Abstract

Survivability is one of the key issues in fiber-wireless (FiWi) access networks, since network component failure may cause huge data loss. Especially in the scenario of segment failure, all optical network units (ONUs) lose their connections with the optical line terminal. Previous works focus on the protection of FiWi against segment failure by deploying backup fibers among the backup ONUs in different segments. However, these works consider only single segment failure. They also ignore the issue of traffic recovery efficiency. More importantly, they underutilize the backup fibers and ignore optimizing the selection of backup ONUs. Therefore, these works usually require a considerable deployment cost for backup fibers. To conquer these challenges, we propose an efficient protection scheme called cluster-based protection (CBP) in this paper. In CBP, we first partition the segments in the network into clusters in order to reduce the overhead for the management of traffic recovery. Then, we select one of the ONUs in each segment as the backup ONU and deploy backup fibers among the backup ONUs of different segments in the same cluster. Under a constraint on the maximum number of segments in each cluster, the CBP scheme aims to protect FiWi against the simultaneous failures of multiple segments with a minimum deployment cost for backup fibers. We propose both an integer-linear-programming-based approach and a heuristic approach to solve the joint optimization problem in CBP of selecting backup ONUs, clustering segments, and deploying backup fibers. To the best of our knowledge, this paper is the first work regarding the survivability of FiWi against the simultaneous failures of multiple segments. Through extensive simulation, we demonstrate that our CBP scheme outperforms the previous works significantly in terms of survivability enhancement and cost savings.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost versus reliability performance study of fiber access network architectures,” IEEE Commun. Mag., vol.  48, no. 2, pp. 56–65, Feb. 2010.
    [CrossRef]
  2. M. Ruffini, D. Mehta, B. O’Sullivan, L. Quesada, L. Doyle, and D. Payne, “Deployment strategies for protected long-reach PON,” J. Opt. Commun. Netw., vol.  4, no. 2, pp. 118–129, Feb. 2012.
    [CrossRef]
  3. S. Li, J. Wang, C. Qiao, and Y. Xu, “Mitigating packet reordering in FiWi networks,” J. Opt. Commun. Netw., vol.  3, no. 2, pp. 134–144, Feb. 2011.
    [CrossRef]
  4. N. Ghazisaidi and M. Maier, “Fiber-wireless (FiWi) access networks: Challenges and opportunities,” IEEE Network, vol.  25, no. 1, pp. 36–42, Feb. 2011.
    [CrossRef]
  5. A. R. Dhaini and P. H. Ho, “MC-FiWiBAN: An emergency-aware mission-critical fiber-wireless broadband access network,” IEEE Commun. Mag., vol.  49, no. 1, pp. 134–142, Jan. 2011.
    [CrossRef]
  6. A. R. Dhaini, P. H. Ho, and X. Jiang, “QoS control for guaranteed service bundles over fiber-wireless (FiWi) broadband access networks,” J. Lightwave Technol., vol.  29, no. 10, pp. 1500–1513, May 2011.
    [CrossRef]
  7. G. Shen, R. S. Tucker, and C. J. Chae, “Fixed mobile convergence architectures for broadband access: Integration of EPON and WiMAX,” IEEE Commun. Mag., vol.  45, no. 8, pp. 44–50, Aug. 2007.
    [CrossRef]
  8. M. Kim, G. Shen, J. Choi, B. Jung, H. Park, and M. Kang, “Distributed antenna-based EPON-WiMAX integration and its cost-efficient cell planning,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 808–817, Aug. 2010.
    [CrossRef]
  9. T. Feng and L. Ruan, “Design of survivable hybrid wireless-optical broadband-access network,” in Proc. IEEE ICC, June 2009, pp. 2601–2605.
  10. T. Feng and L. Ruan, “Design of a survivable hybrid wireless-optical broadband-access network,” J. Opt. Commun. Netw., vol.  3, no. 5, pp. 458–464, May 2011.
    [CrossRef]
  11. J. Wang, K. Wu, S. Li, and C. Qiao, “Performance modeling and analysis of multi-path routing in integrated fiber-wireless networks,” in Proc. IEEE INFOCOM, Mar. 2010, pp. 311–315.
  12. S. Sarkar, H. H. Yen, S. Dixit, and B. Mukherjee, “Hybrid wireless-optical broadband access network (WOBAN): Network planning and setup,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 12–21, Aug. 2008.
    [CrossRef]
  13. Y. Li, J. Wang, C. Qiao, A. Gumaste, Y. Xu, and Y. Xu, “Integrated fiber-wireless (FiWi) access networks supporting inter-ONU communications,” J. Lightwave Technol., vol.  28, no. 5, pp. 714–724, Mar. 2010.
    [CrossRef]
  14. B. Kantarci and H. Mouftah, “Reliable and fast restoration for a survivable wireless-optical broadband access network,” in Proc. ICTON, July 2010.
  15. N. Ghazisaidi, M. Scheutzow, and M. Maier, “Survivability analysis of next-generation passive optical networks and fiber-wireless access networks,” IEEE Trans. Reliab., vol.  60, no. 2, pp. 479–492, June 2011.
    [CrossRef]
  16. X. Shao, Y. K. Yeo, L. H. Ngoh, X. Cheng, W. Rong, and L. Zhou, “Availability-aware routing for large-scale hybrid wireless-optical broadband access network,” in Proc. OFC/NFOEC, Mar. 2010, paper JThA42.
  17. S. Sarkar, H. H. Yen, S. Dixit, and B. Mukherjee, “RADAR: Risk-and-delay aware routing algorithm in a hybrid wireless-optical broadband access network (WOBAN),” in Proc. OFC, Mar. 2007, paper OThM4.
  18. N. Correia, J. Coimbra, and G. Schutz, “Fault-tolerance planning in multiradio hybrid wireless-optical broadband access networks,” J. Opt. Commun. Netw., vol.  1, no. 7, pp. 645–654, Dec. 2009.
    [CrossRef]
  19. A. Chamam and S. Pierre, “On the planning of wireless sensor networks: Energy-efficient clustering under the joint routing and coverage constraint,” IEEE Trans. Mobile Comput., vol.  8, no. 8, pp. 1077–1086, Aug. 2009.
    [CrossRef]
  20. I. de Miguel, R. Vallejos, A. Beghelli, and R. J. Duran, “Genetic algorithm for joint routing and dimensioning of dynamic WDM networks,” J. Opt. Commun. Netw., vol.  1, no. 7, pp. 608–621, Dec. 2009.
    [CrossRef]
  21. R. Morais, C. Pavan, A. Pinto, and C. Requejo, “Genetic algorithm for the topological design of survivable optical transport networks,” J. Opt. Commun. Netw., vol.  3, no. 1, pp. 17–26, Jan. 2011.
    [CrossRef]

2012 (1)

2011 (7)

R. Morais, C. Pavan, A. Pinto, and C. Requejo, “Genetic algorithm for the topological design of survivable optical transport networks,” J. Opt. Commun. Netw., vol.  3, no. 1, pp. 17–26, Jan. 2011.
[CrossRef]

S. Li, J. Wang, C. Qiao, and Y. Xu, “Mitigating packet reordering in FiWi networks,” J. Opt. Commun. Netw., vol.  3, no. 2, pp. 134–144, Feb. 2011.
[CrossRef]

T. Feng and L. Ruan, “Design of a survivable hybrid wireless-optical broadband-access network,” J. Opt. Commun. Netw., vol.  3, no. 5, pp. 458–464, May 2011.
[CrossRef]

A. R. Dhaini, P. H. Ho, and X. Jiang, “QoS control for guaranteed service bundles over fiber-wireless (FiWi) broadband access networks,” J. Lightwave Technol., vol.  29, no. 10, pp. 1500–1513, May 2011.
[CrossRef]

N. Ghazisaidi and M. Maier, “Fiber-wireless (FiWi) access networks: Challenges and opportunities,” IEEE Network, vol.  25, no. 1, pp. 36–42, Feb. 2011.
[CrossRef]

A. R. Dhaini and P. H. Ho, “MC-FiWiBAN: An emergency-aware mission-critical fiber-wireless broadband access network,” IEEE Commun. Mag., vol.  49, no. 1, pp. 134–142, Jan. 2011.
[CrossRef]

N. Ghazisaidi, M. Scheutzow, and M. Maier, “Survivability analysis of next-generation passive optical networks and fiber-wireless access networks,” IEEE Trans. Reliab., vol.  60, no. 2, pp. 479–492, June 2011.
[CrossRef]

2010 (3)

M. Kim, G. Shen, J. Choi, B. Jung, H. Park, and M. Kang, “Distributed antenna-based EPON-WiMAX integration and its cost-efficient cell planning,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 808–817, Aug. 2010.
[CrossRef]

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost versus reliability performance study of fiber access network architectures,” IEEE Commun. Mag., vol.  48, no. 2, pp. 56–65, Feb. 2010.
[CrossRef]

Y. Li, J. Wang, C. Qiao, A. Gumaste, Y. Xu, and Y. Xu, “Integrated fiber-wireless (FiWi) access networks supporting inter-ONU communications,” J. Lightwave Technol., vol.  28, no. 5, pp. 714–724, Mar. 2010.
[CrossRef]

2009 (3)

2008 (1)

S. Sarkar, H. H. Yen, S. Dixit, and B. Mukherjee, “Hybrid wireless-optical broadband access network (WOBAN): Network planning and setup,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 12–21, Aug. 2008.
[CrossRef]

2007 (1)

G. Shen, R. S. Tucker, and C. J. Chae, “Fixed mobile convergence architectures for broadband access: Integration of EPON and WiMAX,” IEEE Commun. Mag., vol.  45, no. 8, pp. 44–50, Aug. 2007.
[CrossRef]

Beghelli, A.

Chae, C. J.

G. Shen, R. S. Tucker, and C. J. Chae, “Fixed mobile convergence architectures for broadband access: Integration of EPON and WiMAX,” IEEE Commun. Mag., vol.  45, no. 8, pp. 44–50, Aug. 2007.
[CrossRef]

Chamam, A.

A. Chamam and S. Pierre, “On the planning of wireless sensor networks: Energy-efficient clustering under the joint routing and coverage constraint,” IEEE Trans. Mobile Comput., vol.  8, no. 8, pp. 1077–1086, Aug. 2009.
[CrossRef]

Chen, J.

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost versus reliability performance study of fiber access network architectures,” IEEE Commun. Mag., vol.  48, no. 2, pp. 56–65, Feb. 2010.
[CrossRef]

Cheng, X.

X. Shao, Y. K. Yeo, L. H. Ngoh, X. Cheng, W. Rong, and L. Zhou, “Availability-aware routing for large-scale hybrid wireless-optical broadband access network,” in Proc. OFC/NFOEC, Mar. 2010, paper JThA42.

Choi, J.

M. Kim, G. Shen, J. Choi, B. Jung, H. Park, and M. Kang, “Distributed antenna-based EPON-WiMAX integration and its cost-efficient cell planning,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 808–817, Aug. 2010.
[CrossRef]

Coimbra, J.

Correia, N.

de Miguel, I.

Dhaini, A. R.

A. R. Dhaini, P. H. Ho, and X. Jiang, “QoS control for guaranteed service bundles over fiber-wireless (FiWi) broadband access networks,” J. Lightwave Technol., vol.  29, no. 10, pp. 1500–1513, May 2011.
[CrossRef]

A. R. Dhaini and P. H. Ho, “MC-FiWiBAN: An emergency-aware mission-critical fiber-wireless broadband access network,” IEEE Commun. Mag., vol.  49, no. 1, pp. 134–142, Jan. 2011.
[CrossRef]

Dixit, S.

S. Sarkar, H. H. Yen, S. Dixit, and B. Mukherjee, “Hybrid wireless-optical broadband access network (WOBAN): Network planning and setup,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 12–21, Aug. 2008.
[CrossRef]

S. Sarkar, H. H. Yen, S. Dixit, and B. Mukherjee, “RADAR: Risk-and-delay aware routing algorithm in a hybrid wireless-optical broadband access network (WOBAN),” in Proc. OFC, Mar. 2007, paper OThM4.

Doyle, L.

Duran, R. J.

Feng, T.

T. Feng and L. Ruan, “Design of a survivable hybrid wireless-optical broadband-access network,” J. Opt. Commun. Netw., vol.  3, no. 5, pp. 458–464, May 2011.
[CrossRef]

T. Feng and L. Ruan, “Design of survivable hybrid wireless-optical broadband-access network,” in Proc. IEEE ICC, June 2009, pp. 2601–2605.

Ghazisaidi, N.

N. Ghazisaidi and M. Maier, “Fiber-wireless (FiWi) access networks: Challenges and opportunities,” IEEE Network, vol.  25, no. 1, pp. 36–42, Feb. 2011.
[CrossRef]

N. Ghazisaidi, M. Scheutzow, and M. Maier, “Survivability analysis of next-generation passive optical networks and fiber-wireless access networks,” IEEE Trans. Reliab., vol.  60, no. 2, pp. 479–492, June 2011.
[CrossRef]

Gumaste, A.

Ho, P. H.

A. R. Dhaini, P. H. Ho, and X. Jiang, “QoS control for guaranteed service bundles over fiber-wireless (FiWi) broadband access networks,” J. Lightwave Technol., vol.  29, no. 10, pp. 1500–1513, May 2011.
[CrossRef]

A. R. Dhaini and P. H. Ho, “MC-FiWiBAN: An emergency-aware mission-critical fiber-wireless broadband access network,” IEEE Commun. Mag., vol.  49, no. 1, pp. 134–142, Jan. 2011.
[CrossRef]

Jaeger, M.

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost versus reliability performance study of fiber access network architectures,” IEEE Commun. Mag., vol.  48, no. 2, pp. 56–65, Feb. 2010.
[CrossRef]

Jiang, X.

Jung, B.

M. Kim, G. Shen, J. Choi, B. Jung, H. Park, and M. Kang, “Distributed antenna-based EPON-WiMAX integration and its cost-efficient cell planning,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 808–817, Aug. 2010.
[CrossRef]

Kang, M.

M. Kim, G. Shen, J. Choi, B. Jung, H. Park, and M. Kang, “Distributed antenna-based EPON-WiMAX integration and its cost-efficient cell planning,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 808–817, Aug. 2010.
[CrossRef]

Kantarci, B.

B. Kantarci and H. Mouftah, “Reliable and fast restoration for a survivable wireless-optical broadband access network,” in Proc. ICTON, July 2010.

Kim, M.

M. Kim, G. Shen, J. Choi, B. Jung, H. Park, and M. Kang, “Distributed antenna-based EPON-WiMAX integration and its cost-efficient cell planning,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 808–817, Aug. 2010.
[CrossRef]

Li, S.

S. Li, J. Wang, C. Qiao, and Y. Xu, “Mitigating packet reordering in FiWi networks,” J. Opt. Commun. Netw., vol.  3, no. 2, pp. 134–144, Feb. 2011.
[CrossRef]

J. Wang, K. Wu, S. Li, and C. Qiao, “Performance modeling and analysis of multi-path routing in integrated fiber-wireless networks,” in Proc. IEEE INFOCOM, Mar. 2010, pp. 311–315.

Li, Y.

Machuca, C.

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost versus reliability performance study of fiber access network architectures,” IEEE Commun. Mag., vol.  48, no. 2, pp. 56–65, Feb. 2010.
[CrossRef]

Maier, M.

N. Ghazisaidi and M. Maier, “Fiber-wireless (FiWi) access networks: Challenges and opportunities,” IEEE Network, vol.  25, no. 1, pp. 36–42, Feb. 2011.
[CrossRef]

N. Ghazisaidi, M. Scheutzow, and M. Maier, “Survivability analysis of next-generation passive optical networks and fiber-wireless access networks,” IEEE Trans. Reliab., vol.  60, no. 2, pp. 479–492, June 2011.
[CrossRef]

Mehta, D.

Morais, R.

Mouftah, H.

B. Kantarci and H. Mouftah, “Reliable and fast restoration for a survivable wireless-optical broadband access network,” in Proc. ICTON, July 2010.

Mukherjee, B.

S. Sarkar, H. H. Yen, S. Dixit, and B. Mukherjee, “Hybrid wireless-optical broadband access network (WOBAN): Network planning and setup,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 12–21, Aug. 2008.
[CrossRef]

S. Sarkar, H. H. Yen, S. Dixit, and B. Mukherjee, “RADAR: Risk-and-delay aware routing algorithm in a hybrid wireless-optical broadband access network (WOBAN),” in Proc. OFC, Mar. 2007, paper OThM4.

Ngoh, L. H.

X. Shao, Y. K. Yeo, L. H. Ngoh, X. Cheng, W. Rong, and L. Zhou, “Availability-aware routing for large-scale hybrid wireless-optical broadband access network,” in Proc. OFC/NFOEC, Mar. 2010, paper JThA42.

O’Sullivan, B.

Park, H.

M. Kim, G. Shen, J. Choi, B. Jung, H. Park, and M. Kang, “Distributed antenna-based EPON-WiMAX integration and its cost-efficient cell planning,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 808–817, Aug. 2010.
[CrossRef]

Pavan, C.

Payne, D.

Pierre, S.

A. Chamam and S. Pierre, “On the planning of wireless sensor networks: Energy-efficient clustering under the joint routing and coverage constraint,” IEEE Trans. Mobile Comput., vol.  8, no. 8, pp. 1077–1086, Aug. 2009.
[CrossRef]

Pinto, A.

Qiao, C.

Quesada, L.

Requejo, C.

Rong, W.

X. Shao, Y. K. Yeo, L. H. Ngoh, X. Cheng, W. Rong, and L. Zhou, “Availability-aware routing for large-scale hybrid wireless-optical broadband access network,” in Proc. OFC/NFOEC, Mar. 2010, paper JThA42.

Ruan, L.

T. Feng and L. Ruan, “Design of a survivable hybrid wireless-optical broadband-access network,” J. Opt. Commun. Netw., vol.  3, no. 5, pp. 458–464, May 2011.
[CrossRef]

T. Feng and L. Ruan, “Design of survivable hybrid wireless-optical broadband-access network,” in Proc. IEEE ICC, June 2009, pp. 2601–2605.

Ruffini, M.

Sarkar, S.

S. Sarkar, H. H. Yen, S. Dixit, and B. Mukherjee, “Hybrid wireless-optical broadband access network (WOBAN): Network planning and setup,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 12–21, Aug. 2008.
[CrossRef]

S. Sarkar, H. H. Yen, S. Dixit, and B. Mukherjee, “RADAR: Risk-and-delay aware routing algorithm in a hybrid wireless-optical broadband access network (WOBAN),” in Proc. OFC, Mar. 2007, paper OThM4.

Scheutzow, M.

N. Ghazisaidi, M. Scheutzow, and M. Maier, “Survivability analysis of next-generation passive optical networks and fiber-wireless access networks,” IEEE Trans. Reliab., vol.  60, no. 2, pp. 479–492, June 2011.
[CrossRef]

Schutz, G.

Shao, X.

X. Shao, Y. K. Yeo, L. H. Ngoh, X. Cheng, W. Rong, and L. Zhou, “Availability-aware routing for large-scale hybrid wireless-optical broadband access network,” in Proc. OFC/NFOEC, Mar. 2010, paper JThA42.

Shen, G.

M. Kim, G. Shen, J. Choi, B. Jung, H. Park, and M. Kang, “Distributed antenna-based EPON-WiMAX integration and its cost-efficient cell planning,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 808–817, Aug. 2010.
[CrossRef]

G. Shen, R. S. Tucker, and C. J. Chae, “Fixed mobile convergence architectures for broadband access: Integration of EPON and WiMAX,” IEEE Commun. Mag., vol.  45, no. 8, pp. 44–50, Aug. 2007.
[CrossRef]

Tucker, R. S.

G. Shen, R. S. Tucker, and C. J. Chae, “Fixed mobile convergence architectures for broadband access: Integration of EPON and WiMAX,” IEEE Commun. Mag., vol.  45, no. 8, pp. 44–50, Aug. 2007.
[CrossRef]

Vallejos, R.

Wang, J.

Wosinska, L.

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost versus reliability performance study of fiber access network architectures,” IEEE Commun. Mag., vol.  48, no. 2, pp. 56–65, Feb. 2010.
[CrossRef]

Wu, K.

J. Wang, K. Wu, S. Li, and C. Qiao, “Performance modeling and analysis of multi-path routing in integrated fiber-wireless networks,” in Proc. IEEE INFOCOM, Mar. 2010, pp. 311–315.

Xu, Y.

Yen, H. H.

S. Sarkar, H. H. Yen, S. Dixit, and B. Mukherjee, “Hybrid wireless-optical broadband access network (WOBAN): Network planning and setup,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 12–21, Aug. 2008.
[CrossRef]

S. Sarkar, H. H. Yen, S. Dixit, and B. Mukherjee, “RADAR: Risk-and-delay aware routing algorithm in a hybrid wireless-optical broadband access network (WOBAN),” in Proc. OFC, Mar. 2007, paper OThM4.

Yeo, Y. K.

X. Shao, Y. K. Yeo, L. H. Ngoh, X. Cheng, W. Rong, and L. Zhou, “Availability-aware routing for large-scale hybrid wireless-optical broadband access network,” in Proc. OFC/NFOEC, Mar. 2010, paper JThA42.

Zhou, L.

X. Shao, Y. K. Yeo, L. H. Ngoh, X. Cheng, W. Rong, and L. Zhou, “Availability-aware routing for large-scale hybrid wireless-optical broadband access network,” in Proc. OFC/NFOEC, Mar. 2010, paper JThA42.

IEEE Commun. Mag. (3)

A. R. Dhaini and P. H. Ho, “MC-FiWiBAN: An emergency-aware mission-critical fiber-wireless broadband access network,” IEEE Commun. Mag., vol.  49, no. 1, pp. 134–142, Jan. 2011.
[CrossRef]

G. Shen, R. S. Tucker, and C. J. Chae, “Fixed mobile convergence architectures for broadband access: Integration of EPON and WiMAX,” IEEE Commun. Mag., vol.  45, no. 8, pp. 44–50, Aug. 2007.
[CrossRef]

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost versus reliability performance study of fiber access network architectures,” IEEE Commun. Mag., vol.  48, no. 2, pp. 56–65, Feb. 2010.
[CrossRef]

IEEE J. Sel. Areas Commun. (2)

M. Kim, G. Shen, J. Choi, B. Jung, H. Park, and M. Kang, “Distributed antenna-based EPON-WiMAX integration and its cost-efficient cell planning,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 808–817, Aug. 2010.
[CrossRef]

S. Sarkar, H. H. Yen, S. Dixit, and B. Mukherjee, “Hybrid wireless-optical broadband access network (WOBAN): Network planning and setup,” IEEE J. Sel. Areas Commun., vol.  26, no. 6, pp. 12–21, Aug. 2008.
[CrossRef]

IEEE Network (1)

N. Ghazisaidi and M. Maier, “Fiber-wireless (FiWi) access networks: Challenges and opportunities,” IEEE Network, vol.  25, no. 1, pp. 36–42, Feb. 2011.
[CrossRef]

IEEE Trans. Mobile Comput. (1)

A. Chamam and S. Pierre, “On the planning of wireless sensor networks: Energy-efficient clustering under the joint routing and coverage constraint,” IEEE Trans. Mobile Comput., vol.  8, no. 8, pp. 1077–1086, Aug. 2009.
[CrossRef]

IEEE Trans. Reliab. (1)

N. Ghazisaidi, M. Scheutzow, and M. Maier, “Survivability analysis of next-generation passive optical networks and fiber-wireless access networks,” IEEE Trans. Reliab., vol.  60, no. 2, pp. 479–492, June 2011.
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (6)

Other (5)

X. Shao, Y. K. Yeo, L. H. Ngoh, X. Cheng, W. Rong, and L. Zhou, “Availability-aware routing for large-scale hybrid wireless-optical broadband access network,” in Proc. OFC/NFOEC, Mar. 2010, paper JThA42.

S. Sarkar, H. H. Yen, S. Dixit, and B. Mukherjee, “RADAR: Risk-and-delay aware routing algorithm in a hybrid wireless-optical broadband access network (WOBAN),” in Proc. OFC, Mar. 2007, paper OThM4.

J. Wang, K. Wu, S. Li, and C. Qiao, “Performance modeling and analysis of multi-path routing in integrated fiber-wireless networks,” in Proc. IEEE INFOCOM, Mar. 2010, pp. 311–315.

T. Feng and L. Ruan, “Design of survivable hybrid wireless-optical broadband-access network,” in Proc. IEEE ICC, June 2009, pp. 2601–2605.

B. Kantarci and H. Mouftah, “Reliable and fast restoration for a survivable wireless-optical broadband access network,” in Proc. ICTON, July 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

Architecture of a FiWi access network.

Fig. 2.
Fig. 2.

Illustration of a cluster in our CBP scheme.

Fig. 3.
Fig. 3.

Comparison of the backup fiber deployment between the previous scheme [9,10] and our CBP scheme: (a) only neighbor segments are used for backup and (b) both neighbor segments and remote segments are used for backup.

Fig. 4.
Fig. 4.

Illustration of the available backup optical path.

Fig. 5.
Fig. 5.

Illustration of the uniform crossover on left chromosomes.

Fig. 6.
Fig. 6.

Illustration of the mutation on a left chromosome.

Fig. 7.
Fig. 7.

Illustration of newly established backup optical paths.

Fig. 8.
Fig. 8.

Illustration of computing N w ( s i , s j ) (given A B C = 2 ).

Fig. 9.
Fig. 9.

Objective value of ILP with increasing solution time.

Fig. 10.
Fig. 10.

TDDBF of MCMP and CBP ( X = 1 , A B C = 5 ) in scenario 1.

Fig. 11.
Fig. 11.

TDDBF of MCMP and CBP ( X = 1 , A B C = 5 ) in scenario 2.

Fig. 12.
Fig. 12.

TDDBF of MCMP and CBP ( X = 1 , A B C = 5 ) in scenario 3.

Fig. 13.
Fig. 13.

TDDBF of MCMP and CBP ( X { 4 , 5 , 6 , 7 , 8 } , A B C = 4 ) in scenario 1.

Fig. 14.
Fig. 14.

TDDBF of MCMP and CBP ( X { 4 , 5 , 6 , 7 , 8 } , A B C = 4 ) in scenario 2.

Fig. 15.
Fig. 15.

TDDBF of MCMP and CBP ( X { 4 , 5 , 6 , 7 , 8 } , A B C = 4 ) in scenario 3.

Fig. 16.
Fig. 16.

TDDBF of MCMP and CBP ( X = 4 , A B C { 2 , 3 , 4 } ) in scenario 1.

Fig. 17.
Fig. 17.

TDDBF of MCMP and CBP ( X = 4 , A B C { 2 , 3 , 4 } ) in scenario 2.

Fig. 18.
Fig. 18.

TDDBF of MCMP and CBP ( X = 4 , A B C { 2 , 3 , 4 } ) in scenario 3.

Tables (6)

Tables Icon

Algorithm 1 MCE Algorithm for the k th Cluster

Tables Icon

Algorithm 2 Iteration of Heuristics

Tables Icon

TABLE I Heuristic Approach Versus ILP-Based Approach in TDDBF

Tables Icon

TABLE II Heuristic Approach Versus ILP-Based Approach in Solution Time

Tables Icon

TABLE III Maximum Number of Tolerable Segment Failures ( A B C = 4 )

Tables Icon

TABLE IV Minimum Tolerable ABC ( X = 4 )

Equations (53)

Equations on this page are rendered with MathJax. Learn more.

minimize i = 1 N s 1 j = i + 1 N s u = 1 N o v = 1 N o l ( o i u , o j v ) · φ i , j u , v .
φ i , j u , v ε i u u , v , i , j , i < j ,
φ i , j u , v ε j v u , v , i , j , i < j ,
φ i , j u , v λ i , j u , v , i , j , i < j ,
φ i , j u , v ε i u + ε j v + λ i , j 2 u , v , i , j , i < j ,
u = 1 N o ε i u = 1 i .
| S k | = i = 1 N s δ i k k ,
| S k | τ k · ( X + 1 ) k ,
| S k | τ k · Γ k ,
k = 1 N c max δ i k = 1 i ,
δ i k τ k k , i .
i = 1 N s ( d ( s i ) · δ i k ) ( | S k | X ) · C + ( 1 τ k ) · K k .
h ( s p , s q ) = h T ( s p , s q ) p , q , p q , h t ( s p , s q ) = min { h ¯ , h t 1 ( s p , s q ) , h ^ } ,
h ¯ = h t 1 ( s p , s i ) + ( 1 λ i , j ) · I + 1 + h t 1 ( s j , s q ) , h ^ = h t 1 ( s p , s j ) + ( 1 λ i , j ) · I + 1 + h t 1 ( s i , s q ) , p , q , p q ; i , j , t , i < j , t = ( i 1 ) ( N s i / 2 ) i + j ,
a p , q t = { 1 , if h ¯ h t 1 ( s p , s q ) 0 , otherwise p , q , p q ; i , j , t , i < j , t = ( i 1 ) ( N s i / 2 ) i + j .
h 0 ( s p , s q ) = I p , q , p q ,
h 0 ( s p , s p ) = 0 p ,
h t ( s p , s p ) = 0 t , p ,
h t ( s p , s q ) h t 1 ( s p , s q ) t , p , q , p q ,
h t ( s p , s q ) h ¯ t , p , q , p q ,
h t ( s p , s q ) h ^ t , p , q , p q ,
a p , q t > 1 J [ h ¯ h t 1 ( s p , s q ) ] t , p , q , p q ,
a p , q t 1 1 J [ h t 1 ( s p , s q ) h ¯ ] t , p , q , p q ,
h t ( s p , s q ) h t 1 ( s p , s q ) + ( a p , q t 1 ) · J + ( a q , p t 1 ) · J t , p , q , p q ,
h t ( s p , s q ) h ¯ a p , q t · J + ( a q , p t 1 ) · J t , p , q , p q ,
h t ( s p , s q ) h ^ a p , q t · J + ( a q , p t 1 ) · J t , p , q , p q ,
a p , q t + a q , p t 1 t , p , q , p q ,
h t ( s p , s q ) = h t ( s q , s p ) t , p , q , p q .
h t ( s p , s q ) = { h t 1 ( s p , s q ) , if a p , q t = 1 and a q , p t = 1 h ^ , h ^ , if a p , q t = 1 and a q , p t = 0 h ¯ , h ¯ , if a p , q t = 0 and a q , p t = 1 t , p , q , p q .
h T ( s p , s q ) A B C + ( 1 θ p , q ) · I p , q , p < q ,
λ i , j θ i , j i , j , i < j ,
θ i , j = k = 1 N c max η i , j k i , j , i < j ,
η i , j k δ i k k , i , j , i < j ,
η i , j k δ j k k , i , j , i < j ,
η i , j k δ i k + δ j k 1 k , i , j , i < j .
L m n = [ l i , u m , n ] N s × N o = ( l 1 , 1 m , n l 1 , 2 m , n l 1 , N o m , n l 2 , 1 m , n l 2 , 2 m , n l 2 , N o m , n l N s , 1 m , n c N s , 2 m , n c N s , N o m , n ) m , n ,
R m n = [ r i , k m , n ] N s × N c max = ( r 1 , 1 m , n r 1 , 2 m , n r 1 , N c max m , n r 2 , 1 m , n r 2 , 2 m , n r 2 , N c max m , n r N s , 1 m , n r N s , 2 m , n r N s , N c max m , n ) m , n .
P m = { I m n | n { 1 , 2 , 3 , , N I } } m ,
F ( I m n ) = ( i = 1 N s 1 j = i + 1 N s l ( s i , s j ) · θ i , j ) 1 m , n ,
θ i , j = k = 1 N c max r i , k m , n · r j , k m , n i , j , i < j ,
l ( s i , s j ) = u = 1 N o v = 1 N o l ( o i u , o j v ) · l i , u m , n · l j , v m , n i , j , i < j .
p sel m , n = F ( I m n ) x = 1 N I F ( I m x ) m , n .
S k = { s i | r i , k N p , α = 1 , i { 1 , 2 , 3 , , N s } } k .
μ w p , q = { 1 , if h w ( s p , s q ) > A B C 0 , otherwise w ; s p , s q S k ,
ρ w , i , j p , q = { 1 , if h w ( s p , s i ) + 1 + h w ( s j , s q ) A B C or h w ( s p , s j ) + 1 + h w ( s i , s q ) A B C 0 , otherwise w ; s p , s q , s i , s j S k .
N w ( s i , s j ) = s p , s q S k μ w p , q · ρ w , i , j p , q w ; s i , s j S k .
h w + 1 ( s p , s q ) = min { h w ( s p , s i ) + 1 + h w ( s j , s q ) , h w ( s p , s q ) , h w ( s p , s j ) + 1 + h w ( s i , s q ) } w ; s p , s q S k .
F z ( I m n ) = ( i = 1 N s 1 j = i + 1 N s ϵ i , j z · l z ( s i , s j ) · θ i , j z ) 1 z , m , n ,
ϵ i , j z = { ϵ i , j z 1 , if λ i , j z 1 = 1 ϵ i , j z 1 · ϵ , if λ i , j z 1 = 0 z , i , j ,
L z = i = 1 N s 1 j = i + 1 N s λ i , j z · l z ( s i , s j ) z ,
l z ( s i , s j ) = u = 1 N o v = 1 N o l ( o i u , o j v ) · ε i u , z · ε j v , z z , i , j , i < j .
Γ z = max { | S k | z , k } z .
N c max = N s X · E [ d ¯ ] / ( C E [ d ¯ ] ) + X ,