S. Yin, and B. A. Detwiler, “UltraFlow access networks: A dual-mode solution for the access bottleneck,” in Int. Conf. on Transparent Optical Networks (ICTON), Cartagena, Spain, 2003, paper Tu.C3.1.

Dhaini, A. R.

L. G. Kazovsky, A. R. Dhaini, M. D. Leenheer, T. S. Shen, S. Yin, and B. A. Detwiler, “UltraFlow access networks: A dual-mode solution for the access bottleneck,” in Int. Conf. on Transparent Optical Networks (ICTON), Cartagena, Spain, 2003, paper Tu.C3.1.

Elrefaie, A. F.

E. L. Goldstein, L. Eskildsen, and A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett., vol.  6, no. 5, pp. 657–660, 1994.
[CrossRef]

Eskildsen, L.

E. L. Goldstein, L. Eskildsen, and A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett., vol.  6, no. 5, pp. 657–660, 1994.
[CrossRef]

Fujiwara, M.

Ganguly, B.

B. Ganguly and V. W. S. Chan, “A scheduled approach to optical flow switching in the ONRAMP optical access network testbed,” in Optical Fiber Communication Conf., Anaheim, CA, 2002, paper WG2.

Giles, R. C.

X. Liu, X. Wei, Y. Su, J. Leuthold, Y.-H. Kao, I. Kang, and R. C. Giles, “Transmission of an ASK-labeled RZ-DPSK signal and label erasure using a saturated SOA,” IEEE Photon. Technol. Lett., vol.  16, no. 6, pp. 1594–1596, 2004.
[CrossRef]

Goldstein, E. L.

E. L. Goldstein, L. Eskildsen, and A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett., vol.  6, no. 5, pp. 657–660, 1994.
[CrossRef]

Gutierrez, D.

Hamada, T.

J. Kim, M. Maier, T. Hamada, and L. G. Kazovsky, “OBT: Optical burst transport in metro area networks,” IEEE Commun. Mag., vol.  45, no. 11, pp. 44–51, 2007.
[CrossRef]

Holm-Nielsen, P. V.

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett., vol.  15, no. 7, pp. 984–986, 2003.
[CrossRef]

Iwatsuki, K.

Jeppesen, P.

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett., vol.  15, no. 7, pp. 984–986, 2003.
[CrossRef]

Kang, I.

X. Liu, X. Wei, Y. Su, J. Leuthold, Y.-H. Kao, I. Kang, and R. C. Giles, “Transmission of an ASK-labeled RZ-DPSK signal and label erasure using a saturated SOA,” IEEE Photon. Technol. Lett., vol.  16, no. 6, pp. 1594–1596, 2004.
[CrossRef]

Kani, J.-I.

Kao, Y.-H.

X. Liu, X. Wei, Y. Su, J. Leuthold, Y.-H. Kao, I. Kang, and R. C. Giles, “Transmission of an ASK-labeled RZ-DPSK signal and label erasure using a saturated SOA,” IEEE Photon. Technol. Lett., vol.  16, no. 6, pp. 1594–1596, 2004.
[CrossRef]

Kapron, F. P.

F. P. Kapron, B. P. Adams, E. A. Thomas, and J. W. Peters, “Fiber-optic reflection measurements using OCWR and OTDR techniques,” J. Lightwave Technol., vol.  7, no. 8, pp. 1234–1241, 1989.
[CrossRef]

Kazovsky, L. G.

J. Kim, M. Maier, T. Hamada, and L. G. Kazovsky, “OBT: Optical burst transport in metro area networks,” IEEE Commun. Mag., vol.  45, no. 11, pp. 44–51, 2007.
[CrossRef]

L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-generation optical access networks,” J. Lightwave Technol., vol.  25, no. 11, pp. 3428–3442, 2007.
[CrossRef]

L. G. Kazovsky and P. T. Poggiolini, “STARNET: A multi-gigabit-per-second optical LAN utilizing a passive WDM star,” J. Lightwave Technol., vol.  11, no. 5, pp. 1009–1027, 1993.
[CrossRef]

L. G. Kazovsky, A. R. Dhaini, M. D. Leenheer, T. S. Shen, S. Yin, and B. A. Detwiler, “UltraFlow access networks: A dual-mode solution for the access bottleneck,” in Int. Conf. on Transparent Optical Networks (ICTON), Cartagena, Spain, 2003, paper Tu.C3.1.

Kiaei, M. S.

Kim, J.

J. Kim, M. Maier, T. Hamada, and L. G. Kazovsky, “OBT: Optical burst transport in metro area networks,” IEEE Commun. Mag., vol.  45, no. 11, pp. 44–51, 2007.
[CrossRef]

Langer, K.-D.

Lee, C.-H.

K.-M. Choi, J.-H. Moon, J. H. Lee, and C.-H. Lee, “An evolution method from a TDM-PON with a video overlay to a WDM-PON,” IEEE Photon. Technol. Lett., vol.  20, no. 4, pp. 312–314, 2008.
[CrossRef]

Lee, J. H.

K.-M. Choi, J.-H. Moon, J. H. Lee, and C.-H. Lee, “An evolution method from a TDM-PON with a video overlay to a WDM-PON,” IEEE Photon. Technol. Lett., vol.  20, no. 4, pp. 312–314, 2008.
[CrossRef]

Lee, S.-L.

Leenheer, M. D.

L. G. Kazovsky, A. R. Dhaini, M. D. Leenheer, T. S. Shen, S. Yin, and B. A. Detwiler, “UltraFlow access networks: A dual-mode solution for the access bottleneck,” in Int. Conf. on Transparent Optical Networks (ICTON), Cartagena, Spain, 2003, paper Tu.C3.1.

Leuthold, J.

X. Liu, X. Wei, Y. Su, J. Leuthold, Y.-H. Kao, I. Kang, and R. C. Giles, “Transmission of an ASK-labeled RZ-DPSK signal and label erasure using a saturated SOA,” IEEE Photon. Technol. Lett., vol.  16, no. 6, pp. 1594–1596, 2004.
[CrossRef]

Li, F.

Li, J.

Lin, Y.-M.

Liu, X.

X. Liu, X. Wei, Y. Su, J. Leuthold, Y.-H. Kao, I. Kang, and R. C. Giles, “Transmission of an ASK-labeled RZ-DPSK signal and label erasure using a saturated SOA,” IEEE Photon. Technol. Lett., vol.  16, no. 6, pp. 1594–1596, 2004.
[CrossRef]

Maier, M.

M. S. Kiaei, L. Meng, C. Assi, and M. Maier, “Efficient scheduling and grant sizing methods for WDM PONs,” J. Lightwave Technol., vol.  28, no. 13, pp. 1922–1931, 2010.
[CrossRef]

J. Kim, M. Maier, T. Hamada, and L. G. Kazovsky, “OBT: Optical burst transport in metro area networks,” IEEE Commun. Mag., vol.  45, no. 11, pp. 44–51, 2007.
[CrossRef]

Medard, M.

V. W. S. Chan, G. Weichenberg, and M. Medard, “Optical flow switching,” in 3rd Int. Conf. on Broadband Communication, Networks and Systems, 2008, pp. 1–8.

Médard, M.

G. Weichenberg, V. W. S. Chan, and M. Médard, “Design and analysis of optical flow-switched networks,” IEEE J. Opt. Commun. Netw., vol.  1, no. 3, pp. B81–B97, Aug. 2009.

Meng, L.

Moon, J.-H.

K.-M. Choi, J.-H. Moon, J. H. Lee, and C.-H. Lee, “An evolution method from a TDM-PON with a video overlay to a WDM-PON,” IEEE Photon. Technol. Lett., vol.  20, no. 4, pp. 312–314, 2008.
[CrossRef]

Oda, K.

H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N × N optical interconnection,” J. Lightwave Technol., vol.  14, no. 6, pp. 1097–1105, 1996.
[CrossRef]

Pan, Z.

Z. Zhu, Z. Pan, and S. J. B. Yoo, “A compact all-optical subcarrier label-swapping system using an integrated EML for 10-Gb/s optical label-switching networks,” IEEE Photon. Technol. Lett., vol.  17, no. 2, pp. 426–428, 2005.
[CrossRef]

Peters, J. W.

F. P. Kapron, B. P. Adams, E. A. Thomas, and J. W. Peters, “Fiber-optic reflection measurements using OCWR and OTDR techniques,” J. Lightwave Technol., vol.  7, no. 8, pp. 1234–1241, 1989.
[CrossRef]

Peucheret, C.

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett., vol.  15, no. 7, pp. 984–986, 2003.
[CrossRef]

Poggiolini, P. T.

L. G. Kazovsky and P. T. Poggiolini, “STARNET: A multi-gigabit-per-second optical LAN utilizing a passive WDM star,” J. Lightwave Technol., vol.  11, no. 5, pp. 1009–1027, 1993.
[CrossRef]

Prat, J.

Rosberg, Z.

Shaw, W.-T.

Shen, T. S.

L. G. Kazovsky, A. R. Dhaini, M. D. Leenheer, T. S. Shen, S. Yin, and B. A. Detwiler, “UltraFlow access networks: A dual-mode solution for the access bottleneck,” in Int. Conf. on Transparent Optical Networks (ICTON), Cartagena, Spain, 2003, paper Tu.C3.1.

Su, Y.

X. Liu, X. Wei, Y. Su, J. Leuthold, Y.-H. Kao, I. Kang, and R. C. Giles, “Transmission of an ASK-labeled RZ-DPSK signal and label erasure using a saturated SOA,” IEEE Photon. Technol. Lett., vol.  16, no. 6, pp. 1594–1596, 2004.
[CrossRef]

Suzuki, H.

Takahashi, H.

H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N × N optical interconnection,” J. Lightwave Technol., vol.  14, no. 6, pp. 1097–1105, 1996.
[CrossRef]

Thomas, E. A.

F. P. Kapron, B. P. Adams, E. A. Thomas, and J. W. Peters, “Fiber-optic reflection measurements using OCWR and OTDR techniques,” J. Lightwave Technol., vol.  7, no. 8, pp. 1234–1241, 1989.
[CrossRef]

Tijms, H. C.

H. C. Tijms, A First Course in Stochastic Models. Wiley, 2003, ch. 9.

Toba, H.

H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N × N optical interconnection,” J. Lightwave Technol., vol.  14, no. 6, pp. 1097–1105, 1996.
[CrossRef]

Tsang, H. K.

Way, W. I.

Wei, X.

X. Liu, X. Wei, Y. Su, J. Leuthold, Y.-H. Kao, I. Kang, and R. C. Giles, “Transmission of an ASK-labeled RZ-DPSK signal and label erasure using a saturated SOA,” IEEE Photon. Technol. Lett., vol.  16, no. 6, pp. 1594–1596, 2004.
[CrossRef]

Weichenberg, G.

G. Weichenberg, V. W. S. Chan, and M. Médard, “Design and analysis of optical flow-switched networks,” IEEE J. Opt. Commun. Netw., vol.  1, no. 3, pp. B81–B97, Aug. 2009.

V. W. S. Chan, G. Weichenberg, and M. Medard, “Optical flow switching,” in 3rd Int. Conf. on Broadband Communication, Networks and Systems, 2008, pp. 1–8.

Wong, C. S.

Wong, S.-W.

Yin, S.

L. G. Kazovsky, A. R. Dhaini, M. D. Leenheer, T. S. Shen, S. Yin, and B. A. Detwiler, “UltraFlow access networks: A dual-mode solution for the access bottleneck,” in Int. Conf. on Transparent Optical Networks (ICTON), Cartagena, Spain, 2003, paper Tu.C3.1.

Yoo, S. J. B.

Z. Zhu, Z. Pan, and S. J. B. Yoo, “A compact all-optical subcarrier label-swapping system using an integrated EML for 10-Gb/s optical label-switching networks,” IEEE Photon. Technol. Lett., vol.  17, no. 2, pp. 426–428, 2005.
[CrossRef]

Yuang, M. C.

Zhang, J.

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett., vol.  15, no. 7, pp. 984–986, 2003.
[CrossRef]

Zhang, L.

L. Zhang and V. W. S. Chan, “Fast scheduling for optical flow switching,” presented at the IEEE Global Telecommunications Conf. (GLOBECOM), Miami, FL, Dec. 6–10, 2010.

Zhu, Z.

Z. Zhu, Z. Pan, and S. J. B. Yoo, “A compact all-optical subcarrier label-swapping system using an integrated EML for 10-Gb/s optical label-switching networks,” IEEE Photon. Technol. Lett., vol.  17, no. 2, pp. 426–428, 2005.
[CrossRef]

Zukerman, M.

IEEE Commun. Mag. (1)

J. Kim, M. Maier, T. Hamada, and L. G. Kazovsky, “OBT: Optical burst transport in metro area networks,” IEEE Commun. Mag., vol.  45, no. 11, pp. 44–51, 2007.
[CrossRef]

IEEE J. Opt. Commun. Netw. (1)

G. Weichenberg, V. W. S. Chan, and M. Médard, “Design and analysis of optical flow-switched networks,” IEEE J. Opt. Commun. Netw., vol.  1, no. 3, pp. B81–B97, Aug. 2009.

IEEE Photon. Technol. Lett. (5)

E. L. Goldstein, L. Eskildsen, and A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett., vol.  6, no. 5, pp. 657–660, 1994.
[CrossRef]

K.-M. Choi, J.-H. Moon, J. H. Lee, and C.-H. Lee, “An evolution method from a TDM-PON with a video overlay to a WDM-PON,” IEEE Photon. Technol. Lett., vol.  20, no. 4, pp. 312–314, 2008.
[CrossRef]

Z. Zhu, Z. Pan, and S. J. B. Yoo, “A compact all-optical subcarrier label-swapping system using an integrated EML for 10-Gb/s optical label-switching networks,” IEEE Photon. Technol. Lett., vol.  17, no. 2, pp. 426–428, 2005.
[CrossRef]

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett., vol.  15, no. 7, pp. 984–986, 2003.
[CrossRef]

X. Liu, X. Wei, Y. Su, J. Leuthold, Y.-H. Kao, I. Kang, and R. C. Giles, “Transmission of an ASK-labeled RZ-DPSK signal and label erasure using a saturated SOA,” IEEE Photon. Technol. Lett., vol.  16, no. 6, pp. 1594–1596, 2004.
[CrossRef]

J. Lightwave Technol. (9)

L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-generation optical access networks,” J. Lightwave Technol., vol.  25, no. 11, pp. 3428–3442, 2007.
[CrossRef]

M. S. Kiaei, L. Meng, C. Assi, and M. Maier, “Efficient scheduling and grant sizing methods for WDM PONs,” J. Lightwave Technol., vol.  28, no. 13, pp. 1922–1931, 2010.
[CrossRef]

Y.-M. Lin, M. C. Yuang, S.-L. Lee, and W. I. Way, “Using superimposed ASK label in a 10-Gb/s multihop all-optical label swapping system,” J. Lightwave Technol., vol.  22, no. 2, pp. 351–361, 2004.
[CrossRef]

L. G. Kazovsky and P. T. Poggiolini, “STARNET: A multi-gigabit-per-second optical LAN utilizing a passive WDM star,” J. Lightwave Technol., vol.  11, no. 5, pp. 1009–1027, 1993.
[CrossRef]

M. Fujiwara, J.-I. Kani, H. Suzuki, and K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” J. Lightwave Technol., vol.  24, no. 2, pp. 740–746, 2006.
[CrossRef]

H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N × N optical interconnection,” J. Lightwave Technol., vol.  14, no. 6, pp. 1097–1105, 1996.
[CrossRef]

C. Arellano, K.-D. Langer, and J. Prat, “Reflections and multiple Rayleigh backscatterng in WDM single-fiber loopback access networks,” J. Lightwave Technol., vol.  27, no. 1, pp. 12–18, 2009.
[CrossRef]

Z. Rosberg, J. Li, F. Li, and M. Zukerman, “Flow scheduling in optical flow switched (OFS) networks under transient conditions,” J. Lightwave Technol., vol.  29, no. 21, pp. 3250–3264, Nov. 2011.
[CrossRef]

F. P. Kapron, B. P. Adams, E. A. Thomas, and J. W. Peters, “Fiber-optic reflection measurements using OCWR and OTDR techniques,” J. Lightwave Technol., vol.  7, no. 8, pp. 1234–1241, 1989.
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

V. W. S. Chan, “Optical flow switching networks,” Proc. IEEE, vol.  100, no. 5, pp. 1079–1091, 2012.
[CrossRef]

Other (10)

V. W. S. Chan, G. Weichenberg, and M. Medard, “Optical flow switching,” in 3rd Int. Conf. on Broadband Communication, Networks and Systems, 2008, pp. 1–8.

B. Ganguly and V. W. S. Chan, “A scheduled approach to optical flow switching in the ONRAMP optical access network testbed,” in Optical Fiber Communication Conf., Anaheim, CA, 2002, paper WG2.

L. G. Kazovsky, A. R. Dhaini, M. D. Leenheer, T. S. Shen, S. Yin, and B. A. Detwiler, “UltraFlow access networks: A dual-mode solution for the access bottleneck,” in Int. Conf. on Transparent Optical Networks (ICTON), Cartagena, Spain, 2003, paper Tu.C3.1.

“Gigabit-capable passive optical networks (GPON): General characteristics,” , Mar. 2008.

“Spectral grids for WDM applications: DWDM frequency grid,” , Feb. 2012.

“Gigabit-capable passive optical networks: General characteristics,” , Mar. 2008.

H. C. Tijms, A First Course in Stochastic Models. Wiley, 2003, ch. 9.

J. Prat, Next-Generation FTTH Passive Optical Networks.Springer, 2008, ch. 4.

L. Zhang and V. W. S. Chan, “Fast scheduling for optical flow switching,” presented at the IEEE Global Telecommunications Conf. (GLOBECOM), Miami, FL, Dec. 6–10, 2010.

G. P. Agrawal, Fiber-Optic Communication Systems. Wiley, 2010, chs. 4 and 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

General OFS network architecture [1].

Fig. 2.
Fig. 2.

The Stanford UltraFlow Access network architecture.

Fig. 3.
Fig. 3.

The Stanford UltraFlow Access testbed.

Fig. 4.
Fig. 4.

(a) Four-port gateway block diagram and (b) four-port gateway wavelength assignment.

Fig. 5.
Fig. 5.

(a) Three-port gateway block diagram and (b) three-port gateway wavelength assignment.

Fig. 6.
Fig. 6.

Logical scheme of Configuration 1 with 128 colored OFNUs (cyclic wavelength assignment) and N transceivers in the OFLT.

Fig. 7.
Fig. 7.

OFNU waiting time under Configuration 1: Twaiting converges after transceiver number N is beyond 74.

Fig. 8.
Fig. 8.

(a) Simulated Twaiting for Configuration 1, Configuration 2, and Configuration 3. (b) Simulated Twaiting for Configuration 3. In both cases, Twaiting converges after transceiver number N is beyond 74.

Fig. 9.
Fig. 9.

Simulated Twaiting for Configuration 3 while varying the number of colorless OFNUs.

Fig. 10.
Fig. 10.

Simulated Twaiting for Configuration 3 with b=0.2s; Twaiting converges after the transceiver number is beyond 74.

Fig. 11.
Fig. 11.

Simplified schemes for intra-PON communication implementations from OFNU2 to OFNU1. (a) Reflection Point 1 and (b) Reflection Point 2.

Fig. 12.
Fig. 12.

Simplified optical path from OFNU3 to OFNU2 [same as Fig. 11(b)] used for the link loss calculation.

Fig. 13.
Fig. 13.

CSRb as a function of SOA gain with different L2 and R.

Fig. 14.
Fig. 14.

Stanford UltraFlow Access testbed setup at PNRL.

Fig. 15.
Fig. 15.

(a) IP path bidirectional BER measurements. (b) Flow path bidirectional BER measurements.

Fig. 16.
Fig. 16.

Measured versus calculated BER under Scenario 1.

Fig. 17.
Fig. 17.

BER measurements under different intra-PON Flow communication scenarios.

Tables (2)

Tables Icon

TABLE I Parameters for Intra-PON Communication

Tables Icon

TABLE II CSR, Calculated, and Measured Power Penalty at BER=109

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

Tsetup=Twaiting+RTT+Thardware-reset,
Tservice=Tsetup+Ttransmission,
OFNUi{wavelengthi(i=1,2,,102)wavelengthi102(i=103,104,,128)
Twaiting=Lqλ=λ2σ2+ρ22·(1ρ)/λ,
ρ=λμ,
PRBPin=SαS(1e2αL)2α,
CSRa=2E22E12,
CSRb=2E22+2E32E12.
δI(dB)=10log10(12CSR).
CSRa=2E22E12=2l1l3rOADMl1l42l3=2rOADMl42.
E12=l1l22l3g,
E22=l1l3r(1l22),
E32=l1l22l3gn=1rn(1l22)ngn=l1l22l3r(1l22)g2/(1r(1l22)g),
CSRb=2E22+2E32E12=2l1l3r(1l22)+2l1l22l3r(1l22)g2/(1r(1l22)g)l1l22l3g=2r(1l22)l22g+2r(1l22)g1r(1l22)g.
gopt=1/(l2+r(1l22))1/l2.
Q=I1I0σ1+σ0=I1CSR·I12+σS2+σT2+σT2.
Q=I1I0σ1+σ0=1CSR+PASE/Pin,
PASE=0.5FnGhυBo,
BER12erfc(Q2),
δI(dB)=10log10(1CSR×Q2).