Abstract

We analyze cost reductions possible with the introduction of a waveband converter or both wavelength and waveband converters to hierarchical optical path networks. We propose network design algorithms that are based on multistage integer linear programming (ILP) or heuristics. Numerical experiments prove that by employing waveband converters or both waveband and wavelength converters, hierarchical optical path networks can be cost effective over wide traffic demand ranges and a broad converter cost range.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sato, Advances in Transport Network Technology: Photonic Networks, ATM, and SDH, Boston-London: Artech House, 1996.
  2. T. S. El-Bawab, Optical Switching, New York, NY: Springer, 2006.
  3. K. Sato, “Recent developments in and challenges of photonic networking technologies,” IEICE Trans. Commun., vol.  E90-B, no. 3, pp. 454–467, 2007.
    [CrossRef]
  4. ITU-R Recommendation, “Parameter values for an expanded hierarchy of LSDI image formats for production and international program exchange,” , 2006.
  5. G. K. Edwards, “Today’s optical network research infrastructures for e-science applications,” Proc. OFC, 2006, paper OWU3.
  6. K. Sato and H. Hasegawa, “Prospects and challenges of multi-layer optical networks,” IEICE Trans. Commun., vol.  E90-B, no. 8, pp. 1890–1902, 2007.
    [CrossRef]
  7. J. Yamawaku, A. Takada, W. Imajuku, and T. Morioka, “Evaluation of amount of equipment on single-layer optical path networks managing multigranularity optical paths,” J. Lightwave Technol., vol.  23, no. 6, pp. 1971–1978, 2005.
    [CrossRef]
  8. I. Yagyu, H. Hasegawa, and K. Sato, “An efficient hierarchical optical path network design algorithm based on a traffic demand expression in a Cartesian product space,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 22–31, 2008.
    [CrossRef]
  9. N. Naas and H. T. Mouftah, “On the benefits of traffic bifurcation in multi-granular optical transport networks,” Proc. Optical Networking Design and Modeling (ONDM), 2010.
  10. O. Turkcu and S. Subramaniam, “Optical waveband switching in optical ring networks,” Proc. IEEE INFOCOM, 2010, pp. 596–604.
  11. H. Le, H. Hasegawa, and K. Sato, “Hybrid-hierarchical optical path network design algorithms utilizing ILP optimization,” Opt. Switching Netw., vol.  8, pp. 226–234, 2011.
    [CrossRef]
  12. X. Cao, C. Qiao, V. Anand, and J. Li, “Wavelength assignment in waveband switching networks with wavelength conversion,” Proc. GLOBECOM, vol. 3, 2004, pp. 1942–1947.
  13. S. Varma and J. P. Jue, “Regenerator placement and waveband routing in optical networks with impairment constraints,” Proc. ICC, 2011.
  14. K. Takaha, T. Ban, H. Hasegawa, K. Sato, H. Takahashi, and M. Okuno, “Development of ultra-compact 8×8 waveband cross-connect,” Proc. OECC, 2013, paper WT2-3.
  15. K. Sato, “OOO switching—The role and technological advances,” Proc. OFC, 2011, paper NThB1.
  16. S. Ferdousi, A. Nag, A. Reaz, M. Tornatore, and B. Mukherjee, “Mixed-line-rate optical network design with wavebanding,” Opt. Switching Netw., vol.  9, pp. 286–296, 2012.
    [CrossRef]
  17. Y. Wang and X. Cao, “Multi-granular optical switching: A classified overview for the past and future,” Commun. Surveys Tuts., vol.  14, no. 3, pp. 698–713, 2012.
    [CrossRef]
  18. A. N. Patel, P. N. Ji, J. P. Jue, and T. Wang, “Hierarchical multi-granular switching in flexible grid WDM networks,” Proc. OFC, 2012, paper Oth3B.6.
  19. S. Varma and J. P. Jue, “Spectrum and waveband assignment in elastic optical waveband networks,” Proc. Globecom, 2012, pp. 2925–2930.
  20. Z. Shen, H. Hasegawa, and K. Sato, “Design of hierarchical optical path networks that utilize wavelength conversion and evaluation of the allowable cost bound,” Proc. SPIE, vol.  8310, 831007, 2011.
    [CrossRef]
  21. Z. Shen, H. Hasegawa, and K. Sato, “An efficient heuristic waveband assignment algorithm for hierarchical optical path networks utilizing wavelength convertor,” Opt. Switching Netw., vol.  10, pp. 54–61, 2013.
    [CrossRef]
  22. H. Song, O. Tadanaga, T. Umeki, I. Tomita, M. Asobe, S. Yamamoto, K. Mori, and K. Yonenaga, “Phase-transparent flexible waveband conversion of 43 Gb/s RZ-DQPSK signals using multiple-OPM-LN waveguides,” Opt. Express, vol.  18, no. 15, pp. 15332–15337, July 2010.
    [CrossRef]
  23. Z. Shen, H. Hasegawa, and K. Sato, “Effectiveness of waveband conversion for hierarchical optical path networks and the allowable cost bound,” Proc. Photonics in Switching, Sept. 2012, paper ThS34I06.
  24. Z. Shen, H. Hasegawa, and K. Sato, “Impact of wavelength/waveband convertors and the cost bound in hierarchical optical path networks,” Proc. OFC, 2013, paper OM3A.2.
  25. ITU-T Recommendation, “Interfaces for the optical transport network (OTN),” , 2009.
  26. M. Tornatore, G. Maier, and A. Pattavina, “WDM network design by ILP models based on flow aggregation,” IEEE Trans. Neural Netw., vol.  15, pp. 709–720, June 2007.
    [CrossRef]
  27. R. Inkret, A. Kuchar, and B. Mikac, Advanced Infrastructure for Photonic Networks—Extended Final Report of COST 266 Action, Zagerab: Faculty of Electrical Engineering and Computing, University of Zagreb, 2003.
  28. S. F. Gieselman, N. K. Singhal, and B. Mukherjee, “Minimum-cost virtual-topology adaptation for optical WDM mesh networks,” Proc. ICC, vol. 3, 2005, pp. 1787–1791.
  29. A. Allasia, V. Brizi, and M. Potenza, “Characteristics and trends of Telecom Italia transport networks,” Fiber Integr. Opt., vol.  27, no. 4, pp. 183–193, 2008.
    [CrossRef]
  30. S. Kaneda, T. Uyematsu, N. Nagatsu, and K. Sato, “Network design and cost optimization for label switched multilayer photonic IP networks,” IEEE J. Sel. Areas Commun., vol.  23, pp. 1612–1619, 2005.
    [CrossRef]

2013 (1)

Z. Shen, H. Hasegawa, and K. Sato, “An efficient heuristic waveband assignment algorithm for hierarchical optical path networks utilizing wavelength convertor,” Opt. Switching Netw., vol.  10, pp. 54–61, 2013.
[CrossRef]

2012 (2)

S. Ferdousi, A. Nag, A. Reaz, M. Tornatore, and B. Mukherjee, “Mixed-line-rate optical network design with wavebanding,” Opt. Switching Netw., vol.  9, pp. 286–296, 2012.
[CrossRef]

Y. Wang and X. Cao, “Multi-granular optical switching: A classified overview for the past and future,” Commun. Surveys Tuts., vol.  14, no. 3, pp. 698–713, 2012.
[CrossRef]

2011 (2)

Z. Shen, H. Hasegawa, and K. Sato, “Design of hierarchical optical path networks that utilize wavelength conversion and evaluation of the allowable cost bound,” Proc. SPIE, vol.  8310, 831007, 2011.
[CrossRef]

H. Le, H. Hasegawa, and K. Sato, “Hybrid-hierarchical optical path network design algorithms utilizing ILP optimization,” Opt. Switching Netw., vol.  8, pp. 226–234, 2011.
[CrossRef]

2010 (1)

2008 (2)

A. Allasia, V. Brizi, and M. Potenza, “Characteristics and trends of Telecom Italia transport networks,” Fiber Integr. Opt., vol.  27, no. 4, pp. 183–193, 2008.
[CrossRef]

I. Yagyu, H. Hasegawa, and K. Sato, “An efficient hierarchical optical path network design algorithm based on a traffic demand expression in a Cartesian product space,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 22–31, 2008.
[CrossRef]

2007 (3)

K. Sato, “Recent developments in and challenges of photonic networking technologies,” IEICE Trans. Commun., vol.  E90-B, no. 3, pp. 454–467, 2007.
[CrossRef]

K. Sato and H. Hasegawa, “Prospects and challenges of multi-layer optical networks,” IEICE Trans. Commun., vol.  E90-B, no. 8, pp. 1890–1902, 2007.
[CrossRef]

M. Tornatore, G. Maier, and A. Pattavina, “WDM network design by ILP models based on flow aggregation,” IEEE Trans. Neural Netw., vol.  15, pp. 709–720, June 2007.
[CrossRef]

2005 (2)

S. Kaneda, T. Uyematsu, N. Nagatsu, and K. Sato, “Network design and cost optimization for label switched multilayer photonic IP networks,” IEEE J. Sel. Areas Commun., vol.  23, pp. 1612–1619, 2005.
[CrossRef]

J. Yamawaku, A. Takada, W. Imajuku, and T. Morioka, “Evaluation of amount of equipment on single-layer optical path networks managing multigranularity optical paths,” J. Lightwave Technol., vol.  23, no. 6, pp. 1971–1978, 2005.
[CrossRef]

Allasia, A.

A. Allasia, V. Brizi, and M. Potenza, “Characteristics and trends of Telecom Italia transport networks,” Fiber Integr. Opt., vol.  27, no. 4, pp. 183–193, 2008.
[CrossRef]

Anand, V.

X. Cao, C. Qiao, V. Anand, and J. Li, “Wavelength assignment in waveband switching networks with wavelength conversion,” Proc. GLOBECOM, vol. 3, 2004, pp. 1942–1947.

Asobe, M.

Ban, T.

K. Takaha, T. Ban, H. Hasegawa, K. Sato, H. Takahashi, and M. Okuno, “Development of ultra-compact 8×8 waveband cross-connect,” Proc. OECC, 2013, paper WT2-3.

Brizi, V.

A. Allasia, V. Brizi, and M. Potenza, “Characteristics and trends of Telecom Italia transport networks,” Fiber Integr. Opt., vol.  27, no. 4, pp. 183–193, 2008.
[CrossRef]

Cao, X.

Y. Wang and X. Cao, “Multi-granular optical switching: A classified overview for the past and future,” Commun. Surveys Tuts., vol.  14, no. 3, pp. 698–713, 2012.
[CrossRef]

X. Cao, C. Qiao, V. Anand, and J. Li, “Wavelength assignment in waveband switching networks with wavelength conversion,” Proc. GLOBECOM, vol. 3, 2004, pp. 1942–1947.

Edwards, G. K.

G. K. Edwards, “Today’s optical network research infrastructures for e-science applications,” Proc. OFC, 2006, paper OWU3.

El-Bawab, T. S.

T. S. El-Bawab, Optical Switching, New York, NY: Springer, 2006.

Ferdousi, S.

S. Ferdousi, A. Nag, A. Reaz, M. Tornatore, and B. Mukherjee, “Mixed-line-rate optical network design with wavebanding,” Opt. Switching Netw., vol.  9, pp. 286–296, 2012.
[CrossRef]

Gieselman, S. F.

S. F. Gieselman, N. K. Singhal, and B. Mukherjee, “Minimum-cost virtual-topology adaptation for optical WDM mesh networks,” Proc. ICC, vol. 3, 2005, pp. 1787–1791.

Hasegawa, H.

Z. Shen, H. Hasegawa, and K. Sato, “An efficient heuristic waveband assignment algorithm for hierarchical optical path networks utilizing wavelength convertor,” Opt. Switching Netw., vol.  10, pp. 54–61, 2013.
[CrossRef]

H. Le, H. Hasegawa, and K. Sato, “Hybrid-hierarchical optical path network design algorithms utilizing ILP optimization,” Opt. Switching Netw., vol.  8, pp. 226–234, 2011.
[CrossRef]

Z. Shen, H. Hasegawa, and K. Sato, “Design of hierarchical optical path networks that utilize wavelength conversion and evaluation of the allowable cost bound,” Proc. SPIE, vol.  8310, 831007, 2011.
[CrossRef]

I. Yagyu, H. Hasegawa, and K. Sato, “An efficient hierarchical optical path network design algorithm based on a traffic demand expression in a Cartesian product space,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 22–31, 2008.
[CrossRef]

K. Sato and H. Hasegawa, “Prospects and challenges of multi-layer optical networks,” IEICE Trans. Commun., vol.  E90-B, no. 8, pp. 1890–1902, 2007.
[CrossRef]

Z. Shen, H. Hasegawa, and K. Sato, “Effectiveness of waveband conversion for hierarchical optical path networks and the allowable cost bound,” Proc. Photonics in Switching, Sept. 2012, paper ThS34I06.

K. Takaha, T. Ban, H. Hasegawa, K. Sato, H. Takahashi, and M. Okuno, “Development of ultra-compact 8×8 waveband cross-connect,” Proc. OECC, 2013, paper WT2-3.

Z. Shen, H. Hasegawa, and K. Sato, “Impact of wavelength/waveband convertors and the cost bound in hierarchical optical path networks,” Proc. OFC, 2013, paper OM3A.2.

Imajuku, W.

Inkret, R.

R. Inkret, A. Kuchar, and B. Mikac, Advanced Infrastructure for Photonic Networks—Extended Final Report of COST 266 Action, Zagerab: Faculty of Electrical Engineering and Computing, University of Zagreb, 2003.

Ji, P. N.

A. N. Patel, P. N. Ji, J. P. Jue, and T. Wang, “Hierarchical multi-granular switching in flexible grid WDM networks,” Proc. OFC, 2012, paper Oth3B.6.

Jue, J. P.

A. N. Patel, P. N. Ji, J. P. Jue, and T. Wang, “Hierarchical multi-granular switching in flexible grid WDM networks,” Proc. OFC, 2012, paper Oth3B.6.

S. Varma and J. P. Jue, “Regenerator placement and waveband routing in optical networks with impairment constraints,” Proc. ICC, 2011.

S. Varma and J. P. Jue, “Spectrum and waveband assignment in elastic optical waveband networks,” Proc. Globecom, 2012, pp. 2925–2930.

Kaneda, S.

S. Kaneda, T. Uyematsu, N. Nagatsu, and K. Sato, “Network design and cost optimization for label switched multilayer photonic IP networks,” IEEE J. Sel. Areas Commun., vol.  23, pp. 1612–1619, 2005.
[CrossRef]

Kuchar, A.

R. Inkret, A. Kuchar, and B. Mikac, Advanced Infrastructure for Photonic Networks—Extended Final Report of COST 266 Action, Zagerab: Faculty of Electrical Engineering and Computing, University of Zagreb, 2003.

Le, H.

H. Le, H. Hasegawa, and K. Sato, “Hybrid-hierarchical optical path network design algorithms utilizing ILP optimization,” Opt. Switching Netw., vol.  8, pp. 226–234, 2011.
[CrossRef]

Li, J.

X. Cao, C. Qiao, V. Anand, and J. Li, “Wavelength assignment in waveband switching networks with wavelength conversion,” Proc. GLOBECOM, vol. 3, 2004, pp. 1942–1947.

Maier, G.

M. Tornatore, G. Maier, and A. Pattavina, “WDM network design by ILP models based on flow aggregation,” IEEE Trans. Neural Netw., vol.  15, pp. 709–720, June 2007.
[CrossRef]

Mikac, B.

R. Inkret, A. Kuchar, and B. Mikac, Advanced Infrastructure for Photonic Networks—Extended Final Report of COST 266 Action, Zagerab: Faculty of Electrical Engineering and Computing, University of Zagreb, 2003.

Mori, K.

Morioka, T.

Mouftah, H. T.

N. Naas and H. T. Mouftah, “On the benefits of traffic bifurcation in multi-granular optical transport networks,” Proc. Optical Networking Design and Modeling (ONDM), 2010.

Mukherjee, B.

S. Ferdousi, A. Nag, A. Reaz, M. Tornatore, and B. Mukherjee, “Mixed-line-rate optical network design with wavebanding,” Opt. Switching Netw., vol.  9, pp. 286–296, 2012.
[CrossRef]

S. F. Gieselman, N. K. Singhal, and B. Mukherjee, “Minimum-cost virtual-topology adaptation for optical WDM mesh networks,” Proc. ICC, vol. 3, 2005, pp. 1787–1791.

Naas, N.

N. Naas and H. T. Mouftah, “On the benefits of traffic bifurcation in multi-granular optical transport networks,” Proc. Optical Networking Design and Modeling (ONDM), 2010.

Nag, A.

S. Ferdousi, A. Nag, A. Reaz, M. Tornatore, and B. Mukherjee, “Mixed-line-rate optical network design with wavebanding,” Opt. Switching Netw., vol.  9, pp. 286–296, 2012.
[CrossRef]

Nagatsu, N.

S. Kaneda, T. Uyematsu, N. Nagatsu, and K. Sato, “Network design and cost optimization for label switched multilayer photonic IP networks,” IEEE J. Sel. Areas Commun., vol.  23, pp. 1612–1619, 2005.
[CrossRef]

Okuno, M.

K. Takaha, T. Ban, H. Hasegawa, K. Sato, H. Takahashi, and M. Okuno, “Development of ultra-compact 8×8 waveband cross-connect,” Proc. OECC, 2013, paper WT2-3.

Patel, A. N.

A. N. Patel, P. N. Ji, J. P. Jue, and T. Wang, “Hierarchical multi-granular switching in flexible grid WDM networks,” Proc. OFC, 2012, paper Oth3B.6.

Pattavina, A.

M. Tornatore, G. Maier, and A. Pattavina, “WDM network design by ILP models based on flow aggregation,” IEEE Trans. Neural Netw., vol.  15, pp. 709–720, June 2007.
[CrossRef]

Potenza, M.

A. Allasia, V. Brizi, and M. Potenza, “Characteristics and trends of Telecom Italia transport networks,” Fiber Integr. Opt., vol.  27, no. 4, pp. 183–193, 2008.
[CrossRef]

Qiao, C.

X. Cao, C. Qiao, V. Anand, and J. Li, “Wavelength assignment in waveband switching networks with wavelength conversion,” Proc. GLOBECOM, vol. 3, 2004, pp. 1942–1947.

Reaz, A.

S. Ferdousi, A. Nag, A. Reaz, M. Tornatore, and B. Mukherjee, “Mixed-line-rate optical network design with wavebanding,” Opt. Switching Netw., vol.  9, pp. 286–296, 2012.
[CrossRef]

Sato, K.

Z. Shen, H. Hasegawa, and K. Sato, “An efficient heuristic waveband assignment algorithm for hierarchical optical path networks utilizing wavelength convertor,” Opt. Switching Netw., vol.  10, pp. 54–61, 2013.
[CrossRef]

H. Le, H. Hasegawa, and K. Sato, “Hybrid-hierarchical optical path network design algorithms utilizing ILP optimization,” Opt. Switching Netw., vol.  8, pp. 226–234, 2011.
[CrossRef]

Z. Shen, H. Hasegawa, and K. Sato, “Design of hierarchical optical path networks that utilize wavelength conversion and evaluation of the allowable cost bound,” Proc. SPIE, vol.  8310, 831007, 2011.
[CrossRef]

I. Yagyu, H. Hasegawa, and K. Sato, “An efficient hierarchical optical path network design algorithm based on a traffic demand expression in a Cartesian product space,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 22–31, 2008.
[CrossRef]

K. Sato and H. Hasegawa, “Prospects and challenges of multi-layer optical networks,” IEICE Trans. Commun., vol.  E90-B, no. 8, pp. 1890–1902, 2007.
[CrossRef]

K. Sato, “Recent developments in and challenges of photonic networking technologies,” IEICE Trans. Commun., vol.  E90-B, no. 3, pp. 454–467, 2007.
[CrossRef]

S. Kaneda, T. Uyematsu, N. Nagatsu, and K. Sato, “Network design and cost optimization for label switched multilayer photonic IP networks,” IEEE J. Sel. Areas Commun., vol.  23, pp. 1612–1619, 2005.
[CrossRef]

K. Sato, “OOO switching—The role and technological advances,” Proc. OFC, 2011, paper NThB1.

Z. Shen, H. Hasegawa, and K. Sato, “Impact of wavelength/waveband convertors and the cost bound in hierarchical optical path networks,” Proc. OFC, 2013, paper OM3A.2.

Z. Shen, H. Hasegawa, and K. Sato, “Effectiveness of waveband conversion for hierarchical optical path networks and the allowable cost bound,” Proc. Photonics in Switching, Sept. 2012, paper ThS34I06.

K. Sato, Advances in Transport Network Technology: Photonic Networks, ATM, and SDH, Boston-London: Artech House, 1996.

K. Takaha, T. Ban, H. Hasegawa, K. Sato, H. Takahashi, and M. Okuno, “Development of ultra-compact 8×8 waveband cross-connect,” Proc. OECC, 2013, paper WT2-3.

Shen, Z.

Z. Shen, H. Hasegawa, and K. Sato, “An efficient heuristic waveband assignment algorithm for hierarchical optical path networks utilizing wavelength convertor,” Opt. Switching Netw., vol.  10, pp. 54–61, 2013.
[CrossRef]

Z. Shen, H. Hasegawa, and K. Sato, “Design of hierarchical optical path networks that utilize wavelength conversion and evaluation of the allowable cost bound,” Proc. SPIE, vol.  8310, 831007, 2011.
[CrossRef]

Z. Shen, H. Hasegawa, and K. Sato, “Effectiveness of waveband conversion for hierarchical optical path networks and the allowable cost bound,” Proc. Photonics in Switching, Sept. 2012, paper ThS34I06.

Z. Shen, H. Hasegawa, and K. Sato, “Impact of wavelength/waveband convertors and the cost bound in hierarchical optical path networks,” Proc. OFC, 2013, paper OM3A.2.

Singhal, N. K.

S. F. Gieselman, N. K. Singhal, and B. Mukherjee, “Minimum-cost virtual-topology adaptation for optical WDM mesh networks,” Proc. ICC, vol. 3, 2005, pp. 1787–1791.

Song, H.

Subramaniam, S.

O. Turkcu and S. Subramaniam, “Optical waveband switching in optical ring networks,” Proc. IEEE INFOCOM, 2010, pp. 596–604.

Tadanaga, O.

Takada, A.

Takaha, K.

K. Takaha, T. Ban, H. Hasegawa, K. Sato, H. Takahashi, and M. Okuno, “Development of ultra-compact 8×8 waveband cross-connect,” Proc. OECC, 2013, paper WT2-3.

Takahashi, H.

K. Takaha, T. Ban, H. Hasegawa, K. Sato, H. Takahashi, and M. Okuno, “Development of ultra-compact 8×8 waveband cross-connect,” Proc. OECC, 2013, paper WT2-3.

Tomita, I.

Tornatore, M.

S. Ferdousi, A. Nag, A. Reaz, M. Tornatore, and B. Mukherjee, “Mixed-line-rate optical network design with wavebanding,” Opt. Switching Netw., vol.  9, pp. 286–296, 2012.
[CrossRef]

M. Tornatore, G. Maier, and A. Pattavina, “WDM network design by ILP models based on flow aggregation,” IEEE Trans. Neural Netw., vol.  15, pp. 709–720, June 2007.
[CrossRef]

Turkcu, O.

O. Turkcu and S. Subramaniam, “Optical waveband switching in optical ring networks,” Proc. IEEE INFOCOM, 2010, pp. 596–604.

Umeki, T.

Uyematsu, T.

S. Kaneda, T. Uyematsu, N. Nagatsu, and K. Sato, “Network design and cost optimization for label switched multilayer photonic IP networks,” IEEE J. Sel. Areas Commun., vol.  23, pp. 1612–1619, 2005.
[CrossRef]

Varma, S.

S. Varma and J. P. Jue, “Regenerator placement and waveband routing in optical networks with impairment constraints,” Proc. ICC, 2011.

S. Varma and J. P. Jue, “Spectrum and waveband assignment in elastic optical waveband networks,” Proc. Globecom, 2012, pp. 2925–2930.

Wang, T.

A. N. Patel, P. N. Ji, J. P. Jue, and T. Wang, “Hierarchical multi-granular switching in flexible grid WDM networks,” Proc. OFC, 2012, paper Oth3B.6.

Wang, Y.

Y. Wang and X. Cao, “Multi-granular optical switching: A classified overview for the past and future,” Commun. Surveys Tuts., vol.  14, no. 3, pp. 698–713, 2012.
[CrossRef]

Yagyu, I.

I. Yagyu, H. Hasegawa, and K. Sato, “An efficient hierarchical optical path network design algorithm based on a traffic demand expression in a Cartesian product space,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 22–31, 2008.
[CrossRef]

Yamamoto, S.

Yamawaku, J.

Yonenaga, K.

Commun. Surveys Tuts. (1)

Y. Wang and X. Cao, “Multi-granular optical switching: A classified overview for the past and future,” Commun. Surveys Tuts., vol.  14, no. 3, pp. 698–713, 2012.
[CrossRef]

Fiber Integr. Opt. (1)

A. Allasia, V. Brizi, and M. Potenza, “Characteristics and trends of Telecom Italia transport networks,” Fiber Integr. Opt., vol.  27, no. 4, pp. 183–193, 2008.
[CrossRef]

IEEE J. Sel. Areas Commun. (2)

S. Kaneda, T. Uyematsu, N. Nagatsu, and K. Sato, “Network design and cost optimization for label switched multilayer photonic IP networks,” IEEE J. Sel. Areas Commun., vol.  23, pp. 1612–1619, 2005.
[CrossRef]

I. Yagyu, H. Hasegawa, and K. Sato, “An efficient hierarchical optical path network design algorithm based on a traffic demand expression in a Cartesian product space,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 22–31, 2008.
[CrossRef]

IEEE Trans. Neural Netw. (1)

M. Tornatore, G. Maier, and A. Pattavina, “WDM network design by ILP models based on flow aggregation,” IEEE Trans. Neural Netw., vol.  15, pp. 709–720, June 2007.
[CrossRef]

IEICE Trans. Commun. (2)

K. Sato, “Recent developments in and challenges of photonic networking technologies,” IEICE Trans. Commun., vol.  E90-B, no. 3, pp. 454–467, 2007.
[CrossRef]

K. Sato and H. Hasegawa, “Prospects and challenges of multi-layer optical networks,” IEICE Trans. Commun., vol.  E90-B, no. 8, pp. 1890–1902, 2007.
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Switching Netw. (3)

S. Ferdousi, A. Nag, A. Reaz, M. Tornatore, and B. Mukherjee, “Mixed-line-rate optical network design with wavebanding,” Opt. Switching Netw., vol.  9, pp. 286–296, 2012.
[CrossRef]

Z. Shen, H. Hasegawa, and K. Sato, “An efficient heuristic waveband assignment algorithm for hierarchical optical path networks utilizing wavelength convertor,” Opt. Switching Netw., vol.  10, pp. 54–61, 2013.
[CrossRef]

H. Le, H. Hasegawa, and K. Sato, “Hybrid-hierarchical optical path network design algorithms utilizing ILP optimization,” Opt. Switching Netw., vol.  8, pp. 226–234, 2011.
[CrossRef]

Proc. SPIE (1)

Z. Shen, H. Hasegawa, and K. Sato, “Design of hierarchical optical path networks that utilize wavelength conversion and evaluation of the allowable cost bound,” Proc. SPIE, vol.  8310, 831007, 2011.
[CrossRef]

Other (17)

R. Inkret, A. Kuchar, and B. Mikac, Advanced Infrastructure for Photonic Networks—Extended Final Report of COST 266 Action, Zagerab: Faculty of Electrical Engineering and Computing, University of Zagreb, 2003.

S. F. Gieselman, N. K. Singhal, and B. Mukherjee, “Minimum-cost virtual-topology adaptation for optical WDM mesh networks,” Proc. ICC, vol. 3, 2005, pp. 1787–1791.

Z. Shen, H. Hasegawa, and K. Sato, “Effectiveness of waveband conversion for hierarchical optical path networks and the allowable cost bound,” Proc. Photonics in Switching, Sept. 2012, paper ThS34I06.

Z. Shen, H. Hasegawa, and K. Sato, “Impact of wavelength/waveband convertors and the cost bound in hierarchical optical path networks,” Proc. OFC, 2013, paper OM3A.2.

ITU-T Recommendation, “Interfaces for the optical transport network (OTN),” , 2009.

X. Cao, C. Qiao, V. Anand, and J. Li, “Wavelength assignment in waveband switching networks with wavelength conversion,” Proc. GLOBECOM, vol. 3, 2004, pp. 1942–1947.

S. Varma and J. P. Jue, “Regenerator placement and waveband routing in optical networks with impairment constraints,” Proc. ICC, 2011.

K. Takaha, T. Ban, H. Hasegawa, K. Sato, H. Takahashi, and M. Okuno, “Development of ultra-compact 8×8 waveband cross-connect,” Proc. OECC, 2013, paper WT2-3.

K. Sato, “OOO switching—The role and technological advances,” Proc. OFC, 2011, paper NThB1.

N. Naas and H. T. Mouftah, “On the benefits of traffic bifurcation in multi-granular optical transport networks,” Proc. Optical Networking Design and Modeling (ONDM), 2010.

O. Turkcu and S. Subramaniam, “Optical waveband switching in optical ring networks,” Proc. IEEE INFOCOM, 2010, pp. 596–604.

A. N. Patel, P. N. Ji, J. P. Jue, and T. Wang, “Hierarchical multi-granular switching in flexible grid WDM networks,” Proc. OFC, 2012, paper Oth3B.6.

S. Varma and J. P. Jue, “Spectrum and waveband assignment in elastic optical waveband networks,” Proc. Globecom, 2012, pp. 2925–2930.

ITU-R Recommendation, “Parameter values for an expanded hierarchy of LSDI image formats for production and international program exchange,” , 2006.

G. K. Edwards, “Today’s optical network research infrastructures for e-science applications,” Proc. OFC, 2006, paper OWU3.

K. Sato, Advances in Transport Network Technology: Photonic Networks, ATM, and SDH, Boston-London: Artech House, 1996.

T. S. El-Bawab, Optical Switching, New York, NY: Springer, 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Configurations of the (a) single-layer OXC and (b) hierarchical MG-OXC architectures.

Fig. 2.
Fig. 2.

Ratio of the number of switch ports: hierarchical to single-layer optical path networks [8].

Fig. 3.
Fig. 3.

Characteristics of WBC.

Fig. 4.
Fig. 4.

Mitigation of waveband collision by wavelength converters.

Fig. 5.
Fig. 5.

Mitigation of waveband collision by waveband converters.

Fig. 6.
Fig. 6.

Network topologies. (a) COST266 pan-European network. (b) US nationwide network. (c) Telecom Italia backbone network.

Fig. 7.
Fig. 7.

Cost comparison between hierarchical and single-layer optical path networks for a 4 × 4 network.

Fig. 8.
Fig. 8.

Cost comparison between hierarchical and single-layer optical path networks by different network topology. (a) Regular network topologies. (b) Irregular network topologies.

Fig. 9.
Fig. 9.

Bounds of (a) waveband or (b) wavelength converter cost that attain cost reduction from the comparable single-layer optical path networks.

Fig. 10.
Fig. 10.

Cost reduction achieved by introducing conversion. (a)  5 × 5 network. (b) COST266 pan-European network.

Fig. 11.
Fig. 11.

Number of necessary wavelength/waveband converters. (a)  5 × 5 network. (b) COST266 pan-European network.

Fig. 12.
Fig. 12.

(a) Waveband and (b) wavelength converter cost bound that can reduce cost of hierarchical optical path network.

Fig. 13.
Fig. 13.

Wavelength converter cost bound against different waveband converter costs that can reduce cost of hierarchical optical path networks for different traffic demand values. (a)  5 × 5 network. (b) COST266 pan-European network.

Fig. 14.
Fig. 14.

Cost comparison between hierarchical (with both waveband and WCs) and single-layer optical path networks with different waveband capacity for 5 × 5 network.

Fig. 15.
Fig. 15.

Cost comparison between hierarchical (without considering any type of conversion) and single-layer optical path networks with different band capacity for 5 × 5 network [8].

Tables (2)

Tables Icon

TABLE I Flowchart of the Proposed Design Algorithms (Section III)

Tables Icon

TABLE II Parameters for Cost Evaluation

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

b B u ( p , b ) WB = 1 , p P .
n ( l , b ) WB 0 , ( l , b ) L × B ,
n ( l ) WBC . EXP 0 , l L ,
n ( l ) WBC . EXP = u ( p , l ) WB = 1 ( n ( l , b ) WB n ( l ) Fiber ) , ( p , l , b ) P × L × B .
cont ( p 1 , p 2 ; b ) WB 1 , ( p 1 , p 2 ; b ) T × B ,
n ( p 1 , p 2 ) WBC . GRM 0 , ( p 1 , p 2 ) T ,
u ( p 1 , b ) WB u ( p 2 , b ) WB cont ( p 1 , p 2 ; b ) WB = 0 , ( p 1 , p 2 ; b ) T × B ,
n ( p 1 , p 2 ) WBC . GRM cont ( p 1 , p 2 ; b ) WB , ( p 1 , p 2 ; b ) T × B .
i L n ( l ) WBC . EXP + ( p 1 , p 2 ) T n ( p 1 , p 2 ) WBC . GRM .
C l p = C WC · ( p 1 , p 2 ) ( P 1 , P 2 ) N ( p 1 , p 2 ) + C WBC · p 3 P hop ( p 3 ) ,
C ( p i , b ) = C WBC · l link ( l , b ) + C WC · [ ( p i , p j ) N ( p i , p j ) + ( p k , p j ) N ( p k , p i ) ] .
Z p i = max [ C ( p i , b 0 ) C ( p i , b ) ] , b .
C Node = i = 1 N ( C B _ NNI × B _ NNI i + C B _ UNI × B _ UNI i + C BXC + C W _ NNI × W _ NNI i + C W _ UNI × W _ UNI i + C WXC ) + C WC × WC + C WBC × WBC .
C Link = i = 1 N j = 1 N ( C fiber ( i , j ) × F i j ) ,
C fiber ( i , j ) = C F × D i j + C AMP × D i j D AMP .
c WC = ( c HW c H # WBC · C WBC ) / # WC .