Abstract

A conventional colorless and directionless reconfigurable optical add/drop multiplexer (ROADM) architecture is modified to add intra-node optical bypass and achieve either statistical or absolute contention-free performance. The contention-free performance is accomplished without relying on external transponders and optical transport network (OTN) switches. Furthermore, the overall ROADM has a smaller size, lower power consumption, and lower cost than those of conventional colorless, directionless, and contentionless ROADMs.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. B. Basch, R. Egorov, and S. Gringeri, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron., vol.  12, no. 4, pp. 615–626, July/Aug. 2006.
    [CrossRef]
  2. M. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMs and subsystem applications,” in Optical Fiber Telecommunications: Systems and Networks. Elsevier, 2008, Vol. B, Chap. 8.
  3. S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, July 2010.
    [CrossRef]
  4. W. I. Way, “Optimum architecture for M × N multicast switch-based colorless, directionless, contentionless and flexible-grid ROADM,” in Proc. OFC/NFOEC, 2012, paper NW3F.2.
  5. L. E. Nelson, X. Zhou, R. Isaac, Y.-M. Lin, J. Chon, and W. I. Way, “Colorless reception of a single 100  Gb/s channel from 80 coincident channels via an intradyne coherent receiver,” in Proc. IEEE Photonics Conf., 2012, paper TuE4.
  6. M. O’Sullivan, C. Laperle, A. Borowiec, and K. Farley, “A 400G/1T high spectral efficiency technology and some enabling subsystems,” in Proc. OFC/NFOEC, 2012, paper OM2H.1.
  7. S. Thiagarajan and S. Asselin, “Nodal contention in colorless, directionless ROADMs using traffic growth models,” in Proc. OFC/NFOEC, 2012, paper NW3F.2.
  8. M. D. Feuer, S. L. Woodward, P. Palacharla, and X. Wang, “Intra-node contention in dynamic photonic networks,” J. Lightwave Technol., vol.  29, no. 4, pp. 529–535, 2011.
    [CrossRef]
  9. I. Kim, P. Palacharla, X. Wang, D. Bihon, M. D. Feuer, and S. L. Woodward, “Performance of colorless, non-directional ROADMs with modular client-side fiber cross-connects,” in Proc. OFC/NFOEC, 2012, paper NM3F.7.

2011

2010

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, July 2010.
[CrossRef]

2006

E. B. Basch, R. Egorov, and S. Gringeri, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron., vol.  12, no. 4, pp. 615–626, July/Aug. 2006.
[CrossRef]

Asselin, S.

S. Thiagarajan and S. Asselin, “Nodal contention in colorless, directionless ROADMs using traffic growth models,” in Proc. OFC/NFOEC, 2012, paper NW3F.2.

Basch, B.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, July 2010.
[CrossRef]

Basch, E. B.

E. B. Basch, R. Egorov, and S. Gringeri, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron., vol.  12, no. 4, pp. 615–626, July/Aug. 2006.
[CrossRef]

Bihon, D.

I. Kim, P. Palacharla, X. Wang, D. Bihon, M. D. Feuer, and S. L. Woodward, “Performance of colorless, non-directional ROADMs with modular client-side fiber cross-connects,” in Proc. OFC/NFOEC, 2012, paper NM3F.7.

Borowiec, A.

M. O’Sullivan, C. Laperle, A. Borowiec, and K. Farley, “A 400G/1T high spectral efficiency technology and some enabling subsystems,” in Proc. OFC/NFOEC, 2012, paper OM2H.1.

Chon, J.

L. E. Nelson, X. Zhou, R. Isaac, Y.-M. Lin, J. Chon, and W. I. Way, “Colorless reception of a single 100  Gb/s channel from 80 coincident channels via an intradyne coherent receiver,” in Proc. IEEE Photonics Conf., 2012, paper TuE4.

Egorov, R.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, July 2010.
[CrossRef]

E. B. Basch, R. Egorov, and S. Gringeri, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron., vol.  12, no. 4, pp. 615–626, July/Aug. 2006.
[CrossRef]

Farley, K.

M. O’Sullivan, C. Laperle, A. Borowiec, and K. Farley, “A 400G/1T high spectral efficiency technology and some enabling subsystems,” in Proc. OFC/NFOEC, 2012, paper OM2H.1.

Feuer, M.

M. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMs and subsystem applications,” in Optical Fiber Telecommunications: Systems and Networks. Elsevier, 2008, Vol. B, Chap. 8.

Feuer, M. D.

M. D. Feuer, S. L. Woodward, P. Palacharla, and X. Wang, “Intra-node contention in dynamic photonic networks,” J. Lightwave Technol., vol.  29, no. 4, pp. 529–535, 2011.
[CrossRef]

I. Kim, P. Palacharla, X. Wang, D. Bihon, M. D. Feuer, and S. L. Woodward, “Performance of colorless, non-directional ROADMs with modular client-side fiber cross-connects,” in Proc. OFC/NFOEC, 2012, paper NM3F.7.

Gringeri, S.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, July 2010.
[CrossRef]

E. B. Basch, R. Egorov, and S. Gringeri, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron., vol.  12, no. 4, pp. 615–626, July/Aug. 2006.
[CrossRef]

Isaac, R.

L. E. Nelson, X. Zhou, R. Isaac, Y.-M. Lin, J. Chon, and W. I. Way, “Colorless reception of a single 100  Gb/s channel from 80 coincident channels via an intradyne coherent receiver,” in Proc. IEEE Photonics Conf., 2012, paper TuE4.

Kilper, D. C.

M. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMs and subsystem applications,” in Optical Fiber Telecommunications: Systems and Networks. Elsevier, 2008, Vol. B, Chap. 8.

Kim, I.

I. Kim, P. Palacharla, X. Wang, D. Bihon, M. D. Feuer, and S. L. Woodward, “Performance of colorless, non-directional ROADMs with modular client-side fiber cross-connects,” in Proc. OFC/NFOEC, 2012, paper NM3F.7.

Laperle, C.

M. O’Sullivan, C. Laperle, A. Borowiec, and K. Farley, “A 400G/1T high spectral efficiency technology and some enabling subsystems,” in Proc. OFC/NFOEC, 2012, paper OM2H.1.

Lin, Y.-M.

L. E. Nelson, X. Zhou, R. Isaac, Y.-M. Lin, J. Chon, and W. I. Way, “Colorless reception of a single 100  Gb/s channel from 80 coincident channels via an intradyne coherent receiver,” in Proc. IEEE Photonics Conf., 2012, paper TuE4.

Nelson, L. E.

L. E. Nelson, X. Zhou, R. Isaac, Y.-M. Lin, J. Chon, and W. I. Way, “Colorless reception of a single 100  Gb/s channel from 80 coincident channels via an intradyne coherent receiver,” in Proc. IEEE Photonics Conf., 2012, paper TuE4.

O’Sullivan, M.

M. O’Sullivan, C. Laperle, A. Borowiec, and K. Farley, “A 400G/1T high spectral efficiency technology and some enabling subsystems,” in Proc. OFC/NFOEC, 2012, paper OM2H.1.

Palacharla, P.

M. D. Feuer, S. L. Woodward, P. Palacharla, and X. Wang, “Intra-node contention in dynamic photonic networks,” J. Lightwave Technol., vol.  29, no. 4, pp. 529–535, 2011.
[CrossRef]

I. Kim, P. Palacharla, X. Wang, D. Bihon, M. D. Feuer, and S. L. Woodward, “Performance of colorless, non-directional ROADMs with modular client-side fiber cross-connects,” in Proc. OFC/NFOEC, 2012, paper NM3F.7.

Shukla, V.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, July 2010.
[CrossRef]

Thiagarajan, S.

S. Thiagarajan and S. Asselin, “Nodal contention in colorless, directionless ROADMs using traffic growth models,” in Proc. OFC/NFOEC, 2012, paper NW3F.2.

Wang, X.

M. D. Feuer, S. L. Woodward, P. Palacharla, and X. Wang, “Intra-node contention in dynamic photonic networks,” J. Lightwave Technol., vol.  29, no. 4, pp. 529–535, 2011.
[CrossRef]

I. Kim, P. Palacharla, X. Wang, D. Bihon, M. D. Feuer, and S. L. Woodward, “Performance of colorless, non-directional ROADMs with modular client-side fiber cross-connects,” in Proc. OFC/NFOEC, 2012, paper NM3F.7.

Way, W. I.

L. E. Nelson, X. Zhou, R. Isaac, Y.-M. Lin, J. Chon, and W. I. Way, “Colorless reception of a single 100  Gb/s channel from 80 coincident channels via an intradyne coherent receiver,” in Proc. IEEE Photonics Conf., 2012, paper TuE4.

W. I. Way, “Optimum architecture for M × N multicast switch-based colorless, directionless, contentionless and flexible-grid ROADM,” in Proc. OFC/NFOEC, 2012, paper NW3F.2.

Woodward, S. L.

M. D. Feuer, S. L. Woodward, P. Palacharla, and X. Wang, “Intra-node contention in dynamic photonic networks,” J. Lightwave Technol., vol.  29, no. 4, pp. 529–535, 2011.
[CrossRef]

I. Kim, P. Palacharla, X. Wang, D. Bihon, M. D. Feuer, and S. L. Woodward, “Performance of colorless, non-directional ROADMs with modular client-side fiber cross-connects,” in Proc. OFC/NFOEC, 2012, paper NM3F.7.

M. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMs and subsystem applications,” in Optical Fiber Telecommunications: Systems and Networks. Elsevier, 2008, Vol. B, Chap. 8.

Xia, T. J.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, July 2010.
[CrossRef]

Zhou, X.

L. E. Nelson, X. Zhou, R. Isaac, Y.-M. Lin, J. Chon, and W. I. Way, “Colorless reception of a single 100  Gb/s channel from 80 coincident channels via an intradyne coherent receiver,” in Proc. IEEE Photonics Conf., 2012, paper TuE4.

IEEE Commun. Mag.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, July 2010.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

E. B. Basch, R. Egorov, and S. Gringeri, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron., vol.  12, no. 4, pp. 615–626, July/Aug. 2006.
[CrossRef]

J. Lightwave Technol.

Other

M. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMs and subsystem applications,” in Optical Fiber Telecommunications: Systems and Networks. Elsevier, 2008, Vol. B, Chap. 8.

W. I. Way, “Optimum architecture for M × N multicast switch-based colorless, directionless, contentionless and flexible-grid ROADM,” in Proc. OFC/NFOEC, 2012, paper NW3F.2.

L. E. Nelson, X. Zhou, R. Isaac, Y.-M. Lin, J. Chon, and W. I. Way, “Colorless reception of a single 100  Gb/s channel from 80 coincident channels via an intradyne coherent receiver,” in Proc. IEEE Photonics Conf., 2012, paper TuE4.

M. O’Sullivan, C. Laperle, A. Borowiec, and K. Farley, “A 400G/1T high spectral efficiency technology and some enabling subsystems,” in Proc. OFC/NFOEC, 2012, paper OM2H.1.

S. Thiagarajan and S. Asselin, “Nodal contention in colorless, directionless ROADMs using traffic growth models,” in Proc. OFC/NFOEC, 2012, paper NW3F.2.

I. Kim, P. Palacharla, X. Wang, D. Bihon, M. D. Feuer, and S. L. Woodward, “Performance of colorless, non-directional ROADMs with modular client-side fiber cross-connects,” in Proc. OFC/NFOEC, 2012, paper NM3F.7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Four-degree CD ROADM based on broadcast-and-select for express directions, and colored AWG multiplexers and demultiplexers in add/drop directions. WSS, wavelength selective switch; PS, power splitter.

Fig. 2.
Fig. 2.

Similar to Fig. 1, but with colored AWG multiplexers and demultiplexers replaced by CDC ROADMs.

Fig. 3.
Fig. 3.

Conventional CDC ROADM (drop direction) using modular and scalable 8×16 MCS cards. 1×20 WSSs at the top layer are shared between express and drop directions. ICR, intradyne coherent receiver.

Fig. 4.
Fig. 4.

Hardware contention mitigation options using (a) preinstalled transponders and OTN switches, (b) preinstalled transponders and a C-FXC, or (c) intra-ROADM rerouting through optical bypass.

Fig. 5.
Fig. 5.

CD ROADM based on broadcast-and-select in the drop direction for an eight-degree node. Wavelength contention could occur at the common output port of each (a) 8×1 WSS or (b) 8×1 PC. A contended wavelength in a CDD bank then needs to find an alternative CDD bank to reroute to an external standby DWDM transponder.

Fig. 6.
Fig. 6.

Eight-degree contention-free ROADM (drop direction only), which is based on Fig. 5(b) but with an additional seven shared CR banks and J 8×Q VS-MCSs.

Fig. 7.
Fig. 7.

(a) Detailed structure of an 8×Q VS-MCS (Q=24), (b) when two of the output ports encounter intra-node contention, and (c) how the two contended wavelengths get rerouted back to the desired output ports.

Fig. 8.
Fig. 8.

Construction of an 8×32 VS-MCS.

Fig. 9.
Fig. 9.

Blocking rate versus offered load for an eight-degree node with a varying number (K=07) of CR banks. L, maximum allowable wavelengths passing through a CR bank. (a) L=16, (b) L=24, (c) L=48, and (d) L=unlimited. Number of CDD banks=16.8×24 VS-MCSs are used.

Fig. 10.
Fig. 10.

Extreme case when λ contention in CDD bank no. 1 happens at 3 λ’s among eight degrees, causing 21 contended λ’s to reroute back to CDD bank no. 1 through seven CR banks, with 3 λ’s/CR bank.

Fig. 11.
Fig. 11.

Comparison of normalized cost of three ROADM architectures [conventional CDC, CD + optical bypass (OB), and CD] as a function of the number of drop ports.

Tables (3)

Tables Icon

TABLE I Maximum Rerouted λ’s per CR Bank as a Function of the Number of CR Banks (K) for the Case in Which 21 λ’s per CDD Bank Need to Be Rerouteda

Tables Icon

TABLE II Comparison of Cases Studied in Subsections II.C and II.Da

Tables Icon

TABLE III Total Number of Key Optical Components: The Proposed Architecture Under an Absolute Contention-Free Condition Versus a Conventional CDC ROADM for a 37.5% Drop Ratio in an Eight-Degree Nodea

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Prec,main=PEDFA,main10·log(Q)10·log(Q)ILexcess,main,
Prec,rerouted=PEDFA,rerouted10·log(J)10·log(L)10·log(S)ILexcess,rerouted,
Prec,rerouted=PEDFA,rerouted10·log(J)10·log(Q×(7/8)×J/7)10·log(Q/8)ILexcess,rerouted,