Abstract

To guarantee delay performances for time-sensitive services in an orthogonal frequency-division multiple access passive optical network (OFDMA-PON), we propose a two-dimensional (i.e., subcarriers and time) upstream bandwidth allocation method based on interleaved polling with adaptive cycle time (IPACT). We first analyze its delay performance in terms of cycle time, i.e., the length of a polling cycle. Then, by setting the maximum polling cycle so as to guarantee timely transmissions for time-sensitive services, we identify the requirements, i.e., the maximum bandwidth allocation, the maximum number of allowed optical network units, and the optimum number of subcarriers, for upstream bandwidth allocation with delay guarantees. The proposed scheme is evaluated both numerically and via simulation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov. 2009.
    [CrossRef]
  2. N. Cvijetic, D. Qian, and J. Hu, “100  Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol.  48, no. 7, pp. 70–77, July 2010.
    [CrossRef]
  3. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol., vol.  30, no. 4, pp. 384–398, Feb. 2012.
    [CrossRef]
  4. K. Kanonakis, E. Giacoumidis, and I. Tomkos, “Physical-layer-aware MAC schemes for dynamic subcarrier assignment in OFDMA-PON networks,” J. Lightwave Technol., vol.  30, no. 12, pp. 1915–1923, June 2012.
    [CrossRef]
  5. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: A review,” J. Opt. Netw., vol.  4, no. 11, pp. 737–785, Nov. 2005.
    [CrossRef]
  6. K. Kanonakis, I. Tomkos, T. Pfeiffer, J. Prat, and P. Kourtessis, “ACCORDANCE: A novel OFDMA-PON paradigm for ultra-high capacity converged wireline–wireless access networks,” in Int. Conf. Transparent Opt. Netw. (ICTON), Munich, Germany, June 27–July 1, 2010.
  7. N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10  Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, Aug. 2010.
    [CrossRef]
  8. W. Wei, T. Wang, D. Qian, and J. Hu, “MAC protocols for optical orthogonal frequency division multiple access (OFDMA)-based passive optical networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, Feb. 24–28, 2008.
  9. J. Zhang, T. Wang, and N. Ansari, “An efficient MAC protocol for asynchronous ONUs in OFDMA PONs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 6–10, 2011.
  10. K. Kanonakis and I. Tomkos, “An overview of MAC issues in OFDMA-PON networks,” in Int. Conf. Transparent Opt. Netw. (ICTON), Stockholm, Sweden, June 26–30, 2011.
  11. M. P. McGarry, M. Reisslein, and M. Maier, “WDM Ethernet passive optical networks,” IEEE Commun. Mag., vol.  44, no. 2, pp. 15–22, Feb. 2006.
    [CrossRef]
  12. M. P. McGarry, M. Reisslein, and M. Maier, “Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol.  10, no. 3, pp. 46–60, 2008.
    [CrossRef]
  13. K. H. Kwong, D. Harle, and I. Andonovic, “Dynamic bandwidth allocation algorithm for differentiated services over WDM EPONs,” in Int. Conf. on Communications Systems (ICCS), Singapore, Sept. 7, 2004, pp. 116–120.
  14. F. Clarke, S. Sarkar, and B. Mukherjee, “Simultaneous and interleaved polling: An upstream protocol for WDM-PON,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 5–10, 2006.
  15. A. R. Dhaini, C. M. Assi, M. Maier, and A. Shami, “Dynamic wavelength and bandwidth allocation in hybrid TDM/WDM EPON networks,” J. Lightwave Technol., vol.  25, no. 1, pp. 277–286, Jan. 2007.
    [CrossRef]
  16. M. P. McGarry, M. Reisslein, M. Maier, and A. Keha, “Bandwidth management for WDM EPONs,” J. Opt. Netw., vol.  5, no. 9, pp. 637–654, Sept. 2006.
    [CrossRef]
  17. M. P. McGarry, M. Reisslein, C. J. Colbourn, M. Maier, F. Aurzada, and M. Scheutzow, “Just-in-time scheduling for multichannel EPONs,” J. Lightwave Technol., vol.  26, no. 10, pp. 1204–1216, May2008.
    [CrossRef]
  18. F. Saliou, P. Chanclou, F. Laurent, N. Genay, J. A. Lazaro, F. Bonada, and J. Prat, “Reach extension strategies for passive optical networks,” J. Opt. Commun. Netw., vol.  1, no. 4, pp. C51–C60, Sept. 2009.
    [CrossRef]
  19. J. Kim, H. Bang, and C.-S. Park, “Design and performance analysis of passively extended XG-PON with CWDM upstream,” J. Lightwave Technol., vol.  30, no. 11, pp. 1677–1684, June 2012.
    [CrossRef]
  20. S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol., vol.  15, no. 5–6, pp. 407–413, Oct. 2009.
    [CrossRef]
  21. I. Cano, M. C. Santos, V. Polo, F. X. Escayola, and J. Prat, “Dimensioning of OFDMA PON with non-preselected independent ONUs sources and wavelength-control,” Opt. Express, vol.  20, no. 1, pp. 607–613, Jan.2012.
    [CrossRef]
  22. B. Skubic, J. Chen, J. Ahmed, L. Wosinska, and B. Mukherjee, “A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON,” IEEE Commun. Mag., vol.  47, no. 3, pp. S40–S48, Mar. 2009.
    [CrossRef]
  23. B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, M. Gagnaire, and P. Demeester, “Analytical model for the IPACT dynamic bandwidth allocation algorithm for EPONs,” J. Opt. Netw., vol.  6, no. 6, pp. 677–688, June 2007.
    [CrossRef]
  24. E. M. M. Winands, I. J. B. F. Adan, and G. J. van Houtum, “Mean value analysis for polling systems,” Queueing Syst., vol.  54, no. 1, pp. 35–44, Sept. 2006.
    [CrossRef]
  25. G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, Feb. 2002.
    [CrossRef]
  26. G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol.  4, no. 1, pp. 89–107, Jan. 2002.
    [CrossRef]
  27. OMNeT++ Community website: http://www.omnetpp.org/ .

2012 (4)

2010 (2)

N. Cvijetic, D. Qian, and J. Hu, “100  Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol.  48, no. 7, pp. 70–77, July 2010.
[CrossRef]

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10  Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, Aug. 2010.
[CrossRef]

2009 (4)

J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov. 2009.
[CrossRef]

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol., vol.  15, no. 5–6, pp. 407–413, Oct. 2009.
[CrossRef]

B. Skubic, J. Chen, J. Ahmed, L. Wosinska, and B. Mukherjee, “A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON,” IEEE Commun. Mag., vol.  47, no. 3, pp. S40–S48, Mar. 2009.
[CrossRef]

F. Saliou, P. Chanclou, F. Laurent, N. Genay, J. A. Lazaro, F. Bonada, and J. Prat, “Reach extension strategies for passive optical networks,” J. Opt. Commun. Netw., vol.  1, no. 4, pp. C51–C60, Sept. 2009.
[CrossRef]

2008 (2)

M. P. McGarry, M. Reisslein, C. J. Colbourn, M. Maier, F. Aurzada, and M. Scheutzow, “Just-in-time scheduling for multichannel EPONs,” J. Lightwave Technol., vol.  26, no. 10, pp. 1204–1216, May2008.
[CrossRef]

M. P. McGarry, M. Reisslein, and M. Maier, “Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol.  10, no. 3, pp. 46–60, 2008.
[CrossRef]

2007 (2)

2006 (3)

M. P. McGarry, M. Reisslein, M. Maier, and A. Keha, “Bandwidth management for WDM EPONs,” J. Opt. Netw., vol.  5, no. 9, pp. 637–654, Sept. 2006.
[CrossRef]

M. P. McGarry, M. Reisslein, and M. Maier, “WDM Ethernet passive optical networks,” IEEE Commun. Mag., vol.  44, no. 2, pp. 15–22, Feb. 2006.
[CrossRef]

E. M. M. Winands, I. J. B. F. Adan, and G. J. van Houtum, “Mean value analysis for polling systems,” Queueing Syst., vol.  54, no. 1, pp. 35–44, Sept. 2006.
[CrossRef]

2005 (1)

2002 (2)

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, Feb. 2002.
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol.  4, no. 1, pp. 89–107, Jan. 2002.
[CrossRef]

Adan, I. J. B. F.

E. M. M. Winands, I. J. B. F. Adan, and G. J. van Houtum, “Mean value analysis for polling systems,” Queueing Syst., vol.  54, no. 1, pp. 35–44, Sept. 2006.
[CrossRef]

Ahmed, J.

B. Skubic, J. Chen, J. Ahmed, L. Wosinska, and B. Mukherjee, “A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON,” IEEE Commun. Mag., vol.  47, no. 3, pp. S40–S48, Mar. 2009.
[CrossRef]

Andonovic, I.

K. H. Kwong, D. Harle, and I. Andonovic, “Dynamic bandwidth allocation algorithm for differentiated services over WDM EPONs,” in Int. Conf. on Communications Systems (ICCS), Singapore, Sept. 7, 2004, pp. 116–120.

Ansari, N.

J. Zhang, T. Wang, and N. Ansari, “An efficient MAC protocol for asynchronous ONUs in OFDMA PONs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 6–10, 2011.

Assi, C. M.

Aurzada, F.

Banerjee, A.

Bang, H.

Bonada, F.

Bourgart, F.

J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov. 2009.
[CrossRef]

Campbell, M.

J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov. 2009.
[CrossRef]

Cano, I.

Chanclou, P.

Chen, J.

B. Skubic, J. Chen, J. Ahmed, L. Wosinska, and B. Mukherjee, “A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON,” IEEE Commun. Mag., vol.  47, no. 3, pp. S40–S48, Mar. 2009.
[CrossRef]

Clarke, F.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: A review,” J. Opt. Netw., vol.  4, no. 11, pp. 737–785, Nov. 2005.
[CrossRef]

F. Clarke, S. Sarkar, and B. Mukherjee, “Simultaneous and interleaved polling: An upstream protocol for WDM-PON,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 5–10, 2006.

Colbourn, C. J.

Colle, D.

Cui, A.

J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov. 2009.
[CrossRef]

Cvijetic, N.

N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol., vol.  30, no. 4, pp. 384–398, Feb. 2012.
[CrossRef]

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10  Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, Aug. 2010.
[CrossRef]

N. Cvijetic, D. Qian, and J. Hu, “100  Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol.  48, no. 7, pp. 70–77, July 2010.
[CrossRef]

Davey, R.

J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov. 2009.
[CrossRef]

Demeester, P.

Dhaini, A. R.

Escayola, F. X.

Gagnaire, M.

Genay, N.

Giacoumidis, E.

Harle, D.

K. H. Kwong, D. Harle, and I. Andonovic, “Dynamic bandwidth allocation algorithm for differentiated services over WDM EPONs,” in Int. Conf. on Communications Systems (ICCS), Singapore, Sept. 7, 2004, pp. 116–120.

Hu, J.

N. Cvijetic, D. Qian, and J. Hu, “100  Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol.  48, no. 7, pp. 70–77, July 2010.
[CrossRef]

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10  Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, Aug. 2010.
[CrossRef]

W. Wei, T. Wang, D. Qian, and J. Hu, “MAC protocols for optical orthogonal frequency division multiple access (OFDMA)-based passive optical networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, Feb. 24–28, 2008.

Jansen, S. L.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol., vol.  15, no. 5–6, pp. 407–413, Oct. 2009.
[CrossRef]

Kani, J.-I.

J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov. 2009.
[CrossRef]

Kanonakis, K.

K. Kanonakis, E. Giacoumidis, and I. Tomkos, “Physical-layer-aware MAC schemes for dynamic subcarrier assignment in OFDMA-PON networks,” J. Lightwave Technol., vol.  30, no. 12, pp. 1915–1923, June 2012.
[CrossRef]

K. Kanonakis and I. Tomkos, “An overview of MAC issues in OFDMA-PON networks,” in Int. Conf. Transparent Opt. Netw. (ICTON), Stockholm, Sweden, June 26–30, 2011.

K. Kanonakis, I. Tomkos, T. Pfeiffer, J. Prat, and P. Kourtessis, “ACCORDANCE: A novel OFDMA-PON paradigm for ultra-high capacity converged wireline–wireless access networks,” in Int. Conf. Transparent Opt. Netw. (ICTON), Munich, Germany, June 27–July 1, 2010.

Keha, A.

Kim, J.

Kim, K.

Kourtessis, P.

K. Kanonakis, I. Tomkos, T. Pfeiffer, J. Prat, and P. Kourtessis, “ACCORDANCE: A novel OFDMA-PON paradigm for ultra-high capacity converged wireline–wireless access networks,” in Int. Conf. Transparent Opt. Netw. (ICTON), Munich, Germany, June 27–July 1, 2010.

Kramer, G.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: A review,” J. Opt. Netw., vol.  4, no. 11, pp. 737–785, Nov. 2005.
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, Feb. 2002.
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol.  4, no. 1, pp. 89–107, Jan. 2002.
[CrossRef]

Kwong, K. H.

K. H. Kwong, D. Harle, and I. Andonovic, “Dynamic bandwidth allocation algorithm for differentiated services over WDM EPONs,” in Int. Conf. on Communications Systems (ICCS), Singapore, Sept. 7, 2004, pp. 116–120.

Lannoo, B.

Laurent, F.

Lazaro, J. A.

Maier, M.

McGarry, M. P.

M. P. McGarry, M. Reisslein, and M. Maier, “Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol.  10, no. 3, pp. 46–60, 2008.
[CrossRef]

M. P. McGarry, M. Reisslein, C. J. Colbourn, M. Maier, F. Aurzada, and M. Scheutzow, “Just-in-time scheduling for multichannel EPONs,” J. Lightwave Technol., vol.  26, no. 10, pp. 1204–1216, May2008.
[CrossRef]

M. P. McGarry, M. Reisslein, M. Maier, and A. Keha, “Bandwidth management for WDM EPONs,” J. Opt. Netw., vol.  5, no. 9, pp. 637–654, Sept. 2006.
[CrossRef]

M. P. McGarry, M. Reisslein, and M. Maier, “WDM Ethernet passive optical networks,” IEEE Commun. Mag., vol.  44, no. 2, pp. 15–22, Feb. 2006.
[CrossRef]

Morita, I.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol., vol.  15, no. 5–6, pp. 407–413, Oct. 2009.
[CrossRef]

Mukherjee, B.

B. Skubic, J. Chen, J. Ahmed, L. Wosinska, and B. Mukherjee, “A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON,” IEEE Commun. Mag., vol.  47, no. 3, pp. S40–S48, Mar. 2009.
[CrossRef]

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: A review,” J. Opt. Netw., vol.  4, no. 11, pp. 737–785, Nov. 2005.
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol.  4, no. 1, pp. 89–107, Jan. 2002.
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, Feb. 2002.
[CrossRef]

F. Clarke, S. Sarkar, and B. Mukherjee, “Simultaneous and interleaved polling: An upstream protocol for WDM-PON,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 5–10, 2006.

Park, C.-S.

Park, Y.

Pesavento, G.

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, Feb. 2002.
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol.  4, no. 1, pp. 89–107, Jan. 2002.
[CrossRef]

Pfeiffer, T.

K. Kanonakis, I. Tomkos, T. Pfeiffer, J. Prat, and P. Kourtessis, “ACCORDANCE: A novel OFDMA-PON paradigm for ultra-high capacity converged wireline–wireless access networks,” in Int. Conf. Transparent Opt. Netw. (ICTON), Munich, Germany, June 27–July 1, 2010.

Pickavet, M.

Polo, V.

Prat, J.

Qian, D.

N. Cvijetic, D. Qian, and J. Hu, “100  Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol.  48, no. 7, pp. 70–77, July 2010.
[CrossRef]

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10  Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, Aug. 2010.
[CrossRef]

W. Wei, T. Wang, D. Qian, and J. Hu, “MAC protocols for optical orthogonal frequency division multiple access (OFDMA)-based passive optical networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, Feb. 24–28, 2008.

Rafel, A.

J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov. 2009.
[CrossRef]

Randel, S.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol., vol.  15, no. 5–6, pp. 407–413, Oct. 2009.
[CrossRef]

Reisslein, M.

M. P. McGarry, M. Reisslein, C. J. Colbourn, M. Maier, F. Aurzada, and M. Scheutzow, “Just-in-time scheduling for multichannel EPONs,” J. Lightwave Technol., vol.  26, no. 10, pp. 1204–1216, May2008.
[CrossRef]

M. P. McGarry, M. Reisslein, and M. Maier, “Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol.  10, no. 3, pp. 46–60, 2008.
[CrossRef]

M. P. McGarry, M. Reisslein, M. Maier, and A. Keha, “Bandwidth management for WDM EPONs,” J. Opt. Netw., vol.  5, no. 9, pp. 637–654, Sept. 2006.
[CrossRef]

M. P. McGarry, M. Reisslein, and M. Maier, “WDM Ethernet passive optical networks,” IEEE Commun. Mag., vol.  44, no. 2, pp. 15–22, Feb. 2006.
[CrossRef]

Rodrigues, S.

J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov. 2009.
[CrossRef]

Saliou, F.

Santos, M. C.

Sarkar, S.

F. Clarke, S. Sarkar, and B. Mukherjee, “Simultaneous and interleaved polling: An upstream protocol for WDM-PON,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 5–10, 2006.

Scheutzow, M.

Shami, A.

Skubic, B.

B. Skubic, J. Chen, J. Ahmed, L. Wosinska, and B. Mukherjee, “A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON,” IEEE Commun. Mag., vol.  47, no. 3, pp. S40–S48, Mar. 2009.
[CrossRef]

Song, H.

Spinnler, B.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol., vol.  15, no. 5–6, pp. 407–413, Oct. 2009.
[CrossRef]

Tanaka, H.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol., vol.  15, no. 5–6, pp. 407–413, Oct. 2009.
[CrossRef]

Tomkos, I.

K. Kanonakis, E. Giacoumidis, and I. Tomkos, “Physical-layer-aware MAC schemes for dynamic subcarrier assignment in OFDMA-PON networks,” J. Lightwave Technol., vol.  30, no. 12, pp. 1915–1923, June 2012.
[CrossRef]

K. Kanonakis and I. Tomkos, “An overview of MAC issues in OFDMA-PON networks,” in Int. Conf. Transparent Opt. Netw. (ICTON), Stockholm, Sweden, June 26–30, 2011.

K. Kanonakis, I. Tomkos, T. Pfeiffer, J. Prat, and P. Kourtessis, “ACCORDANCE: A novel OFDMA-PON paradigm for ultra-high capacity converged wireline–wireless access networks,” in Int. Conf. Transparent Opt. Netw. (ICTON), Munich, Germany, June 27–July 1, 2010.

van Houtum, G. J.

E. M. M. Winands, I. J. B. F. Adan, and G. J. van Houtum, “Mean value analysis for polling systems,” Queueing Syst., vol.  54, no. 1, pp. 35–44, Sept. 2006.
[CrossRef]

Verslegers, L.

Wang, T.

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10  Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, Aug. 2010.
[CrossRef]

W. Wei, T. Wang, D. Qian, and J. Hu, “MAC protocols for optical orthogonal frequency division multiple access (OFDMA)-based passive optical networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, Feb. 24–28, 2008.

J. Zhang, T. Wang, and N. Ansari, “An efficient MAC protocol for asynchronous ONUs in OFDMA PONs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 6–10, 2011.

Wei, W.

W. Wei, T. Wang, D. Qian, and J. Hu, “MAC protocols for optical orthogonal frequency division multiple access (OFDMA)-based passive optical networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, Feb. 24–28, 2008.

Winands, E. M. M.

E. M. M. Winands, I. J. B. F. Adan, and G. J. van Houtum, “Mean value analysis for polling systems,” Queueing Syst., vol.  54, no. 1, pp. 35–44, Sept. 2006.
[CrossRef]

Wosinska, L.

B. Skubic, J. Chen, J. Ahmed, L. Wosinska, and B. Mukherjee, “A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON,” IEEE Commun. Mag., vol.  47, no. 3, pp. S40–S48, Mar. 2009.
[CrossRef]

Yang, S.

Zhang, J.

J. Zhang, T. Wang, and N. Ansari, “An efficient MAC protocol for asynchronous ONUs in OFDMA PONs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 6–10, 2011.

IEEE Commun. Mag. (5)

M. P. McGarry, M. Reisslein, and M. Maier, “WDM Ethernet passive optical networks,” IEEE Commun. Mag., vol.  44, no. 2, pp. 15–22, Feb. 2006.
[CrossRef]

J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov. 2009.
[CrossRef]

N. Cvijetic, D. Qian, and J. Hu, “100  Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol.  48, no. 7, pp. 70–77, July 2010.
[CrossRef]

B. Skubic, J. Chen, J. Ahmed, L. Wosinska, and B. Mukherjee, “A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON,” IEEE Commun. Mag., vol.  47, no. 3, pp. S40–S48, Mar. 2009.
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, Feb. 2002.
[CrossRef]

IEEE Commun. Surv. Tutorials (1)

M. P. McGarry, M. Reisslein, and M. Maier, “Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol.  10, no. 3, pp. 46–60, 2008.
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10  Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, Aug. 2010.
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (3)

Opt. Express (1)

Opt. Fiber Technol. (1)

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol., vol.  15, no. 5–6, pp. 407–413, Oct. 2009.
[CrossRef]

Photonic Network Commun. (1)

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol.  4, no. 1, pp. 89–107, Jan. 2002.
[CrossRef]

Queueing Syst. (1)

E. M. M. Winands, I. J. B. F. Adan, and G. J. van Houtum, “Mean value analysis for polling systems,” Queueing Syst., vol.  54, no. 1, pp. 35–44, Sept. 2006.
[CrossRef]

Other (7)

OMNeT++ Community website: http://www.omnetpp.org/ .

W. Wei, T. Wang, D. Qian, and J. Hu, “MAC protocols for optical orthogonal frequency division multiple access (OFDMA)-based passive optical networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, Feb. 24–28, 2008.

J. Zhang, T. Wang, and N. Ansari, “An efficient MAC protocol for asynchronous ONUs in OFDMA PONs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 6–10, 2011.

K. Kanonakis and I. Tomkos, “An overview of MAC issues in OFDMA-PON networks,” in Int. Conf. Transparent Opt. Netw. (ICTON), Stockholm, Sweden, June 26–30, 2011.

K. H. Kwong, D. Harle, and I. Andonovic, “Dynamic bandwidth allocation algorithm for differentiated services over WDM EPONs,” in Int. Conf. on Communications Systems (ICCS), Singapore, Sept. 7, 2004, pp. 116–120.

F. Clarke, S. Sarkar, and B. Mukherjee, “Simultaneous and interleaved polling: An upstream protocol for WDM-PON,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 5–10, 2006.

K. Kanonakis, I. Tomkos, T. Pfeiffer, J. Prat, and P. Kourtessis, “ACCORDANCE: A novel OFDMA-PON paradigm for ultra-high capacity converged wireline–wireless access networks,” in Int. Conf. Transparent Opt. Netw. (ICTON), Munich, Germany, June 27–July 1, 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Illustrations of (a) OFDMA-PON architecture and (b) its MAC protocol for upstream bandwidth allocation.

Fig. 2.
Fig. 2.

Example of IPACT-based 2D bandwidth allocation.

Fig. 3.
Fig. 3.

Cycle time comparisons between analyses and network simulations: (a) and (b) for RTT = 200 μs and (c) and (d) for RTT = 1 ms at 10 Gbits / s with BPSK and 128 ONUs.

Fig. 4.
Fig. 4.

Cycle times for fixed and variable sizes of packets at 10 Gbits / s with BPSK and 128 ONUs.

Fig. 5.
Fig. 5.

Cycle time comparisons between equidistant- and nonequidistant-ONU scenarios, obtained by simulating 128 ONUs with (a)  S = 16 , 64 and (b)  S = 4 , 32 , 96 . In the equidistant case, all ONUs have RTT = 128 μs . In the nonequidistant case, four groups of 32 ONUs have RTT = 50,100,150,200 μs , respectively.

Fig. 6.
Fig. 6.

Cycle times obtained by simulation for (a)  RTT = 200 μs and (b)  RTT = 1 ms at 10 Gbits / s with BPSK and 128 ONUs.

Fig. 7.
Fig. 7.

Delay obtained by simulation: RTT = 200 μs at 10 Gbits / s with BPSK and 128 ONUs.

Fig. 8.
Fig. 8.

Cycle time versus number of subchannels for (a)  RTT = 200 μs and (b)  RTT = 1 ms at 10 Gbits / s with BPSK and 128 ONUs.

Fig. 9.
Fig. 9.

Cycle time versus number of subchannels for RTT = 200 μs with two ONU groups having different modulation orders; at 10 Gbits / s , the ratios of BPSK∶4QAM are 3 1 , 1 1 , and 1 3 for 128 ONUs.

Fig. 10.
Fig. 10.

Maximum grant size.

Fig. 11.
Fig. 11.

Maximum number of allowed ONUs.

Fig. 12.
Fig. 12.

Minimum number of subchannels.

Tables (1)

Tables Icon

TABLE I Notations for Analysis

Equations (44)

Equations on this page are rendered with MathJax. Learn more.

V pkt ( h i ) = 8 · B pkt · S C · h i ,
ρ A i ( h i ) = λ A i · V pkt ( h i ) ,
ρ A tot = i = 1 N ρ A i ( h i ) ,
ρ A i ( h i ) < 1 .
ρ A tot < S .
P r ( N A i ( k + 1 ) = n A ) = e λ A i · T i ( h i , k ) · ( λ A i · T i ( h i , k ) ) n A n A ! .
E [ N A i ( k + 1 ) ] = n A = 0 n A · P r ( N A i ( k + 1 ) = n A ) .
E [ N A i ( k + 1 ) ] = λ A i · E [ T i ( h i , k ) ] .
E [ G i ( h i , k + 1 ) ] = V pkt ( h i ) · E [ N A i ( k + 1 ) ] .
E [ G i ( h i , k + 1 ) ] = ρ A i ( h i ) · E [ T i ( h i , k ) ] .
E [ T i ( h i , k + 1 ) ] = 1 S · { T IFG + E [ G i + 1 ( h i + 1 , k ) ] + T rep ( h i + 1 ) + T IFG + E [ G N ( h N , k ) ] + T rep ( h N ) + T IFG + E [ G 1 ( h 1 , k + 1 ) ] + T rep ( h 1 ) + T IFG + E [ G i ( h i , k + 1 ) ] + T rep ( h i ) } .
E [ T i ( h i ) ] = 1 S · { i = 1 N ( E [ G i ( h i ) ] + T rep ( h i ) ) + N · T IFG } .
E [ T ] = 1 S · { i = 1 N ( ρ A i ( h i ) · E [ T ] + T rep ( h i ) ) + N · T IFG } .
E [ T ] = N · T IFG + i = 1 N T rep ( h i ) S i = 1 N ρ A i ( h i ) ,
E [ T ] = N · T IFG + i = 1 N T rep ( h i ) S i = 1 N ρ A i ( h i ) > T RTT + T proc .
ρ A tot > S N · T IFG + ( 8 · B rep · S / C ) · i = 1 N 1 / h i T RTT + T proc .
E [ T i * ( h i , k ) ] = T RTT + T proc + E [ G i * ( h i , k ) ] + T rep ( h i ) .
E [ T i * ( h i ) ] = RTT + T proc + E [ G i * ( h i ) ] + T rep ( h i ) .
E [ G i * ( h i ) ] = ρ A i ( h i ) · E [ T i * ( h i ) ] .
E [ T i * ( h i ) ] = T RTT + T proc + ρ A i ( h i ) · E [ T i * ( h i ) ] + T rep ( h i ) .
E [ T i * ( h i ) ] = T RTT + T proc + T rep ( h i ) 1 ρ A i ,
E [ T * ] = 1 N · i = 1 N E [ T i * ( h i ) ] .
E [ T ] = N · T IFG + i = 1 N T rep ( h i ) S i = 1 N ρ A i ( h i ) T lim .
E [ T i * ( h i ) ] = RTT + T proc + T rep ( h i ) 1 ρ A i ( h i ) T lim .
ρ A tot S N · T IFG + i = 1 N T rep ( h i ) T lim .
Λ ¯ A C · S · T lim C · N · T IFG 8 · B rep · S · i = 1 N 1 / h i T lim · S · i = 1 N 1 / h i .
ρ A i 1 RTT + T proc + T rep ( h i ) T lim .
Λ ¯ A i C · h i · ( T lim ( RTT + T proc ) ) 8 · B rep · S T lim · S .
N · T IFG + N · T rep ( h s ) S N · λ ¯ A · 8 · B pkt · S / ( C · h s ) T lim .
N T lim · S · C T IFG · C + S · ( T lim · Λ ¯ A + 8 · B rep ) / h s .
N · T IFG + N a · T rep ( h s ) + ( N N a ) · T rep ( h s + d ) S N a · λ ¯ A 8 B pkt S C h s ( N N a ) λ ¯ A 8 B pkt S C ( h s + d ) T lim .
N T lim · S · C N a · S · ( T lim · Λ ¯ A + 8 · B rep ) ( 1 h s 1 h s + d ) T IFG · C + S · ( T lim · Λ ¯ A + 8 · B rep ) / ( h s + d ) .
S N · T IFG · C T lim · C ( T lim · Λ ¯ A + 8 · B rep ) · i = 1 N 1 / h i ,
E [ N A i ( k + 1 ) ] = n A = 0 n A · P r ( N A i ( k + 1 ) = n A ) = n A = 1 n A · P r ( N A i ( k + 1 ) = n A ) = n A = 1 n A · ( λ A i · T i ( h i , k ) ) n A n A ! · e λ A i · T i ( h i , k ) .
E [ N A i ( k + 1 ) ] n A = 1 ( λ A i · E [ T i ( h i , k ) ] ) n A ( n A 1 ) ! · e λ A i · E [ T i ( h i , k ) ] .
n A = 1 ( λ A i · E [ T i ( h i , k ) ] ) n A ( n A 1 ) ! · e λ A i · E [ T i ( h i , k ) ] = n A = 1 ( λ A i · E [ T i ( h i , k ) ] ) n A 1 ( n A 1 ) ! · e λ A i · E [ T i ( h i , k ) ] · λ A i · E [ T i ( h i , k ) ] = 1 · ( λ A i · E [ T i ( h i , k ) ] ) ,
E [ N A i ( k + 1 ) ] = λ A i · E [ T i ( h i , k ) ] .
λ ¯ A · 8 · B pkt · S C · i = 1 N 1 h i S N · T IFG + i = 1 N T rep ( h i ) T lim .
Λ ¯ A C · S · T lim C · N · T IFG 8 · B rep · S · i = 1 N 1 h i T lim · S · i = 1 N 1 h i .
N · T IFG + N a · 8 B rep S C h s + ( N N a ) · 8 B rep S C ( h s + d ) T lim { S N a · λ ¯ A 8 B pkt S C h s ( N N a ) · λ ¯ A 8 B pkt S C ( h s + d ) } . N · T IFG + N · 8 B rep S C ( h s + d ) + T lim · N · λ ¯ A 8 B pkt S C ( h s + d ) T lim · S + T lim · N a · λ ¯ A { 8 B pkt S C ( h s + d ) 8 B pkt S C h s } + N a { 8 B rep S C ( h s + d ) 8 B rep S C h s } . N { T IFG + 8 B rep S C ( h s + d ) + T lim · λ ¯ A · 8 B pkt S C ( h s + d ) } T lim · S + N a · S C · ( T lim · λ ¯ A · 8 · B pkt + 8 · B rep ) ( 1 h s + d 1 h s ) . N T lim · S · C + N a · S · ( T lim · λ ¯ A · 8 · B pkt + 8 · B rep ) ( 1 h s + d 1 h s ) T IFG · C + T lim · λ ¯ A · 8 B pkt S h s + d + 8 B rep S h s + d . N T lim · S · C + N a · S · ( T lim · Λ ¯ A + 8 · B rep ) ( 1 h s + d 1 h s ) T IFG · C + S · ( T lim · Λ ¯ A + 8 · B rep ) / ( h s + d ) .
N · T IFG + i = 1 N 8 · B rep · S C · h i T lim · S T lim i = 1 N λ i 8 · B pkt · S C · h i .
S N · T IFG · C T lim · C T lim i = 1 N λ i 8 B pkt h i i = 1 N 8 B rep h i .
S N · T IFG C T lim C T lim · Λ ¯ A i = 1 N 1 h i 8 · B rep i = 1 N 1 h i .
S N · T IFG C T lim C ( T lim · Λ ¯ A + 8 · B rep ) · i = 1 N 1 h i .