Abstract

The wavelength-division-multiplexed passive optical network (WDM-PON) has been generally regarded as a promising solution to the next-generation access network that will be required to deliver services over 40Gb/s. However, fiber dispersion often limits the capacity and reach of WDM-PONs. Compared with dispersion compensation fiber, which is bulky and expensive with significant power loss, digital signal processing is a more suitable way to mitigate chromatic dispersion in PONs. Furthermore, expense is a critical concern in the WDM-PON, due to its need for a large number of lasers and a complex wavelength control mechanism. One practical solution is to reuse the downstream (DS) signal as the carrier for the upstream (US) modulation. In this case, the residual DS signal after remodulation can seriously degrade US transmission. In addition, system performance can be deteriorated by the unwanted reflection as uplinks and downlinks share one wavelength. In this paper, we propose using modified duobinary (MD) coding in the DS to improve its dispersion tolerance and reduce the crosstalk between DS and US induced by remodulation and reflection. MD is a correlative level code that can reduce signal bandwidth and achieve DC balance. We demonstrate a 15 km WDM-PON delivering a 40Gb/s MD-coded signal in the downlink and a 10Gb/s on–off keying signal in the uplink. Compared with no coding, the maximal allowable extinction ratio of the DS signal (ERd) is improved by 4 dB. Moreover, the reflection tolerance of the uplink and downlink is enhanced by 5 and 4 dB, respectively. In addition, investigations on the use of different equalizers in the DS to further suppress fiber dispersion confirm that the superior performance of nonlinear equalization in MD-coded transmission and that the network reach can be extended to 25 km by a nonlinear decision feedback equalizer.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Koonen, “Trends in optical access and in building networks,” in Proc. ECOC, Brussels, Belgium, 2008, paper We2.A.1.
  2. P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.
  3. Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, and Y. Ma, “Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2),” J. Lightwave Technol., vol.  31, no. 4, pp. 587–593, 2013.
    [CrossRef]
  4. K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett., vol.  20, no. 18, pp. 1533–1535, 2008.
    [CrossRef]
  5. I. N. Cano, M. Omella, J. Prat, and P. Poggiolini, “Colorless 10 Gb/s extended reach WDM PON with low BW RSOA using MLSE,” in Proc. OFC/NFOEC, San Diego, CA, 2010, paper OWG2.
  6. Q. Guo, A. V. Tran, and C. J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett., vol.  23, pp. 1442–1444, Oct. 2011.
    [CrossRef]
  7. Q. Guo and A. V. Tran, “Improving performance of MLSE in RSOA-based WDM-PON by partial response signaling,” Opt. Express, vol.  19, no. 26, pp. B181–B190, Nov. 2011.
    [CrossRef]
  8. W. Lee, S. H. Cho, M. Y. Park, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Wavelength filter detuning for improved carrier reuse in loop-back WDM-PON,” Electron. Lett., vol.  42, pp. 596–597, May 2006.
    [CrossRef]
  9. Z. W. Xu, Y. Z. Wen, W. D. Zhong, M. Attygalle, X. F. Cheng, Y. X. Wang, T. H. Cheng, and C. Lu, “WDM-PON architectures with a single shared interferometric filter for carrier-reuse upstream transmission,” J. Lightwave Technol., vol.  25, pp. 3669–3677, Dec. 2007.
    [CrossRef]
  10. T. Y. Kim and S. K. Han, “Reflective SOA-based bidirectional WDM-PON sharing optical source for up/downlink data and broadcasting transmission,” IEEE Photon. Technol. Lett., vol.  18, pp. 2350–2352, Nov. 2006.
    [CrossRef]
  11. Z. Liu, J. Xu, Q. Wang, and C. K. Chan, “Rayleigh noise mitigated 70-km-reach bi-directional WDMPON with 10-Gb/s directly modulated Manchester-duobinary as downstream signal,” in Proc. OFC/NFOEC, Los Angeles, CA, 2012, paper OW1B.2.
  12. S. Y. Kim, S. B. Jun, Y. Takushima, E. S. Son, and Y. C. Chung, “Enhanced performance of RSOA-based WDM PON by using Manchester coding,” J. Opt. Netw., vol.  6, pp. 624–630, June 2007.
    [CrossRef]
  13. K. Y. Cho, A. Murakami, Y. J. Lee, A. Agata, Y. Takushima, and Y. C. Chung, “Demonstration of RSOA-based WDM PON operating at symmetric rate of 1.25 Gb/s with high reflection tolerance,” in Proc. OFC/NFOEC, San Diego, CA, 2008, paper OTuH4.
  14. Z. El-Sahn, J. Buset, and D. Plant, “Bidirectional WDM PON enabled by reflective ONUs and a novel overlapped-subcarrier multiplexing technique,” in Proc. OFC/NFOEC, Los Angeles, CA, 2011, paper OMP7.
  15. Q. Guo and A. V. Tran, “Performance enhancement in RSOA-based WDM passive optical networks using level coding,” J. Lightwave Technol., vol.  31, no. 1, pp. 67–73, 2013.
    [CrossRef]
  16. K. Yonenaga and S. Kuwano, “Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver,” J. Lightwave Technol., vol.  15, no. 8, pp. 1530–1537, 1997.
    [CrossRef]
  17. Y. Yano, T. Ono, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, “2.6 terabit/s WDM transmission experiment using optical duobinary coding,” in Proc. ECOC, 1996, paper ThB.3.1.
  18. C. Xia and W. Rosenkranz, “Performance enhancement for duobinary modulation through nonlinear electrical equalization,” in Proc. ECOC, Glasgow, UK, 2005, paper Tu4.2.3.
  19. C. Xia and W. Rosenkranz, “Nonlinear electrical equalization for different modulation formats with optical filtering,” J. Lightwave Technol., vol.  25, no. 4, pp. 996–1001, 2007.
    [CrossRef]
  20. Q. Guo and A. V. Tran, “Demonstration of 40 Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett., vol.  24, no. 11, pp. 951–953, June 2012.
    [CrossRef]
  21. A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol., vol.  COM-12, pp. 128–135, 1964.
  22. T. Koh and E. J. Powers, “Second-order Volterra filtering and its application to nonlinear system identification,” IEEE Trans. Acoust., Speech, Signal Process., vol.  ASSP-33, no. 6, pp. 1445–1455, 1985.
  23. X. We, X. Liu, S. Chandrasekhar, A. H. Gnauck, G. Raybont, J. Leuthold, and P. J. Winzert, “40 Gb/s duobinary and modified duobinary transmitter based on an optical delay interferometer,” in Proc. ECOC, Copenhagen, Sweden, 2002, paper 9.6.3.
  24. A. Matsuura, K. Yonenaga, Y. Miyamoto, and H. Toba, “High-speed transmission based on optical modified duobinary signals,” Electron. Lett., vol.  35, no. 9, pp. 736–737, Apr. 1999.
    [CrossRef]
  25. Q. Guo, A. V. Tran, and C. J. Chae, “20 Gb/s WDM-PON system with 1 GHz RSOA using partial response equalization and optical filter detuning,” in Proc. OFC/NFOEC, Los Angeles, CA, 2011, paper NTuB5.
  26. M. Omella, I. Papagiannakis, B. Schrenk, D. Klonidis, J. A. Lazaro, A. N. Birbas, J. Kikidis, J. Prat, and I. Tomkos, “10 Gb/s full-duplex bidirectional transmission with RSOA-based ONU using detuned optical filtering and decision feedback equalization,” Opt. Express, vol.  17, pp. 5008–5013, 2009.
    [CrossRef]
  27. W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, pp. 2460–2462, Nov. 2005.
    [CrossRef]

2013 (2)

2012 (1)

Q. Guo and A. V. Tran, “Demonstration of 40 Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett., vol.  24, no. 11, pp. 951–953, June 2012.
[CrossRef]

2011 (2)

Q. Guo, A. V. Tran, and C. J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett., vol.  23, pp. 1442–1444, Oct. 2011.
[CrossRef]

Q. Guo and A. V. Tran, “Improving performance of MLSE in RSOA-based WDM-PON by partial response signaling,” Opt. Express, vol.  19, no. 26, pp. B181–B190, Nov. 2011.
[CrossRef]

2009 (1)

2008 (1)

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett., vol.  20, no. 18, pp. 1533–1535, 2008.
[CrossRef]

2007 (3)

2006 (2)

T. Y. Kim and S. K. Han, “Reflective SOA-based bidirectional WDM-PON sharing optical source for up/downlink data and broadcasting transmission,” IEEE Photon. Technol. Lett., vol.  18, pp. 2350–2352, Nov. 2006.
[CrossRef]

W. Lee, S. H. Cho, M. Y. Park, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Wavelength filter detuning for improved carrier reuse in loop-back WDM-PON,” Electron. Lett., vol.  42, pp. 596–597, May 2006.
[CrossRef]

2005 (1)

W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, pp. 2460–2462, Nov. 2005.
[CrossRef]

1999 (1)

A. Matsuura, K. Yonenaga, Y. Miyamoto, and H. Toba, “High-speed transmission based on optical modified duobinary signals,” Electron. Lett., vol.  35, no. 9, pp. 736–737, Apr. 1999.
[CrossRef]

1997 (1)

K. Yonenaga and S. Kuwano, “Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver,” J. Lightwave Technol., vol.  15, no. 8, pp. 1530–1537, 1997.
[CrossRef]

1985 (1)

T. Koh and E. J. Powers, “Second-order Volterra filtering and its application to nonlinear system identification,” IEEE Trans. Acoust., Speech, Signal Process., vol.  ASSP-33, no. 6, pp. 1445–1455, 1985.

1964 (1)

A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol., vol.  COM-12, pp. 128–135, 1964.

Agata, A.

K. Y. Cho, A. Murakami, Y. J. Lee, A. Agata, Y. Takushima, and Y. C. Chung, “Demonstration of RSOA-based WDM PON operating at symmetric rate of 1.25 Gb/s with high reflection tolerance,” in Proc. OFC/NFOEC, San Diego, CA, 2008, paper OTuH4.

Attygalle, M.

Birbas, A. N.

Bourgart, F.

P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.

Buset, J.

Z. El-Sahn, J. Buset, and D. Plant, “Bidirectional WDM PON enabled by reflective ONUs and a novel overlapped-subcarrier multiplexing technique,” in Proc. OFC/NFOEC, Los Angeles, CA, 2011, paper OMP7.

Cano, I. N.

I. N. Cano, M. Omella, J. Prat, and P. Poggiolini, “Colorless 10 Gb/s extended reach WDM PON with low BW RSOA using MLSE,” in Proc. OFC/NFOEC, San Diego, CA, 2010, paper OWG2.

Capelle, B.

P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.

Chae, C. J.

Q. Guo, A. V. Tran, and C. J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett., vol.  23, pp. 1442–1444, Oct. 2011.
[CrossRef]

Q. Guo, A. V. Tran, and C. J. Chae, “20 Gb/s WDM-PON system with 1 GHz RSOA using partial response equalization and optical filter detuning,” in Proc. OFC/NFOEC, Los Angeles, CA, 2011, paper NTuB5.

Chan, C. K.

Z. Liu, J. Xu, Q. Wang, and C. K. Chan, “Rayleigh noise mitigated 70-km-reach bi-directional WDMPON with 10-Gb/s directly modulated Manchester-duobinary as downstream signal,” in Proc. OFC/NFOEC, Los Angeles, CA, 2012, paper OW1B.2.

Chanclou, P.

P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.

Chandrasekhar, S.

X. We, X. Liu, S. Chandrasekhar, A. H. Gnauck, G. Raybont, J. Leuthold, and P. J. Winzert, “40 Gb/s duobinary and modified duobinary transmitter based on an optical delay interferometer,” in Proc. ECOC, Copenhagen, Sweden, 2002, paper 9.6.3.

Charbonnier, B.

P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.

Cheng, T. H.

Cheng, X. F.

Cho, K. Y.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett., vol.  20, no. 18, pp. 1533–1535, 2008.
[CrossRef]

K. Y. Cho, A. Murakami, Y. J. Lee, A. Agata, Y. Takushima, and Y. C. Chung, “Demonstration of RSOA-based WDM PON operating at symmetric rate of 1.25 Gb/s with high reflection tolerance,” in Proc. OFC/NFOEC, San Diego, CA, 2008, paper OTuH4.

Cho, S. H.

W. Lee, S. H. Cho, M. Y. Park, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Wavelength filter detuning for improved carrier reuse in loop-back WDM-PON,” Electron. Lett., vol.  42, pp. 596–597, May 2006.
[CrossRef]

W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, pp. 2460–2462, Nov. 2005.
[CrossRef]

Chung, Y. C.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett., vol.  20, no. 18, pp. 1533–1535, 2008.
[CrossRef]

S. Y. Kim, S. B. Jun, Y. Takushima, E. S. Son, and Y. C. Chung, “Enhanced performance of RSOA-based WDM PON by using Manchester coding,” J. Opt. Netw., vol.  6, pp. 624–630, June 2007.
[CrossRef]

K. Y. Cho, A. Murakami, Y. J. Lee, A. Agata, Y. Takushima, and Y. C. Chung, “Demonstration of RSOA-based WDM PON operating at symmetric rate of 1.25 Gb/s with high reflection tolerance,” in Proc. OFC/NFOEC, San Diego, CA, 2008, paper OTuH4.

Deniel, Q.

P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.

Effenberger, F.

El-Sahn, Z.

Z. El-Sahn, J. Buset, and D. Plant, “Bidirectional WDM PON enabled by reflective ONUs and a novel overlapped-subcarrier multiplexing technique,” in Proc. OFC/NFOEC, Los Angeles, CA, 2011, paper OMP7.

Emura, K.

Y. Yano, T. Ono, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, “2.6 terabit/s WDM transmission experiment using optical duobinary coding,” in Proc. ECOC, 1996, paper ThB.3.1.

Fukuchi, K.

Y. Yano, T. Ono, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, “2.6 terabit/s WDM transmission experiment using optical duobinary coding,” in Proc. ECOC, 1996, paper ThB.3.1.

Genay, N.

P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.

Gharba, A.

P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.

Gnauck, A. H.

X. We, X. Liu, S. Chandrasekhar, A. H. Gnauck, G. Raybont, J. Leuthold, and P. J. Winzert, “40 Gb/s duobinary and modified duobinary transmitter based on an optical delay interferometer,” in Proc. ECOC, Copenhagen, Sweden, 2002, paper 9.6.3.

Gosselin, S.

P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.

Guillory, J.

P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.

Guo, Q.

Q. Guo and A. V. Tran, “Performance enhancement in RSOA-based WDM passive optical networks using level coding,” J. Lightwave Technol., vol.  31, no. 1, pp. 67–73, 2013.
[CrossRef]

Q. Guo and A. V. Tran, “Demonstration of 40 Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett., vol.  24, no. 11, pp. 951–953, June 2012.
[CrossRef]

Q. Guo and A. V. Tran, “Improving performance of MLSE in RSOA-based WDM-PON by partial response signaling,” Opt. Express, vol.  19, no. 26, pp. B181–B190, Nov. 2011.
[CrossRef]

Q. Guo, A. V. Tran, and C. J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett., vol.  23, pp. 1442–1444, Oct. 2011.
[CrossRef]

Q. Guo, A. V. Tran, and C. J. Chae, “20 Gb/s WDM-PON system with 1 GHz RSOA using partial response equalization and optical filter detuning,” in Proc. OFC/NFOEC, Los Angeles, CA, 2011, paper NTuB5.

Han, S. K.

T. Y. Kim and S. K. Han, “Reflective SOA-based bidirectional WDM-PON sharing optical source for up/downlink data and broadcasting transmission,” IEEE Photon. Technol. Lett., vol.  18, pp. 2350–2352, Nov. 2006.
[CrossRef]

Ito, T.

Y. Yano, T. Ono, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, “2.6 terabit/s WDM transmission experiment using optical duobinary coding,” in Proc. ECOC, 1996, paper ThB.3.1.

Jeong, G.

W. Lee, S. H. Cho, M. Y. Park, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Wavelength filter detuning for improved carrier reuse in loop-back WDM-PON,” Electron. Lett., vol.  42, pp. 596–597, May 2006.
[CrossRef]

W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, pp. 2460–2462, Nov. 2005.
[CrossRef]

Jun, S. B.

Kikidis, J.

Kim, B. W.

W. Lee, S. H. Cho, M. Y. Park, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Wavelength filter detuning for improved carrier reuse in loop-back WDM-PON,” Electron. Lett., vol.  42, pp. 596–597, May 2006.
[CrossRef]

W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, pp. 2460–2462, Nov. 2005.
[CrossRef]

Kim, C.

W. Lee, S. H. Cho, M. Y. Park, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Wavelength filter detuning for improved carrier reuse in loop-back WDM-PON,” Electron. Lett., vol.  42, pp. 596–597, May 2006.
[CrossRef]

W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, pp. 2460–2462, Nov. 2005.
[CrossRef]

Kim, S. Y.

Kim, T. Y.

T. Y. Kim and S. K. Han, “Reflective SOA-based bidirectional WDM-PON sharing optical source for up/downlink data and broadcasting transmission,” IEEE Photon. Technol. Lett., vol.  18, pp. 2350–2352, Nov. 2006.
[CrossRef]

Klonidis, D.

Koh, T.

T. Koh and E. J. Powers, “Second-order Volterra filtering and its application to nonlinear system identification,” IEEE Trans. Acoust., Speech, Signal Process., vol.  ASSP-33, no. 6, pp. 1445–1455, 1985.

Koonen, T.

T. Koonen, “Trends in optical access and in building networks,” in Proc. ECOC, Brussels, Belgium, 2008, paper We2.A.1.

Kuwano, S.

K. Yonenaga and S. Kuwano, “Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver,” J. Lightwave Technol., vol.  15, no. 8, pp. 1530–1537, 1997.
[CrossRef]

Landousies, B.

P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.

Lazaro, J. A.

Le, Q. T.

P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.

Le Guyader, B.

P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.

Lee, J. H.

W. Lee, S. H. Cho, M. Y. Park, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Wavelength filter detuning for improved carrier reuse in loop-back WDM-PON,” Electron. Lett., vol.  42, pp. 596–597, May 2006.
[CrossRef]

W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, pp. 2460–2462, Nov. 2005.
[CrossRef]

Lee, W.

W. Lee, S. H. Cho, M. Y. Park, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Wavelength filter detuning for improved carrier reuse in loop-back WDM-PON,” Electron. Lett., vol.  42, pp. 596–597, May 2006.
[CrossRef]

W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, pp. 2460–2462, Nov. 2005.
[CrossRef]

Lee, Y. J.

K. Y. Cho, A. Murakami, Y. J. Lee, A. Agata, Y. Takushima, and Y. C. Chung, “Demonstration of RSOA-based WDM PON operating at symmetric rate of 1.25 Gb/s with high reflection tolerance,” in Proc. OFC/NFOEC, San Diego, CA, 2008, paper OTuH4.

Lender, A.

A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol., vol.  COM-12, pp. 128–135, 1964.

Leuthold, J.

X. We, X. Liu, S. Chandrasekhar, A. H. Gnauck, G. Raybont, J. Leuthold, and P. J. Winzert, “40 Gb/s duobinary and modified duobinary transmitter based on an optical delay interferometer,” in Proc. ECOC, Copenhagen, Sweden, 2002, paper 9.6.3.

Liu, X.

X. We, X. Liu, S. Chandrasekhar, A. H. Gnauck, G. Raybont, J. Leuthold, and P. J. Winzert, “40 Gb/s duobinary and modified duobinary transmitter based on an optical delay interferometer,” in Proc. ECOC, Copenhagen, Sweden, 2002, paper 9.6.3.

Liu, Z.

Z. Liu, J. Xu, Q. Wang, and C. K. Chan, “Rayleigh noise mitigated 70-km-reach bi-directional WDMPON with 10-Gb/s directly modulated Manchester-duobinary as downstream signal,” in Proc. OFC/NFOEC, Los Angeles, CA, 2012, paper OW1B.2.

Lu, C.

Luo, Y.

Ma, Y.

Matsuura, A.

A. Matsuura, K. Yonenaga, Y. Miyamoto, and H. Toba, “High-speed transmission based on optical modified duobinary signals,” Electron. Lett., vol.  35, no. 9, pp. 736–737, Apr. 1999.
[CrossRef]

Miyamoto, Y.

A. Matsuura, K. Yonenaga, Y. Miyamoto, and H. Toba, “High-speed transmission based on optical modified duobinary signals,” Electron. Lett., vol.  35, no. 9, pp. 736–737, Apr. 1999.
[CrossRef]

Murakami, A.

K. Y. Cho, A. Murakami, Y. J. Lee, A. Agata, Y. Takushima, and Y. C. Chung, “Demonstration of RSOA-based WDM PON operating at symmetric rate of 1.25 Gb/s with high reflection tolerance,” in Proc. OFC/NFOEC, San Diego, CA, 2008, paper OTuH4.

Neto, L. A.

P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.

Omella, M.

Ono, T.

Y. Yano, T. Ono, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, “2.6 terabit/s WDM transmission experiment using optical duobinary coding,” in Proc. ECOC, 1996, paper ThB.3.1.

Papagiannakis, I.

Park, M. Y.

W. Lee, S. H. Cho, M. Y. Park, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Wavelength filter detuning for improved carrier reuse in loop-back WDM-PON,” Electron. Lett., vol.  42, pp. 596–597, May 2006.
[CrossRef]

W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, pp. 2460–2462, Nov. 2005.
[CrossRef]

Peng, G.

Pizzinat, A.

P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.

Plant, D.

Z. El-Sahn, J. Buset, and D. Plant, “Bidirectional WDM PON enabled by reflective ONUs and a novel overlapped-subcarrier multiplexing technique,” in Proc. OFC/NFOEC, Los Angeles, CA, 2011, paper OMP7.

Poggiolini, P.

I. N. Cano, M. Omella, J. Prat, and P. Poggiolini, “Colorless 10 Gb/s extended reach WDM PON with low BW RSOA using MLSE,” in Proc. OFC/NFOEC, San Diego, CA, 2010, paper OWG2.

Powers, E. J.

T. Koh and E. J. Powers, “Second-order Volterra filtering and its application to nonlinear system identification,” IEEE Trans. Acoust., Speech, Signal Process., vol.  ASSP-33, no. 6, pp. 1445–1455, 1985.

Prat, J.

Qian, Y.

Raharimanitra, F.

P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.

Raybont, G.

X. We, X. Liu, S. Chandrasekhar, A. H. Gnauck, G. Raybont, J. Leuthold, and P. J. Winzert, “40 Gb/s duobinary and modified duobinary transmitter based on an optical delay interferometer,” in Proc. ECOC, Copenhagen, Sweden, 2002, paper 9.6.3.

Rosenkranz, W.

C. Xia and W. Rosenkranz, “Nonlinear electrical equalization for different modulation formats with optical filtering,” J. Lightwave Technol., vol.  25, no. 4, pp. 996–1001, 2007.
[CrossRef]

C. Xia and W. Rosenkranz, “Performance enhancement for duobinary modulation through nonlinear electrical equalization,” in Proc. ECOC, Glasgow, UK, 2005, paper Tu4.2.3.

Saliou, F.

P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.

Schrenk, B.

Son, E. S.

Takushima, Y.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett., vol.  20, no. 18, pp. 1533–1535, 2008.
[CrossRef]

S. Y. Kim, S. B. Jun, Y. Takushima, E. S. Son, and Y. C. Chung, “Enhanced performance of RSOA-based WDM PON by using Manchester coding,” J. Opt. Netw., vol.  6, pp. 624–630, June 2007.
[CrossRef]

K. Y. Cho, A. Murakami, Y. J. Lee, A. Agata, Y. Takushima, and Y. C. Chung, “Demonstration of RSOA-based WDM PON operating at symmetric rate of 1.25 Gb/s with high reflection tolerance,” in Proc. OFC/NFOEC, San Diego, CA, 2008, paper OTuH4.

Toba, H.

A. Matsuura, K. Yonenaga, Y. Miyamoto, and H. Toba, “High-speed transmission based on optical modified duobinary signals,” Electron. Lett., vol.  35, no. 9, pp. 736–737, Apr. 1999.
[CrossRef]

Tomkos, I.

Tran, A. V.

Q. Guo and A. V. Tran, “Performance enhancement in RSOA-based WDM passive optical networks using level coding,” J. Lightwave Technol., vol.  31, no. 1, pp. 67–73, 2013.
[CrossRef]

Q. Guo and A. V. Tran, “Demonstration of 40 Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett., vol.  24, no. 11, pp. 951–953, June 2012.
[CrossRef]

Q. Guo, A. V. Tran, and C. J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett., vol.  23, pp. 1442–1444, Oct. 2011.
[CrossRef]

Q. Guo and A. V. Tran, “Improving performance of MLSE in RSOA-based WDM-PON by partial response signaling,” Opt. Express, vol.  19, no. 26, pp. B181–B190, Nov. 2011.
[CrossRef]

Q. Guo, A. V. Tran, and C. J. Chae, “20 Gb/s WDM-PON system with 1 GHz RSOA using partial response equalization and optical filter detuning,” in Proc. OFC/NFOEC, Los Angeles, CA, 2011, paper NTuB5.

Wang, Q.

Z. Liu, J. Xu, Q. Wang, and C. K. Chan, “Rayleigh noise mitigated 70-km-reach bi-directional WDMPON with 10-Gb/s directly modulated Manchester-duobinary as downstream signal,” in Proc. OFC/NFOEC, Los Angeles, CA, 2012, paper OW1B.2.

Wang, Y. X.

We, X.

X. We, X. Liu, S. Chandrasekhar, A. H. Gnauck, G. Raybont, J. Leuthold, and P. J. Winzert, “40 Gb/s duobinary and modified duobinary transmitter based on an optical delay interferometer,” in Proc. ECOC, Copenhagen, Sweden, 2002, paper 9.6.3.

Wen, Y. Z.

Winzert, P. J.

X. We, X. Liu, S. Chandrasekhar, A. H. Gnauck, G. Raybont, J. Leuthold, and P. J. Winzert, “40 Gb/s duobinary and modified duobinary transmitter based on an optical delay interferometer,” in Proc. ECOC, Copenhagen, Sweden, 2002, paper 9.6.3.

Xia, C.

C. Xia and W. Rosenkranz, “Nonlinear electrical equalization for different modulation formats with optical filtering,” J. Lightwave Technol., vol.  25, no. 4, pp. 996–1001, 2007.
[CrossRef]

C. Xia and W. Rosenkranz, “Performance enhancement for duobinary modulation through nonlinear electrical equalization,” in Proc. ECOC, Glasgow, UK, 2005, paper Tu4.2.3.

Xu, J.

Z. Liu, J. Xu, Q. Wang, and C. K. Chan, “Rayleigh noise mitigated 70-km-reach bi-directional WDMPON with 10-Gb/s directly modulated Manchester-duobinary as downstream signal,” in Proc. OFC/NFOEC, Los Angeles, CA, 2012, paper OW1B.2.

Xu, Z. W.

Yamaguchi, M.

Y. Yano, T. Ono, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, “2.6 terabit/s WDM transmission experiment using optical duobinary coding,” in Proc. ECOC, 1996, paper ThB.3.1.

Yamazaki, H.

Y. Yano, T. Ono, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, “2.6 terabit/s WDM transmission experiment using optical duobinary coding,” in Proc. ECOC, 1996, paper ThB.3.1.

Yan, X.

Yano, Y.

Y. Yano, T. Ono, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, “2.6 terabit/s WDM transmission experiment using optical duobinary coding,” in Proc. ECOC, 1996, paper ThB.3.1.

Yonenaga, K.

A. Matsuura, K. Yonenaga, Y. Miyamoto, and H. Toba, “High-speed transmission based on optical modified duobinary signals,” Electron. Lett., vol.  35, no. 9, pp. 736–737, Apr. 1999.
[CrossRef]

K. Yonenaga and S. Kuwano, “Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver,” J. Lightwave Technol., vol.  15, no. 8, pp. 1530–1537, 1997.
[CrossRef]

Zhong, W. D.

Zhou, X.

Electron. Lett. (2)

W. Lee, S. H. Cho, M. Y. Park, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Wavelength filter detuning for improved carrier reuse in loop-back WDM-PON,” Electron. Lett., vol.  42, pp. 596–597, May 2006.
[CrossRef]

A. Matsuura, K. Yonenaga, Y. Miyamoto, and H. Toba, “High-speed transmission based on optical modified duobinary signals,” Electron. Lett., vol.  35, no. 9, pp. 736–737, Apr. 1999.
[CrossRef]

IEEE Photon. Technol. Lett. (5)

Q. Guo and A. V. Tran, “Demonstration of 40 Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett., vol.  24, no. 11, pp. 951–953, June 2012.
[CrossRef]

W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol.  17, pp. 2460–2462, Nov. 2005.
[CrossRef]

Q. Guo, A. V. Tran, and C. J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett., vol.  23, pp. 1442–1444, Oct. 2011.
[CrossRef]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett., vol.  20, no. 18, pp. 1533–1535, 2008.
[CrossRef]

T. Y. Kim and S. K. Han, “Reflective SOA-based bidirectional WDM-PON sharing optical source for up/downlink data and broadcasting transmission,” IEEE Photon. Technol. Lett., vol.  18, pp. 2350–2352, Nov. 2006.
[CrossRef]

IEEE Trans. Acoust., Speech, Signal Process. (1)

T. Koh and E. J. Powers, “Second-order Volterra filtering and its application to nonlinear system identification,” IEEE Trans. Acoust., Speech, Signal Process., vol.  ASSP-33, no. 6, pp. 1445–1455, 1985.

IEEE Trans. Commun. Technol. (1)

A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol., vol.  COM-12, pp. 128–135, 1964.

J. Lightwave Technol. (5)

J. Opt. Netw. (1)

Opt. Express (2)

Other (10)

X. We, X. Liu, S. Chandrasekhar, A. H. Gnauck, G. Raybont, J. Leuthold, and P. J. Winzert, “40 Gb/s duobinary and modified duobinary transmitter based on an optical delay interferometer,” in Proc. ECOC, Copenhagen, Sweden, 2002, paper 9.6.3.

Q. Guo, A. V. Tran, and C. J. Chae, “20 Gb/s WDM-PON system with 1 GHz RSOA using partial response equalization and optical filter detuning,” in Proc. OFC/NFOEC, Los Angeles, CA, 2011, paper NTuB5.

I. N. Cano, M. Omella, J. Prat, and P. Poggiolini, “Colorless 10 Gb/s extended reach WDM PON with low BW RSOA using MLSE,” in Proc. OFC/NFOEC, San Diego, CA, 2010, paper OWG2.

T. Koonen, “Trends in optical access and in building networks,” in Proc. ECOC, Brussels, Belgium, 2008, paper We2.A.1.

P. Chanclou, F. Bourgart, B. Landousies, S. Gosselin, B. Charbonnier, N. Genay, A. Pizzinat, F. Saliou, B. Capelle, Q. T. Le, F. Raharimanitra, A. Gharba, L. A. Neto, J. Guillory, Q. Deniel, and B. Le Guyader, “Technical options for NGPON2 beyond 10G PON,” in Proc. ECOC, Geneva, Switzerland, 2011, paper We9C3.

K. Y. Cho, A. Murakami, Y. J. Lee, A. Agata, Y. Takushima, and Y. C. Chung, “Demonstration of RSOA-based WDM PON operating at symmetric rate of 1.25 Gb/s with high reflection tolerance,” in Proc. OFC/NFOEC, San Diego, CA, 2008, paper OTuH4.

Z. El-Sahn, J. Buset, and D. Plant, “Bidirectional WDM PON enabled by reflective ONUs and a novel overlapped-subcarrier multiplexing technique,” in Proc. OFC/NFOEC, Los Angeles, CA, 2011, paper OMP7.

Z. Liu, J. Xu, Q. Wang, and C. K. Chan, “Rayleigh noise mitigated 70-km-reach bi-directional WDMPON with 10-Gb/s directly modulated Manchester-duobinary as downstream signal,” in Proc. OFC/NFOEC, Los Angeles, CA, 2012, paper OW1B.2.

Y. Yano, T. Ono, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, “2.6 terabit/s WDM transmission experiment using optical duobinary coding,” in Proc. ECOC, 1996, paper ThB.3.1.

C. Xia and W. Rosenkranz, “Performance enhancement for duobinary modulation through nonlinear electrical equalization,” in Proc. ECOC, Glasgow, UK, 2005, paper Tu4.2.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Spectra of the binary (NRZ) signal and MD signal (Rb is the bit rate of the signal).

Fig. 2.
Fig. 2.

Spectrum of 40Gb/s DS MD-coded signal and 10Gb/s US binary signal at the ONU.

Fig. 3.
Fig. 3.

(a) Differential precoding process and (b) generation process of the MD signal from the binary signal. 2T is a 2 bit delay line.

Fig. 4.
Fig. 4.

Structure of NL-DFE. e and b are coefficients of FFF and FBF, respectively, and T is a 1 bit delay.

Fig. 5.
Fig. 5.

Wavelength-reused WDM-PON transmitting an MD signal in the DS and a binary signal in the US.

Fig. 6.
Fig. 6.

Experimental setup.

Fig. 7.
Fig. 7.

BER versus ERd in the b2b system.

Fig. 8.
Fig. 8.

Experimental setup for reflection tolerance study (OBPF is an optical bandpass filter).

Fig. 9.
Fig. 9.

BER versus CSR in the b2b system.

Fig. 10.
Fig. 10.

BER versus distance in a system with various fiber lengths.

Fig. 11.
Fig. 11.

BER versus distance in a system with both MD coding and an NL-DFE.

Fig. 12.
Fig. 12.

Power penalty versus distance for US and for DS when MD coding is applied under these conditions: with no equalizer, with a DFE, and with an NL-DFE.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H(D)=k=0N1gkDk,
Mk=BkBk2.
Of(t)=k=0mekI(tkT)+k=0ml=kmek,lI(tkT)I(tlT).
Od(t)=k=1nbkdtk+k=1nl=k+1nbk,ldtkdtl.